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I. Introduction

L
ane keeping is a fundamental feature for intelligent and 
autonomous vehicles. Despite many sensors installed 
on autonomous cars such as radar, LiDAR, ultrasonic 
sensor and infrared cameras, the ordinary color cam-

eras are still very popular owing to their low cost and ability 
to obtain rich information. Given the video images from the 
front-view camera, an vision based lane keeping system can 
automatically output the proper steering angles to keep the 
vehicle in lane. A traditional framework divides the task into 
several stages including lane detection [1], [2], path planning 
[3], [4] and control logic [5], [6]. Applying image process-
ing techniques such as color enhancement, Hough trans-
form and edge detection, the lane detection system is able 
to identify the lane markings on the road. Path planning 
and control logic are then employed to provide the proper 
steering angle adjustment for the vehicle. In this approach, 
performance of lane detection heavily relies on the feature 
extraction and interpretation of image data. Errors can also 
accumulate from a previous processing stage to the next, 
leaving the final control output less accurate.

In contrast, an end-to-end learning method has the 
advantages of better performance and less manual effort. 
End-to-end learning for self-driving cars has been suc-
cessfully demonstrated in [7] using convolutional neural 
networks (CNNs), which takes the images from cameras as 
input and produce the vehicle control output automatical-
ly. The model is self-optimized based on the training data. 
The user does not need to manually define any features or 
rules or label the objects and their categories during the 
training process. Figure 1 is a comparison between the tra-
ditional framework and the end-to-end learning approach 
for vision based automatic lane keeping.

Although the approach of end-to-end learning for lane 
keeping is not new, the existing work has several deficien-
cies. For instance, the error difference between the record-
ed “ground truth” and predicted steering angle is not the 
best evaluation metric. Since it is hardly possible for a hu-
man driver to keep the vehicle perfectly in the center of the 
lane at all time, the recorded angles are not optimal. Thus, 
the predicted angles do not have to be exactly the same as 
the ground truth angles recorded from the human driv-
ing experience. It is more important 
to predict the position and orienta-
tion of the vehicle in the very next 
time step given the current vehicle 
speed and steering angle control. A 
more reliable evaluation metric can 
be provided by using a simulator, be-
cause the effects of the control input 
can be simulated and monitored.

Furthermore, we need to provide 
data to train the deep neural network 
to take appropriate steering angle 

actions when the vehicle drifts away from the center of the 
lane. However, the recorded driving data are lack of this 
type of actions since it is unsafe to drive off the lanes during 
data collection. To solve this dilemma, we propose a data 
augmentation method based on a vehicle dynamics model 
and vehicle trajectory tracking. Given any displacement 
and orientation, the model can generate a projected trajec-
tory and a sequence of steering angle controls. Correspond-
ingly, we can also create the augmented front views using 
image projection based on the displacements and orienta-
tion. Therefore, the system becomes a simulator that can 
not only generate augmented data for training the convo-
lutional neural network, but also be used as a platform to 
evaluate the performance of other vision based lane keep-
ing algorithms.

The main contributions of this paper are listed as follows:
1) This paper presents a simulator for vision based auton-

omous lane keeping. Although there are many recent 
works on lane keeping algorithms, it is hard to com-
pare and evaluate them. Built on the recorded driving 
data, this simulator employs image projection, vehicle 
dynamics modeling, and vehicle trajectory tracking to 
predict vehicle movement and its corresponding cam-
era views. The simulator can be used for both training 
and evaluation of lane keeping algorithms.

2) An end-to-end learning method is proposed that can 
generate proper steering angles from front-view cam-
era data, which can keep the vehicle in lane. A highly 
effective end-to-end learning system is demonstrated 
using the aforementioned simulator. The CNN model 
trained with augmented data from the simulator per-
forms significantly better than the model trained with 
recorded data only.

3) A completely new dataset for autonomous lane keeping 
is developed and was made available at http://computing.

wpi.edu/dataset.html. The dataset contains recorded video 
frames from three forward facing cameras (left, center, 
and right) as well as steering wheel angles and vehicle 
speed information.

The rest of the paper is organized as follows. Section II sum-
marizes related work on this topic. Section III provides the 
implementation details of our simulator, including image 
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FIG 1 Comparison between the traditional framework and end-to-end learning for lane keeping.
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projection, vehicle dynamics, vehicle trajectory tracking as 
well as the CNN architecture. The experiment and evalua-
tion results are presented in Section IV, followed by discus-
sions in Section V and conclusions in Section VI.

