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ABSTRACT Fluorescence recovery after photobleaching (FRAP) is an important tool used by cell biologists to study the diffu-
sion and binding kinetics of vesicles, proteins, and other molecules in the cytoplasm, nucleus, or cell membrane. Although many
FRAP models have been developed over the past decades, the influence of the complex boundaries of 3D cellular geometries
on the recovery curves, in conjunction with regions of interest and optical effects (imaging, photobleaching, photoswitching, and
scanning), has not been well studied. Here, we developed a 3D computational model of the FRAP process that incorporates
particle diffusion, cell boundary effects, and the optical properties of the scanning confocal microscope, and validated this model
using the tip-growing cells of Physcomitrella patens. We then show how these cell boundary and optical effects confound the
interpretation of FRAP recovery curves, including the number of dynamic states of a given fluorophore, in a wide range of cellular
geometries—both in two and three dimensions—namely nuclei, filopodia, and lamellipodia of mammalian cells, and in cell types
such as the budding yeast, Saccharomyces pombe, and tip-growing plant cells. We explored the performance of existing
analytical and algorithmic FRAP models in these various cellular geometries, and determined that the VCell VirtualFRAP tool
provides the best accuracy to measure diffusion coefficients. Our computational model is not limited only to these cells types,
but can easily be extended to other cellular geometries via the graphical Java-based application we also provide. This particle-
based simulation—called the Digital Confocal Microscopy Suite or DCMS—can also perform fluorescence dynamics assays,
such as number and brightness, fluorescence correlation spectroscopy, and raster image correlation spectroscopy, and could
help shape the way these techniques are interpreted.
INTRODUCTION
Due to the popularity of confocal laser scanning microscopes,
fluorescence recovery after photobleaching (FRAP) has
emergedas aprominent technique tomeasure proteinmobility,
and throughout the past decade has appeared in over 150 pub-
lications annually (1). During a typical FRAP experiment, a
cell expressing a fluorophore of interest is subjected to a
high intensity laser pulse that permanently abolishes the fluo-
rescence properties of the fluorophore—a process called pho-
tobleaching. This laser pulse is specifically localized to a
predetermined region of interest (ROI) inside the cell, and
over time fluorophores not subjected to the bleach move into
the ROI, leading to a recovery of the local fluorescence.

The rate and directionality of this fluorescence recovery
can then be used, via a model, to determine an array of
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important characteristics of the molecule of interest, diffu-
sion coefficients, binding kinetics, and the number of dy-
namic states of the fluorophore. These properties are
important for a wide array of biological questions. What is
the contribution of diffusion in the transport of proteins?
Is a protein part of a complex that changes its mobility? Is
the protein associated with the cytoskeleton or other
structures that could change its dynamics states? What are
the in vivo kinetics of specific protein-protein interactions?

To obtain a physical constant, such as the diffusion coef-
ficient, which can help answer these questions using FRAP,
a model must be used. The two most commonly cited FRAP
models are by Axelrod et al. (2) and Soumpasis (3), and they
use an analytically calculated recovery profile of a 2D ROI
inside a cell with an infinite boundary. Although these
models are frequently used—over 650 combined citations
to date—more recent studies have included and explored
additional relevant FRAP parameters such as the finite
confocal scan rate during photobleaching (4–9), arbitrary
photobleaching profiles (10), confocal imaging (5), and
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cell shape (11–14). Despite this wealth of analytical models,
as well as algorithmic approaches (10,13,15–19), it remains
unclear whether these models can yield accurate estimates
of the diffusion coefficients, for instance, when applied us-
ing realistic optical settings in actual cellular geometries.
A simple thought experiment (described in detail in the
Supporting Material, and shown in Fig. S19) based on a
1D FRAP model shows that geometric effects can produce
a factor-of-four difference in the apparent diffusion coeffi-
cient under ideal conditions. Determining such quantities
accurately is important, as this improves the significance
of the biological conclusions derived from modeling of
the cellular processes that are studied.

To provide more accuracy in analyzing FRAP recovery,
interactive solutions such as the VirtualFRAP tool (part of
VCell environment) (13) and simFRAP (10) have been
developed, allowing the calculation of diffusion coefficients
in arbitrary 2D geometries. Although these algorithmic ap-
proaches make fewer assumptions than existing analytical
models (2,3), they still rely on the timescale invariance of
the process, which is not necessarily true in the case where
the bleaching and imaging durations are not instantaneous.
Without a comprehensive model that incorporates all the
relevant aspects of FRAP, it remains a challenge to deter-
mine if a particular analytical or algorithmic method is
appropriate to measure diffusion coefficients or identify
dynamic states for a specific case.

Although it has been shown in silico that cellular geome-
try can influence FRAP (12), this effect is often not taken
into account when analyzing recovery curves obtained
from arbitrary 3D cellular geometries. When analytical
models are unable to quantitatively describe these geometric
effects, oftentimes multiexponential fitting is used to make
qualitative conclusions about the inherent dynamics. This
introduction of spurious dynamic states—potentially
interpreted as multiple diffusing species, active transport
systems, or diffusion/binding reactions—as a result of the
fitting process can further confound the problem, leading
to misinterpretations of the underlying biology. These con-
clusions can further be reinforced by an excellent goodness
of fit, regardless of the underlying physical meaning.

Given the widespread use of FRAP, there is a need for a
rigorous approach incorporating optical, geometric, and
diffusive effects that would allow accurate model selection
for any cell type. Here, we developed an experimentally
validated particle-based diffusion model that allows us to
conduct not only FRAP, but also other fluorescence fluctua-
tion-based analyses on a wide variety of 3D cellular geom-
etries. We then quantitatively demonstrate that cell shape is
one of the predominant factors that can influence FRAP
recoveries, and affect measured diffusion coefficients for
commonly used FRAP models. Because there is a rich
parameter space that influences fluorescent recovery, it
would be misleading to make absolute conclusions about
FRAP recoveries in a given system. To help remedy this
1154 Biophysical Journal 114, 1153–1164, March 13, 2018
challenge, and to make predictions for specific experimental
setups and systems, we provide a free, user-friendly, cross-
platform, and GPU optimized version of our software,
namely Digital Confocal Microscopy Suite (DCMS), to
the readers (20).
MATERIALS AND METHODS

FRAP model in DCMS

To accurately measure the diffusive dynamics of a given molecule in

complex cellular geometries, we created a particle-based simulation that

consists of noninteracting Brownian particles, with a constant diffusion co-

efficient (21). Particles are contained within a region defined by a boundary

surface with reflective boundary conditions (see the Supporting Material).

This surface can be any triangulated mesh representing the cell boundary

of interest; however, when possible, we used an analytical description of

the cell shape (e.g., hemisphere-capped cylinder for moss) to reduce

computational cost. In all of the production runs used for analysis here,

we used 106 particles within this simulation volume.

The simulation also incorporates properties of the optical system (i.e.,

imaging and bleaching, as illustrated in Fig. 1), finite scan rates of the

confocal microscope, the PSF, and ROI size and shape-related effects, as

described in detail in the Supporting Material. Briefly, imaging is per-

formed by scanning across the region corresponding to the output image,

using a squared Gaussian beam point spread function (PSF). The experi-

mental PSF is measured (see the Supporting Material) and used to

determine the parameters for the squared Gaussian. Photobleaching is per-

formed by scanning across the ROI, and stochastically photobleaching flu-

orophores within the beam (see Fig. S5 and Movies S1 and S2).

Furthermore, the DCMS simulations can also conduct reversible

photoswitching during imaging acquisition and bleaching events. If this

reversible photoswitching is neglected, especially for 3xmEGFP, it can

lead to overestimates in measured diffusion coefficients (22). However,

because the kinetics of this process can be dependent on laser power (22)

(see Fig S9 B), it would add additional model parameters. To increase the

accuracy of our results, and avoid a large parameter scan, we experimen-

tally measured and performed the necessary corrections for acquisition

photobleaching (see the Supporting Material) and reversible photoswitch-

ing (see the Supporting Material).

Additionally, although it was not utilized in this article, DCMS also

supports a number of other choices, such as alternative PSF forms, acquisi-

tion photobleaching and photoswitching, and binding kinetics (20).
Cell culture and sample preparation

FRAP experiments were conducted on the caulonemal cells of the moss

Physcomitrella patens; moss tissue was cultured on cellophane placed on

top of the solidified agar. Microscope samples were prepared in QR-43C

chambers (Warner Instruments, Hamden, CT) as follows. First, 25-mm

bottom coverslips were plasma-treated for 3 min to yield a hydrophilic sur-

face. A solution of 0.8% type VII agarose in PpNO3 medium (refer to (23)

for details) was melted, then added directly to the coverslips. A small

cellophane square (1 cm2) with moss tissue, grown for seven days after sub-

culturing, was inverted and placed onto the agarose. To obtain flat cultures,

a second untreated coverslip was placed on top of the cellophane and

flattened using a blunted syringe. Agarose was solidified by placing the

cultures onto a surface at 12�C. Once the agarose solidified, the top cover-

slip was gently removed from the top of the preparation. The remaining

preparation was submerged in PpNO3 and the cellophane was removed.

With the moss firmly adhered to the agarose, the entire coverslip was

added to the QR chamber. The chambers were capped with 18-mm

coverslips and connected to silicone tubing with inner and outer diameters



FIGURE 1 Illustration of FRAP process on the

scanning confocal microscope in three dimensions.

(A) Raster photobleach scan interacting with

confined particles. Arrows indicate the bleaching

pattern of the Gaussian photobleaching laser

beam within the yellow circular region. (B) Particle

excitation and emission. Here the green diffraction

limited laser scans across the image and locally

excites fluorophores that emit red light. Images

are not to scale. To see this figure in color, go

online.