II. Related Work
Keeping the vehicle in lane is important for driving safety. 
Lane keeping assist systems (LKAS) have been studied 
by many researchers previously. Lane keeping assist sys-
tems [8]–[11] are able to provide torque to keep the vehicle 
within the lane, and often alert the driver with warning 
messages or sound. Cameras are usually used as the input. 
Lane marking recognition and road detection [12], [13] can 
be applied first to provide the target trajectory for vehicle 
control in a typical lane keeping assist systems. In addition, 
the systems also distinguish intended and unintended lane 
departure, by utilizing more information such as blinker 
state, braking or steering angle.

Lane keeping systems need to be accurate and robust 
for autonomous cars. Several recent research works on the 
theories, algorithms and implementations of lane keep-
ing system were developed using virtual simulators. Deep 
reinforcement learning [14] was adopted for autonomous 
driving [15]–[17], in which the system could learn the op-
timal policy function from the feedback of reward. These 
systems went beyond the basic lane keeping feature, and 
were able to direct the vehicle to stay in path and avoid 
collision. The vehicle was not necessarily to be in lane, and 
other vehicles on the road were often involved. Learning 
and evaluation were often done in a virtual simulator, be-
cause learning requires rich ground truth information and 
needs to interact with the environment. Inverse reinforce-
ment learning [18], on the other hand, was used to estimate 
the reward from the expert demonstrations.

For real world systems that do not have rich ground truth 
information as in a simulator, sensors and algorithms are 
employed to interpret the surrounding environment. The 
vision based approaches are popular since cameras are 
cost effective. An early research work was demonstrated on 
an autonomous vehicle named ALVINN [19], which uses a 
neural network to find the proper steering directions. The 
input came from a camera and a laser range finder, but the 
resolutions were quite small at that time. For high-resolu-
tion color images, an end-to-end learning approach using 
CNN was first presented by LeCun et al. [20]. The system 
was designed for off-road mobile robots, not for autono-
mous vehicles on the road. End-to-end learning using CNN 
for self-driving cars was demonstrated in [7]. It stated that 
a deep learning neural network was trained and evaluated 
using a simulator. The idea of building a simulator using 
image projection and vehicle dynamics was briefly men-
tioned, but there were little technical details. The network 
was later named as PilotNet, and the effectiveness was 
 validated and visualized in [21], [22]. Our previous work 

[23] followed this approach using a different dataset and 
CNN model and achieved similar results for lane keeping.

Building a simulator requires the knowledge of comput-
er vision, vehicle dynamics and vehicle trajectory tracking. 
Most of the existing automated driving frameworks have 
separate functional units for low-level motion control and 
path planning. Typically a nominal path can be obtained 
by optimization-based methods [24], sampling-based ap-
proaches [25] or other searching algorithms [26]. In terms 
of the system dynamics and control, Rami et al. [27] pro-
posed a linear system dynamics and the control for high 
speed drifting. Galceran et al. [28] adopted proportion-
al-derivative (PD) feedback controller for torque-based 
steering. Approximating the non-linearity of the vehicle 
dynamics, DeSantis et al. [29] Jacobian linearized the ve-
hicle dynamics for designing a path-tracking controller, 
but this approximation ignored the high order of the poly-
nomial of the system dynamics, which led to a potential 
problem of controlling a vehicle when the error is large.

III. Building a Simulator

A Overview
For evaluation of vision based lane keeping algorithms, a 
simulator is needed to provide feedback based on the pre-
dicted angle. The simulator can generate image frames 
to the vehicle position and orientation, and it can also 
simulate the vehicle movement giving a steer angle input. 
Therefore, a simulator for self-driving cars has two im-
portant components: graphic engine and physics engine. 
The graphic engine utilizes the information of the sur-
rounding environment, as well as the pose of the camera 
to generate images. The physical engine simulates vehicle 
movement based on the input control actions. A virtual 
game engine usually contains both graphic and physics 
engine, and some autonomous driving simulators were 
built upon it [30], [31]. Vehicle movement simulation and 
frame generation can be integrated into the game engine. 
Besides, the ground truth information is very rich in the 
virtual world. Information such as vehicle position, orien-
tation and velocity can be easily obtained, so do other ob-
jects. Despite these advantages, a significant drawback of 
these virtual simulators is that the generated images are 
still quite different from the real world data. Although they 
look very realistic with advanced graphic techniques, the 
details and variations of virtual images still cannot match 
the data from real world. It is risky to train a model using 
virtual game engines and then deploy the model for real-
world driving. It would be better to build a simulator from 
the real world data.