Boundary and Optical Effects in FRAP
of 0.03 in and 0.065 in, respectively. The tubing was connected to a

peristaltic pump and liquid PpNO3 was perfused through the chambers

overnight. Liquid PpNO3 was made 2 days before perfusion and was fil-

ter-sterilized immediately before its use. During Latrunculin B treatment,

a solution of 10 mM Latrunculin B in PpNO3 was perfused through the

chamber for 20 min.
Confocal imaging

FRAP experiments were conducted using a Leica TCS SP5 Scanning

Confocal Microscope and the Leica FRAP Wizard (Leica Microsystems,

Wetzlar, Germany). To conduct FRAP experiments, a 63� objective was

used with a numerical aperture (NA) of 1.4. In the software settings, the

pinhole was set to 2.00 Airy disks and the camera zoomwas set to 9. Images

of 256 � 256 pixels were acquired with a depth of 12 bits. To visualize

3xmEGFP, the Argon laser was set to 75% power with a bidirectional

scanning speed of 2800 Hz and the 488 nm laser line was set to 10% power

in the FRAP wizard. The emission bandwidth for 3xmEGFP was set

between 499 and 546 nm. During bleaching events, all laser lines were

set to 100%.
FRAP postacquisition processing and analysis

Several confounding factors that can influence the interpretation of FRAP

results were examined, namely, image acquisition-induced photo-

bleaching/reversible photobleaching (Supporting Material), reversible

photobleaching after intentional photobleaching (Supporting Material),

confocal detector linearity (SupportingMaterial), and the effects of imaging

and photobleaching away from the medial cell plane (Supporting Material).

We then constructed the FRAP processing scheme depicted in Fig. S6. This

flowchart illustrates how the experimental and simulated FRAP images

were processed and analyzed to yield the diffusion coefficients and high-

light experimental boundary effects. Briefly, images from FRAP experi-

ments, saved as tiff stacks, were converted into fluorescence recovery

curves by averaging the intensity of the pixels within the ROI. Replicate

experiments were then averaged and divided by acquisition bleaching

controls. After processing the recovery curves, we used an argument

minimization scheme to find the best fit simulation parameters (Supporting

Material). Confidence intervals for the best fit parameters were found

via Monte Carlo simulations (Supporting Material). To analyze the

directionality of fluorescence recovery spatially the photobleaching ROI
was cropped, corrected for the limited available volume at the cell tip

(Supporting Material), and subjected to Fourier analysis (see the Supporting

Material). A flow chart depicting this analysis can be found in Fig. S12.
Experimental measurement of the point spread
function

To experimentally measure the point spread function (PSF) of the confocal

microscope, beads were used from the Invitrogen PS-Speck Microscope

Point Source Kit P7220 (Thermo Fisher Scientific, Waltham, MA). Prepa-

rations were made by adding 5 mL of 0:01% polylysine and 5 mL of bead

solution to a dry microscope slide. A coverslip was then placed directly

onto the slide and sealed with wax. Beads were visualized and measured

with the Leica TCS SP5 scanning confocal microscope (Leica Microsys-

tems), using the settings described in the Supporting Material. Green

fluorescent beads were used to match the 3xmEGFP fluorophore, and

z-stacks of the 175 nm beads were taken. From these z-stacks, a 3D recon-

struction of the bead’s intensity profile was created as shown in Fig. S5 a.

These profiles were then used to determine the 3D functional form and

parameters of the PSF, following the procedure defined in the Supporting

Material.
GPU accelerated computation

Due to the high computational cost associated with the motion of many

particles, we wrote a parallel simulation code to take advantage of

general-purpose graphics processing unit computing. To provide a gen-

eral-purpose tool, available to a wider audience, we made a graphical-

user-interface-based simulation tool (DCMS). This interface was written

in Java, using the cross-platform AMD APARAPI library (24) to use

OpenCL computation whenever possible. This also allows the software to

efficiently use general-purpose graphics processing unit computing when

available, and fall back to CPU computing if it is not, in a cross-platform

manner. Our standard production runs, using the moss geometry and

161-image, 2-bleach sequence, take approximately half an hour to run

(on an AMD RX 480 GPU; Advanced Micro Devices, Sunnyvale, CA).

More modest simulations, using fewer particles, fewer imaging steps, or

simpler (fewer polygon) geometries, for example, can be performed in a

few minutes.

To more effectively perform the large number of runs required for our

library fitting approach used in the Supporting Material, we also wrote a
Biophysical Journal 114, 1153–1164, March 13, 2018 1155
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version of the software using NVidia’s CUDA platform. Combined with

some platform-specific optimizations, as well as using an analytical form

of the ideal moss geometry rather than a triangulated mesh, our run-time

was reduced by approximately a factor of 10 (i.e., to 140 s on an NVidia

GTX 780Ti). See (25) for computational details.
RESULTS

Cell shape influences fluorescence recoveries
in vivo

To study the influence of cell shape and boundaries on fluo-
rescence recovery in vivo, we conducted FRAP experiments
in the moss P. patens, at two different ROI locations, one at
the cell edge and another at the center of the cell (as depicted
in Fig. 2 B). We processed the curves to correct for acquisi-
tion and reversible photobleaching, and ensured that our
experiments were in the linear range of the detector (see
the Supporting Material). Additionally, recoveries at the
cell edge exhibited a slower rate of recovery and higher
fluorescence plateau when compared to the center. To
ensure that these observations were not due to filamentous
actin localization at the cell edge, we performed the same
analysis in the presence of an actin depolymerization agent,
latrunculin B at 10 mM (Supporting Material). Latrunculin B
treatment, which has been shown to completely depoly-
merize the actin cytoskeleton at this concentration (26),
had no influence on the observed fluorescence recovery
(Fig. S18).

To determine if a single diffusion coefficient could repro-
duce the different rates of recovery observed at the edge and
the center, we simulated FRAP recovery curves at the edge
and center for a range of diffusion coefficients using the
model described in the Supporting Material and Fig. S1.
In our fitting routine (Supporting Material), we used one
diffusion coefficient to fit recovery at both the edge and
the center, which yielded a value of D ¼ 8.25 5
0.358 mm2 s�1. This diffusion coefficient is within the
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expected range for 3xmEGFP under physiological condi-
tions (27), and using the Einstein-Stokes relation can be
used to estimate an effective viscosity of the moss cyto-
plasm—approximately one order-of-magnitude higher than
that of water in this case. The simulations at the cell edge ex-
hibited both a slower rate of recovery and higher fluores-
cence plateau when compared to the center, recapitulating
experimental recoveries. The slower recovery at the cell
edge is due to geometrical constraints provided by the apical
plasma membrane, i.e., proteins cannot flow in or exchange
in all directions as they can at the center of the cell. The
higher plateau at the cell edge is caused by photobleaching
fewer particles at the cell edge because the 3D Gaussian
laser beam extends outside of the cell volume at the edge,
in contrast to the fully encased beam at the cell center.

Fourier analysis of the spatial fluorescence recovery
further supports the claim that cell shape can influence the
interpretation of FRAP curves (Supporting Material).
Specifically, experimental and simulated fluorescence con-
centration gradients are recovered in the same way, as
characterized by the first mode of the Fourier series repre-
sentation of the spatial recovery profile (Fig. S13 a and
Movie S3). Our simulation results in conjunction with ex-
periments highlight the strong influence of boundaries on re-
covery, and shows that erroneous conclusions about the
fraction of bound molecules and fluorescent mobility at
the edge and center can be made if such geometric effects
are not taken into account. It is important to note that bound-
ary effects are masked by the additional effects (such as scan
speed) associated with a fast recovery, and become more
apparent at lower diffusion coefficients (Fig. 3). In the limit
of a fast scan speed, each imaging or photobleaching event
happens at a single point in time, and the curve is well
sampled during recovery. However, with a slower scan
speed—or a faster recovery—each image scan spans a large
amount of the recovery time, and the resultant recovery is
undersampled, affecting the apparent fluorescence recovery.
FIGURE 2 Cell shape influences fluorescence

recovery in vivo and in silico. (A) Three- and

two-dimensional rendering of simulated scanning

confocal photobleaching and recovery. Artificially

fast (instantaneous) imaging scan rates were used

to illustrate 3D properties of the simulation. The

full animated form of this panel can be found in

Movies S1 and S2. (B) Fluorescence recovery of

3xmEGFP cells at the edge (black squares) and

center (green circles). Best fit simulation curves

indicated in red. n ¼ 14 and 7 for the edge and

center, respectively. Error bars represent standard

deviation. (C) Cropped and frame-averaged photo-

bleaching ROI at the cell edge of 3xmEGFP cell

line (top) and simulation (bottom). Time intervals

for frame averaging are Dt1 ¼ 0–40.11 s and

Dt2 ¼ 20–40 s, with n ¼ 14 and 50, respectively.

ROI is 4 mm in diameter. Image intensity is de-

noted with rainbow lookup table. To see this figure

in color, go online.



FIGURE 3 Single and double exponential fits

cannot evaluate the number of dynamic states of

a fluorophore. (A) Simulated moss fluorescence re-

covery (blue circles) with corresponding single

exponential fits (black lines), D ¼ 1 mm2 s�1.

Photobleaching was performed at the cell edge

(bottom) or in the middle of the cell (top). (B)

Simulated moss fluorescence recovery (blue

circles) with corresponding double exponential

fits (red lines), D ¼ 1 mm2 s�1. Photobleaching

was performed at the cell edge (bottom) or in the

middle of the cell (top). (C) Residuals for the

single exponential fit to simulated moss recovery

away from the cell boundary. (D) Residuals for

the double exponential fit to simulated moss re-

covery away from the cell boundary. (E) Sum of

squares for the single exponential (black) and the

double exponential (red) fits. Fits were performed

on the simulated moss recovery at the middle of

the cell. *** indicates p value < 0.001 of ‘‘extra

sum of squares’’ F-test. (F) Percent of fluorescence

recovery dictated by the fast (black) and slow

(white) terms in the double exponential fit. Fit

was performed on moss recovery in the middle of

the cell. To see this figure in color, go online.

Boundary and Optical Effects in FRAP
Exponential fitting does not necessarily reflect
the underlying dynamics

When a proper analytical model is not available to describe
a given fluorescence recovery, a common practice is to fit
the recovery data to a series of exponentials; the number
of exponentials needed to fit the recovery has been inter-
preted as the number of ‘‘dynamic states’’ of the fluorophore
(28–33). In this context, having multiple dynamic states re-
fers to the various modes by which a fluorophore recovers
during a FRAP experiment. These modes can include mul-
tiple diffusion coefficients, chemical reactions, and active
transport, or any combination of the three. Specific exam-
ples would include: the presence of more than one diffusion
coefficient in a reaction-diffusion system; two modes of
fluorescence recovery in an active transport and diffusion-
based system; and two unique reaction rates in a reaction
dominant FRAP experiment.