Different camera views can be generated from re-
corded video frames by learning approach [32] or 3 D im-
age projection approach [7]. The learning approach learns 
 auto-encoders for embedding road frames, and learns 
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a transition model in the embed-
ded space. The next few frames can 
be generated based on the current 
frame image and the current control 
inputs. On the other hand, the 3 D 
image projection approach assumes 
that the ground is a flat surface, and 
solves the 3 D geometry [33] to gener-
ate the next frame based on the actu-
al recorded frame. The camera shift 
and rotation can be obtained from 
vehicle movement simulation, which 
can be estimated using vehicle kine-
matic or dynamic models [5], [6].

In our simulator, the image pro-
jection approach is employed for 
rendering the images. The CNN 
takes the image as input and the ve-
hicle dynamics is used to simulate 
vehicle movement given the control 
action. Figure 2 shows the detail 
operations of the simulator when 
testing the CNN-based lane keep-
ing algorithm. The predicted posi-
tion is constantly validated against 
the ground truth position. A failure 
is recorded if the error exceeds a 
threshold value. More importantly, 
the simulator can be very useful 
when training the neural network 
by providing a large amount of ad-
ditional training data through augmentation. When using 
the simulator for training, the vehicle trajectory tracking 
replaces the CNN controller to provide the control actions 
that can gradually correct initial position shift and/or ori-
entation error. Practically, assuming an arbitrary shift and 
rotation of the vehicle from the ground truth, the vehicle 
trajectory tracking block can produce the proper steering 
angle control actions. Combined together with the gen-
erated camera view from the image projection process, 
augmented data can be generated. Figure 3 shows the op-
eration flow of the simulator at training phase. During the 
training phase, many augmented data can be generated 
from each ground truth image by arbitrary shift and rota-
tion of the vehicle.

B. Image Projection
Rendering the image according to the vehicle position and 
orientation is required by the simulator, in order to pro-
vide more instances for machine learning and better eval-
uation metric. However, without using a gaming engine, 
data collected in real world are sparse, often along a single 
trajectory as the car goes. These data themselves are in-
sufficient to cover all possible positions and orientations. 

Therefore, these data must be transformed for an arbitrary 
position and orientation, using computer vision knowledge 
of image projection base on 3 D geometry. Given a point 
in the world coordinates which is ( , , )X x y zw w w w=  and 
the corresponding point in image coordinates which is 

( , ),p p p1 2=  there are relations that
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where ph  and Xw
h  are 1 3#  and 1 4#  homogeneous co-

ordinates, c  and d  are arbitrary nonzero constants, Mex  
is the 34#  extrinsic matrix and Min  is the 33#  intrin-
sic matrix. Given the image taken in the real world with 
known calibration parameters ,Mex  Min  and its pixels 
coordinates ,p  the new pixels coordinates pu  need to be 
found with a new extrinsic matrix ,Mex

u  when the camera 
is shifted and rotated. The physical dimensions of the 3 D 
scene are required in order to find the projection param-
eters. In the case of highway lane keeping simulation, it is 
assumed that the ground surface is flat, e.g., .z 0w =  The 
performance impact brought by this assumption is small, 
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FIG 2 The simulator operation flow during the evaluation phase.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  6  •  MONTH 2018

according to the experimental results in [7]. According to 
(1), the mapping of p to pu  then can be obtained as follows:

 X p M Mw
h h 1 1

in ex= - -  (2)

  p X M Mh
w
h

ex in=u u  (3)

Note that the lens distortion, if any, needs to be corrected 
before performing such image projection. Figure 4 shows 
some examples of transforming an original image accord-
ing to camera’s virtual position and orientation. The additive 
black area on the generated image is usually not an issue for 

vehicle simulation, since the captured 
images from front-view cameras are 
often cropped to retain only the mid-
dle section as the region of interest.