Fundamentally, exponential fitting should only be used to
identify unique reaction rates in a reaction-dominant FRAP
experiment (34). This is because diffusion-based fluores-
cence recovery asymptotically behaves as a power law,
and neither a single, nor a double exponential can funda-
mentally reproduce this behavior at long times (see the
Supporting Material and Fig. S20). Hence, there is no theo-
retical justification for fitting a single or double exponential
to a diffusion-based recovery.

The divergence between asymptotic behavior and the
exponential functional form often occurs at times longer
than those that are experimentally practical, however, one
may still want to consider using it to fit early times in a
recovery curve. Although it may appear to provide an
adequate fit in early recovery, as we will demonstrate below,
using a proof-by-contradiction approach, exponential fitting
fails to capture the underlying dynamics and is not able to
predict the number of dynamic states in a diffusion-based re-
covery. To start, we analyzed simulated fluorescence
recoveries of a fluorophore with a single input diffusion
coefficient,D¼ 1mm2s�1, in themossgeometry. Simulations
were conducted at the cell center and the cell edge. At both
Biophysical Journal 114, 1153–1164, March 13, 2018 1157
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regions, a fit to the single exponential model exhibits periodic
over- and undershooting (Fig. 3 A), whereas the double expo-
nential model exhibits less periodicity for either location
(Fig. 3 B). Residual plots demonstrate periodic errors in the
single exponential fit and the lack thereof in the double expo-
nential fit (Fig. 3,C andD). To determine if themodels predict
the trends of the fluorescence recovery, we performed a
Wald-Wolfowitz runs test. This test determines if the
residuals of the fit are random, where increased randomness
suggests a better fit. The results of this test suggest (for
this diffusion coefficient and given morphology) that neither
the single nor the double exponential fits exhibited random
residuals (null hypothesis of random residuals, p values ¼
2 � 10�8 and 0.027, respectively). However, there is an
improvement in fit quality with the double exponential
function. In addition, other morphologies show an improve-
ment for the double exponential fit that becomes significantly
random (see Table S4). Sum of squared differences between
the simulation and exponential fitting demonstrated that the
single exponential fit exhibits an eightfold-higher sum of
squared difference compared to the double exponential fit
(Fig. 3 E). Lastly, to determine if the single- or double-
exponential model should be used, we performed an F-test
to compare the change in sum of squares and the change in
number of parameters between the two models. The results
of this test predicted that the double exponential fits best
with a p value< 0.001 (35), for thismorphology and diffusion
coefficient.

Table S4 further shows that similar results hold for other
cell shapes and diffusion coefficients between 0.1 and
10 mm2 s�1. Because the double exponential fit is composed
of two recovery phases, it is important to note how much
each phase contributes to the recovery. For the curve gener-
ated at the cell center, the fast mode contributed to roughly
60% of the recovery whereas the slow mode contributed
to �40% (Fig. 3 F), indicating that contributions from
both modes are significant. Based on the results of this
fitting procedure, one could naively conclude that the mole-
cule simulated here has at least two dynamic states and that
it must have two different modes of recovery. Such a conclu-
sion would be incorrect, as we simulated only one diffusion
coefficient.

As illustrated, at short times, exponential fitting inade-
quately describes the dynamic behavior of a FRAP curve,
whereas at long times it diverges from the expected asymp-
totic limit. When examining diffusion-based processes,
we suggest that exponential forms should only be used to
make comparisons of the relative rate of fluorescence recov-
ery between different curves.
Model selection should consider boundary
effects, dimensionality, and initial conditions

To explore the predictions made by existing analytical
FRAP models (see the Supporting Material), we simulated
1158 Biophysical Journal 114, 1153–1164, March 13, 2018
fluorescence recovery experiments for six different cellular
shapes—nuclei, filopodia, and lamellipodia of mammalian
cells, budding yeast, Saccharomyces pombe, and tip-
growing plant cells (moss)—for a range of biologically
relevant diffusion coefficients (Fig. 4, A and B, and Movies
S4, S5, S6, S7, and S8). We used three notable analytical
models (2,3,36) to fit to our simulated recoveries. Because
of their substantial citation history, we selected both the
analytical models from Axelrod et al. (2) and Soumpasis
(3). For its simplicity, and because it incorporates bound-
aries, we selected a 1D analytical solution with reflective
boundary conditions (36). Once the simulated recoveries
were fit with these models, we measured the percent
difference between the simulated input diffusion coefficient,
Dtrue, and the model predicted diffusion coefficient, Dmodel,
i.e., j(Dtrue – Dmodel)/Dtruej � 100.

The analytical models from Axelrod et al. (2) and
Soumpasis (3), most accurately predicted diffusion coeffi-
cients when photobleaching was conducted at the cell
center. As expected, both models failed to predict diffusion
coefficients reliably in long thin tubular geometries (with
percent differences >50% for most cases), i.e., S. pombe
and filopodia, as shown in Table 1. These models also
exhibited similar failings in the remaining cell shapes
when FRAP was conducted at the cell edge (with percent
differences >50% for most cases). Further evidence for
this spatial effect was demonstrated by conducting photo-
bleaching and model fitting at a varying distance away
from the cell edge. Consistent with strong boundary effects,
as the bleaching event (ROI) was moved further from the
cell edge, we observed an increased rate of fluorescence re-
covery and improved model predicted diffusion coefficients
(see Fig. 5). This cautions against indiscriminately using
analytical models that make infinite boundary assumptions
in complex cellular geometries. These boundary effects
can be further illustrated using the method of images in a
1D strip FRAP model that incorporates boundaries. This
model predicts that bleaching at the boundary should
recover with an effective diffusion coefficient four-times
slower than would be measured with a centered bleach
(see the Supporting Material).

The 1D strip FRAP model was found to be the most
accurate (with percent differences <25% in most cases;
see Table 1) in both S. pombe and filopodia, where the ge-
ometries closely resembled a long thin tube relative to the
imaging ROI. Furthermore, because the model accounts
for boundaries, it accurately predicts diffusion coefficients
at the ends of the cells. Although moss is also a long tubular
cell, the strip FRAP model could not accurately measure
diffusion within this cell type. This is because moss is large
relative to the PSF, allowing fluorophores to recover in both
x- and y dimensions during the short times we fit. We further
explore this effect in the Supporting Material. The 1D strip
model failed to measure diffusion coefficients accurately for
the remaining more complicated cell shapes (see Table 1).



FIGURE 4 Simulations of different 3D cell

shapes. (A and B) Medial section of simulated

fluorescence recoveries with photobleaching at

the middle (A) or edge (B) of the cell. Postbleach

image is 16 s after photobleaching. Fluorescence

intensity is indicated by the rainbow lookup table.

Scale bars, 5 mm. To see this figure in color, go

online.

Boundary and Optical Effects in FRAP
Lastly, we chose the VirtualFRAP tool (part of VCell
environment) (13) as an algorithmic example because it in-
corporates the cellular boundaries, albeit in two dimensions,
and calculates a diffusion coefficient after an iteration pro-
cedure. Note that the VirtualFRAP tool is a 2D continuum
approach that is best suited for low NA lenses. This low
NA is necessary to bleach a cylindrical region encompassing
the height of the cell. The algorithmic VCell VirtualFRAP
tool accurately estimated diffusion coefficients (within a
25% difference; see Table 1) for all morphologies with the
exception of the nucleus at Dtrue ¼ 10 mm2 s�1 (explored
below). This level of accuracy is consistent with our simu-
lated bleached region being close to a cylinder, as shown
in the Supporting Material. It also indicates that incorpo-
rating the 2D geometry is a good approximation for many
cell types and our measured optical settings.

The inaccuracy of VirtualFRAP on the nucleus when
Dtrue ¼ 10 mm2 s�1 was consistent with a trend observed
across all the models, specifically that the models mostly
predicted inaccurate diffusion coefficients at the high diffu-
sion coefficient. This inaccuracy is the product of the finite
scan rate used during photobleaching and image acquisition,
and can be attenuated at artificially fast scan speeds, as
shown in Table S5. At 2800Hz, a fluorophore diffusing at
10 mm2 s�1 is expected to travel roughly 80 nm during a sin-
gle line scan. Given our 100-nm line spacing, this suggests
that diffusion is too fast for our acquisition speed. Further-
more, this demonstrates that at the upper scan speed of
our confocal system (2800Hz), we cannot reliably measure
fast diffusion coefficients >10 mm2 s�1, and highlights how
the finite scan speed of the confocal must be considered as a
limiting factor in performing FRAP experiments.
Membrane FRAP

FRAP analysis of molecules associated with the plasma
membrane has been used extensively to characterize their
dynamics (37–41). Compared with intracellular molecules,
using FRAP to estimate diffusion coefficients in membranes
is simplified due to the 2D nature of the membrane, as well
as the slower dynamics of the molecules. To explore the
influence of membrane curvature on fluorescence recovery,
we simulated photobleaching experiments inside a 200-nm-
thick moss shell (Fig. 6 A). The shell was oriented such that
the imaging plane was parallel to the flat circular surface of
the cylinder (Fig. 6 B). Imaging and bleaching were then
conducted on the flat circular surface of the cylinder or
the extreme cell apex, as shown in Fig. 6, A and B. To
simulate typical membrane diffusion, D ¼ 0.1 mm2 s�1

was chosen. Analysis of our simulation results showed
an increase in fluorescence recovery at the cell apex
(Fig. 6 B). When fit with the Soumpasis model (3) (see
also the Supporting Material), we found the measured
diffusion coefficients to be D ¼ 0.11 5 0.01 and 0.13 5
0.01 mm2 s�1 at the base of the cylinder and the cell
apex, respectively. This reduction in predicted diffusion
Biophysical Journal 114, 1153–1164, March 13, 2018 1159



TABLE 1 Best Fit Diffusion Coefficients for the Four Analytical Models and the VCell VirtualFRAP Tool

Cellular Geometry

Diffusion Coefficient (mm2/s)