Another challenging task is ground 
surface estimation during calibra-
tion. To estimate the calibration pa-
rameters, especially Mex  in formula 
1 with the assumption z 0w =  for the 
ground surface, these three cameras 
used in our system need to be de-
ployed on vehicle and world coordi-
nates need to be established properly. 
When calibrating the cameras in the 
lab, a checkerboard pattern is usually 
used, as shown in Figure 4. However, 
estimating the ground surface needs 
a very large pattern, which is hard to 
craft and deploy. In our experiment, 
a flat parking lot with existing mark-
ings is used for ground surface esti-
mation. Physical dimensions of the 
markings are measured manually 
while the corresponding images are 
captured by the cameras installed on 
the vehicle. Figure 5 shows the select-
ed points in the image taken by the 
center camera during the calibration. 
The physical locations of the cameras 
and the selected points in the world 
coordinates are also shown in Fig-
ure  5. Three cameras are installed 
on the left, center and right of the ve-
hicle, all facing forward, because they 
can provide better field of view than 
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(a) (b) (c) (d)

FIG 4 Example of original image and generated images given arbitrary camera poses. (a) Original image. A checkerboard pattern on a flat surface. (b) 
Generated image as if the camera is shifted left by 50 mm. (c) Generated image as if the camera is rotated right by 15.25 degrees. (d) Generated image 
as if the camera is shifted left by 50 mm and rotated right by 15.25 degrees.
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a single camera. In fact, the nearest camera to the vehicle’s 
virtual position is selected as the source in equations 2 and 3. 
Therefore, the generated images have better quality and less 
additive black areas after projection.

C. Vehicle Dynamics and Vehicle Trajectory Tracking
According to [5], the bicycle vehicle dynamics shown in 
Figure 6 is captured by the following equations:
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where , ,P x y SR2 1#!i= 6 @  is the state of the position 
and orientation, v  and ~  are the linear velocity and an-
gular velocity respectively, and they are assumed to be 
the control signals for the vehicle. a  is the acceleration, 
and fv  is the turning angle. l f  and lr  are the distance 
from the vehicle’s mass center to the front and rear axles. 
In our test vehicle, we use estimated values l 1mf =  and 

. .l 1 7 mr =

A nonlinear feedback mapping called feedback linear-
ization is introduced upon the dynamics depicted in Fig-
ure 6 from the current nonlinear system to a new linear 
system and a new state variable [ , , , ]:z x y x y= o o
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; E in the new linear 

system. After the feedback linearization, the whole prob-
lem is transformed into designing the proper gain K  for 
the linear system. To solve this optimal control problem, 
Linear Quadratic Regulator (LQR) is adopted to acquire 
the optimal gain K. The quadratic cost is defined as the 
following, which aims to minimize the error between the 
actual trajectory and the predicted trajectory:

 J e Qe u Ru dtT T

0

= +
3

^ h#  (4)
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where Q
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the actual state and the predicted state, and u  is the control 
effort. Practically, Q  and R  matrices do not have to be identity 

matrices but positive definite, and the entries can be tuned to 
achieve required performance accordingly. Once the gain K  
is computed, the feedback control law and the ordinary differ-
ential equation (ODE) of the new linear system are described 
as follows:
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where e  is the error between the real state and desired 
state, K  is the gain computed based on the defined cost 
equation 4 with the corresponding A and B matrices, 
u R2!  is the input vector, ( , )u x yd d d= p p  is the referenced 
input given by the ground truth. , ,e z zdo o o  are changing of 
the error, state, desired state, respectively.

 cos sinv x yi i= +o o    (5)

 ( )cos sinv y x1~ i i= -p p  (6)

The control input for the nonlinear system can then be 
calculated by remapping the new input variables of linear 
system back to the original input of the nonlinear system 
shown in equations 5 and 6, which are linear velocity v  
and angular velocity .~

The results in Figure 7 demonstrate the effectiveness 
and correctness of the vehicle trajectory tracking control-
ler design. A vehicle with feedback control law has the 
capability of converging to and following the desired tra-
jectory, even though there exists an initial error. At the 
beginning, owing to some errors between the predicted 
and actual orientations, the steering angle is positive and 
large, which helps the vehicle to correct its orientation in a 
short time. After 2 seconds, the predicted orientation con-
verges to the ground truth. The vehicle orientation does 
not change rapidly for the next few seconds, which matches 
the fact that the steering angle of the vehicle remains in a 
very small range near zero.