Input D Axelrod et al. (2) Soumpasis (3) 1D FRAP Virtual FRAP

B Yeast E 1 0.123 5 0.001 0.103 5 0.001 0.820 5 0.004 1.22 5 0.01

B Yeast C 1 1.95 5 0.02 1.82 5 0.02 3.98 5 0.02 0.908 5 0.004

B Yeast E 10 3.165 0.03 2.90 5 0.02 9.44 5 0.04 11.7 5 0.1

B Yeast C 10 96.7 5 1.8 84.5 5 0.3 44.4 5 0.7 8.42 5 0.13

Lamellipodia E 1 0.534 5 0.007 0.530 5 0.007 6.18 5 0.08 1.03 5 0.01

Lamellipodia C 1 0.962 5 0.010 0.942 5 0.010 3.54 5 0.05 1.02 5 0.01

Lamellipodia E 10 2.16 5 0.04 2.33 5 0.04 25.1 5 0.4 9.95 5 1.29

Lamellipodia C 10 12.8 5 0.6a 12.1 5 0.5 65.6 5 1.3 10.0 5 0.2

Nucleus E 1 0.358 5 0.008 0.351 5 0.008 3.48 5 0.07 1.03 5 0.02

Nucleus C 1 1.56 5 0.02 1.55 5 0.02 7.18 5 0.14 1.01 5 0.01

Nucleus E 10 3.17 5 0.05 3.38 5 0.05 23.3 5 0.3 13.9 5 0.2a

Nucleus C 10 81.7 5 0.7 46.4 5 0.4a 83.3 5 1.4 6.36 5 0.13a

Pombe E 1 0.152 5 0.001 0.135 5 0.002 1.39 5 0.02 1.05 5 0.01

Pombe C 1 0.374 5 0.002 0.359 5 0.002 1.17 5 0.01 0.948 5 0.004

Pombe E 10 0.994 5 0.005 0.999 5 0.005 11.6 5 0.1 11.3 5 0.1

Pombe C 10 6.94 5 0.12 6.13 5 0.08 37.3 5 0.2 10.1 5 0.1

Moss E 1 0.467 5 0.012 0.469 5 0.014 5.68 5 0.19 1.10 5 0.02

Moss C 1 1.06 5 0.03 1.07 5 0.03 4.31 5 0.15 1.05 5 0.02

Moss E 10 2.26 5 0.27 2.43 5 0.29 32.7 5 3.8 12.1 5 0.2

Moss C 10 6.62 5 0.24 6.98 5 0.23 52.9 5 2.0 7.81 5 0.14

Filopodia E 1 0.147 5 0.001 0.108 5 0.001 1.09 5 0.01 1.03 5 0.01

Filopodia C 1 0.420 5 0.003 0.402 5 0.003 1.12 5 0.01 1.03 5 0.01

Filopodia E 10 0.982 5 0.027 0.978 5 0.030 9.56 5 0.26 10.3 5 0.1

Filopodia C 10 8.30 5 0.05 7.66 5 0.04 32.0 5 0.2a 10.3 5 0.1

ROI is either at the cell edge (E) or center (C). The symbol ‘‘5’’ represents standard error of 10 simulations. Bolded text indicates cases where the model

produced an answer within 25% of the true D value. Note that similar results for D ¼ 0.1 mm2 s�1 are given in Table S3. To quantify the effects of confocal

scan speed, we present results for D ¼ 10 mm2 s�1, with a 280 kHz scan speed, in Table S5.
aIndicates cases in which switching to a faster scan speed brought the measured value to within 25% of the true D value.
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coefficient can be attributed to performing a planar bleach
scan on a curved membrane. During this planar scan, the
membrane curvature exposes more bleachable surface
area, creating a larger effective ROI. We expect this effect
to become more dramatic in instances where both the ROI
and membrane curvature are large.

To investigate the effects of FRAP on membranes in
other cellular orientations, we simulated imaging and
bleaching planes that were parallel to the long axis of the
moss cell (Fig. 6, C and D). Simulations were then
subjected to photobleaching at the base of the cylinder or
the extreme cell apex. At early times, fluorescence recov-
eries at both locations appeared identical, but at long times
1160 Biophysical Journal 114, 1153–1164, March 13, 2018
we observed separation between the curves (Fig. 6 D). This
is because photobleaching in this orientation bleached
more molecules at the base of the cylinder when compared
to the apex.

To explore FRAP in a cellular geometry often used to
study membrane dynamics, we simulated photobleaching
on the membrane of the budding yeast (Fig. 6, E and F).
We found that photobleaching at the daughter or the
mother cell had little-to-no influence on fluorescence recov-
eries. Once cell orientation and effective ROI sizes are
accounted for, membrane curvature has minimal influence
on fluorescence recoveries, consistent with earlier modeling
work (41).
FIGURE 5 ROI positional dependence. (A)

Black squares, purple triangles, and blue circles

indicate ROI position at center, intermediate, and

edge positions, respectively. (B) Best fit diffusion

coefficients for the simulated recoveries in (A)

when fit to the model of Soumpasis (3). Smaller

dots are intermediate points, not depicted in (A).

To see this figure in color, go online.



FIGURE 6 Membrane FRAP. (A) Simulated

fluorescence recovery images of the moss cell

membrane, at the base of the cell (top) or the

extreme cell apex (bottom) with bleaching and im-

aging planes perpendicular to the long axis of the

cell. Scale bar, 3 mm. (B) Simulated fluorescence

recovery curves at the base of the cylinder (green)

or the extreme cell apex (black). n ¼ 10, error bars

indicate standard error. Dashed lines represent fits

to the model of Soumpasis (3) (see also the Sup-

porting Material). (C) Simulated fluorescence re-

covery images of the moss cell membrane, with

bleaching and imaging planes parallel to the long

axis of the cell. Scale bar, 5 mm. (D) Simulated

fluorescence recovery curves at the base of the

moss cell cylinder (red) or the extreme cell apex

(black). n ¼ 10, error bars indicate standard error.