D. CNN Implementation
Convolutional neural networks (CNNs) [34]–[36] has 
achieved impressive performance in image classification. 
In this paper, learning the human driver’s control is not 
a classification problem but a regression problem, there-
fore the loss layer during training is Euclidean loss, which 
computes the sum of squares of differences between pre-
dicted steering angle and ground truth steering angle: 
( / ) ,x x1 i ii

N 1 2
2
2

1
-

=
N2 /  where N  is the number of instanc-

es, xi
1  is the ith predicted value and xi

2  is the ith ground 
truth value. The CNN is used as a steering angle predic-
tor given the input image. It does not take the entire image 
frame as input since only the center section is the region of 
interest for lane keeping. The images are cropped before fed 
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to CNN, as shown in Figure 8. The proposed CNN architec-
ture is shown in Figure 9, and it is based on the PilotNet [7], 
[22]. It has 5 convolutional layers and 3 fully-connected lay-
ers. There are no pooling layers because the feature maps 
are small. The convolutional layers 
are mainly for feature extraction and 
the fully connected layers are main-
ly for steering angle prediction, but 
there is no clear boundary between 
them since the model is trained end-
to-end. Unlike the PilotNet, our in-
put image size is 400 150#  instead 
of .002 66#  The first convolutional 
layer is 4 4#  stride and 9 9#  kernel 
instead of 2 2#  stride and 5 5#  ker-
nel. The system of PilotNet uses the 
vehicle’s turning radius r  as steering 
command, and makes the inverse-
turning-radius /r1  as the output to 
avoid infinite numbers when driving 
straight. Our CNN uses the steering 
wheel angle as the output, which is 
more intuitive. The proposed CNN 
model is trained using our own data-
set on Caffe [37] and Matlab software 
platform.

IV. Experiment

A. Data Collection
To capture images, three forward 
facing cameras are mounted on the 
dashboard of the car, from left to 
right. Because the cameras are not 
water-proof, installing them on top 
of the vehicle can be inappropriate. 
To avoid re-calibration each time, 
the cameras remain stationary 
once installed. Multi-thread programming and software 
triggers are used to synchronize the three cameras to 
capture images at 10 Hz. The shutter time is set to auto 
with an upper-bound value to avoid extremely low frame 
rate when the light condition is too dark. The image 
resolution is set to ,91288 68#  and captured images are 

stored as color  image sequences. Meanwhile, the steer-
ing angle and speed information are recorded by access-
ing the CAN BUS via OBD-II port. The data from OBD-II 
port are decoded by our customized program, and then 

FIG 8 An example of cropped image frame from the dataset.

Data

flatdata

fc6/relu6

fc7/relu7

fc8/relu8

fcout

Output

conv1/relu1

conv2/relu2

conv3/relu3

conv4/relu4

conv5/relu5

3chx400x150

24chx98x36

36chx47x16

48chx22x6

64chx20x4

1chx1x1

10chx1x1

50chx1x1

100chx1x1

2304chx1x1

64chx18x2

Kernel Size: 9
Stride: 4

Kernel Size: 5
Stride: 2

Kernel Size: 5
Stride: 2

Kernel Size: 3
Stride: 1

Kernel Size: 3
Stride: 1

FIG 9 Architecture of the CNN for end-to-end learning.

Cameras

Laptop

OBD-II
Access

USB Hub

FIG 10 The data collection system including three forward facing 
cameras, a USB hub, a laptop computer with access to OBD-II port.
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saved with time stamps, in order to synchronize with the 
image data. The steering wheel angle decoded from the 
OBD-II port has a precision of 0.07 degree and the speed 
data has precision of 1 km/h or approximately 0.28 m/s. 
The steering wheel angle s  need to be converted to ve-
hicle’s turning angle fv  in Figure 6 by dividing the 
steering ratio k  as / ,s kfv =  where k  has an estimated 
value of 17.8 in our experiment. Figure 10 shows our data 
collection system on a vehicle, including three forward 
facing cameras, a USB hub, a laptop computer and an in-
terface to OBD-II port.

The experimental data were collected on 7 occasions 
at 6 different days, approximately 1 hour each. Different 
lighting and weather conditions are included, such as 
sunny, cloudy and foggy, as shown in Figure 11. Night time 
driving is not included in our data. The collected data are 
then refined to be used for the task of lane keeping. Some 
recorded data that meet the following criteria are discard-
ed: non-highway driving, speed lower then 40 mph, change 
of lane, extreme lighting condition, equipment failure, and 
sequences that are shorter than 1 minute. After refine-
ment, about 3 hours of driving data are valid. Among the 
7 groups of collected data, 4 groups were used for training 
and the other 3 groups are for testing. This is to prevent 
overlaps between training and test data. Overall, the train 
data contain 68082 frames, nearly 2 hours at 10 Hz. The 
test data contain 32053 frames, nearly 1 hour at 10 Hz. The 
training data sequences are randomly shuffled before ap-
plied to the CNN model.