(E) Simulated fluorescence recovery images of the

budding yeast membrane, with bleaching and

imaging planes parallel to the long axis of the

cell. Scale bar, 3 mm. (F) Simulated fluorescence

recovery curves at mother cell (red) and the

daughter cell (black). n ¼ 10, error bars indicate

standard error. To see this figure in color, go online.

Boundary and Optical Effects in FRAP
DISCUSSION

In this article, we experimentally showed, to the best of our
knowledge for the first time, the influence of cell boundaries
in FRAP recovery. Our results were recapitulated using a
comprehensive FRAP model that not only takes into ac-
count 3D cellular geometry, but also confocal microscope
optical properties. We observed that when performed close
to boundaries, for instance when studying tip growing cells,
fluorescence recovery is significantly slowed even though a
molecule’s diffusion coefficient remains the same. As we
have also demonstrated with an analytical model in the Sup-
porting Material, this results in a smaller effective diffusion
coefficient. Therefore, whenever possible, we recommend
avoiding performing FRAP closer than one ROI distance
from the edge of the target volume. In addition, when
FRAP is conducted close to the cell boundary, the 3D point
spread function of the laser beam may extend into the area
outside of the cell volume and, as a consequence, bleach
fewer fluorophores than photobleaching experiments
performed at the cell center. These results suggest that com-
parison of bound fractions of molecules near cellular bound-
aries should be performed with caution.
The FRAP models we used from Axelrod et al. (2) and
Soumpasis (3) give very similar results and are useful to
obtain diffusion coefficients in flat structures such as
lamellipodia and membranes. These models can also be use-
ful for larger structures, such as plant tip growing cells or
other cylindrical structures, as long as appropriately fast im-
age acquisition rates are used for the diffusion coefficient in
question. Our results show that for thin and elongated
structures, similar to a filopodium, S. pombe, or an elon-
gated fungal hypha, a simple 1D FRAP model could be
sufficient, as long as it incorporates boundaries. For more
complex morphologies, sophisticated approaches are neces-
sary, such as the VCell VirtualFRAP tool. We found that the
VirtualFRAP tool, an algorithmic approach, performs well
in all of our simulated cases when an appropriately fast
scan rate is used, with <25% error in the estimation of the
diffusion coefficient. Importantly, VirtualFRAP performs
well at boundaries, but when two-dimensionality cannot
be approximated (i.e., when high NA is required), it might
become necessary to apply a full optical and geometrical
simulation method such as the one presented in here.
This level of accuracy, however, is often times adequate,
Biophysical Journal 114, 1153–1164, March 13, 2018 1161
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and will also allow for the estimation of the effective viscos-
ity, and can provide further insight into the cytoplasmic
forces.

Overall, we found that the analytical models considered
in this article can generally fail if the underlying assump-
tions do not match the cellular geometry or confocal optical
properties that were used. Although this is expected, given
the misuse of these models in the literature, we recommend
that they should not be used naively without consideration
of the experimental setup. This caveat also applies to our
DCMS software, as it makes assumptions about the proper-
ties of the system (diffusion model, PSF shape, finite fluoro-
phore reservoir, etc.), as well as requiring that the researcher
knows and inputs the parameters of their experimental
setup.

In addition, we find that extraneous recovery states re-
sulting from fitting a series of exponentials can be ex-
plained by the geometrical and optical properties of the
system, rather than an underlying biological mechanism.
Moreover, when using analytical FRAP diffusion/binding
kinetics models, we expect these effects to influence
binding and dissociation constants. A detailed analysis of
these effects is beyond the scope of this work, and is left
for future studies.

Although our analysis showed how boundary and opti-
cal effects can confound FRAP analysis, these conclusions
cannot be generalized to every experimental setup, and
further validation across additional models is required.
To make this model validation process more accessible
for experimentalists using existing models or theorists
developing new analytical models, we developed an inter-
active graphical interface for the Java-based version of our
simulation, the Digital Confocal Microscopy Suite. This
tool allows the users to simulate specific experimental
conditions—cell type, microscope settings, and diffusion
coefficient—and easily generate simulated recovery
curves. Any given model (analytical or algorithmic) can
then be fit to these simulated recovery profiles to calculate
the model predicted diffusion coefficient. The difference
between the model predicted and input (to the simulation)
diffusion coefficients can then be used to determine the
validity of the model of interest. DCMS can also serve
as a useful and freely available (20) teaching tool, not
only to explore optical and boundary effects in FRAP,
but also to demonstrate how scanning confocal micro-
scopes can be used in fluorescence dynamics techniques,
such as raster image correlation spectroscopy (42), num-
ber and brightness (43,44), and fluorescence correlation
spectroscopy (45).
SUPPORTING MATERIAL

Supporting Materials and Methods, twenty-one figures, six tables, and eight

movies are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(18)30138-3.
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