B. Data Augmentation
Ideally, the training dataset should contain some error 
correction scenario such that the trained CNN model 
is capable of handling errors. So the vehicle stays in the 
lane instead of drifting away. Such error correction data 
introduce initial errors for the vehicle’s position and/or 
orientation, and then provide the proper control action 
to correct such errors and guide the vehicle back to the 
lanes. The original data collected from highway driv-
ing are lack of such error correction data, because of the 
safety concern to perform such dangerous maneuvers on 
highway. Therefore, we propose to apply data augmenta-

tion technique that can generate this type of error correc-
tion data virtually. This is one of the important benefits of 
building a simulator.

Once the data are collected and the world coordinates 
established, it is possible to obtain the ground truth of 
vehicle’s position and orientation at any given time. For 
each frame, errors can be added manually into the ve-
hicle’s position and orientation. By using the knowledge 
of image projection of 3 D geometry, the augmented im-
ages can be generated accordingly. At the same time, cor-
rect control action is provided by the vehicle trajectory 
tracking algorithm. Therefore, the augmented data can 
be used as part of the training data to improve the model’s 
robustness. In our experiment, the simulator generates 
10 augmented data from each image frame by randomly 
shifting the vehicle positions in the range of [ , ]1 1- +  me-
ter off the center and randomly changing the orientation 
in the range of [ , ]6 6- +  degrees. Figure 3 shows the entire 
process of data augmentation. Figure 12 shows examples 
of augmented images.

C. Evaluation Using Simulator
In our previous work [23], it is shown that the differ-
ences of ground truth angle and predicted angle is not 
an effective metric for evaluating the performance of 
lane keeping systems. Hereby we propose a new metric 
by measuring the percentage of driving time when the 
vehicle is in lane. Our simulator can be employed as an 
evaluation platform for autonomous lane keeping. The 
process flow of using the simulator for evaluation is il-
lustrated in Figure 2.

Giving the initial steering angle provided by the CNN 
model, vehicle positions and orientations are updated by 
vehicle dynamics. Subsequently a front-view camera im-
age is generated through image projection according to 
the current vehicle position and orientation. The new 
image is then fed to the CNN model and it produces the 
steering angle for the next time-step. The same process 
repeats for all frames in a test sequence. At each time step, 
the amount of position difference to the ground truth is 
calculated. For the purpose of simplicity, the longitude 
difference is fixed to zero, and the lateral difference is 

(a) (b) (c) (d)

FIG 11 Example frames under different weather or lighting condition: (a) cloudy (b) shadowed (c) foggy (d) sunny.
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compared with a threshold value. If the lateral difference 
is larger than the threshold, it is considered a lane keep-
ing failure. The threshold is set to 1 meter in our experi-
ment, the same as in [7]. In our dataset, the human driver 
cannot guarantee that the vehicle travels exactly follow-
ing the center trajectory of the lane. Nevertheless, the re-
corded position is assumed to be lane center. Therefore, 
we choose a larger threshold to avoid the ambiguity of lane 
departure. A smaller threshold could be too restrictive for 
model evaluation using this dataset. For each failure oc-
currence, the next 60 frames are automatically marked as 
manual driving period. All other frames without failure 
are considered autonomous driving period. The final cri-
teria is the percentage of autonomous driving time (au-
tonomy):

 A t t
t

a m

a=
+

 (7)

where ta  and tm  represent the autonomous time and manual 
controlled time, respectively. Figure 13 shows an example of 
the simulation results when comparing the vehicle positions 
with the ground truth. The steering angles are produced by 
the CNN model trained with data augmentation.

In our experiment, the CNNs trained with and without 
augmented data are both evaluated using the simulator, 
and the results are shown in Table I. The error of position 
is only evaluated when the vehicle is in autonomous driv-
ing mode. The data during manual controlled time in sim-
ulation are not evaluated. The percentage of autonomous 
driving time using the model trained with augmented data 
is 98.32% and number of failures is 9, which are signifi-
cantly better than the result of 82.09% and 98 without aug-
mented data.

In addition, the simulation results also show that the er-
ror of steering wheel angle is not an effective metric for 
performance evaluation. The model trained with augment-
ed data has mean error of 0.3042 degrees and standard 
deviation of 1.6029 degrees. The model trained without 
augmented data has mean error of 0.3118 degrees and stan-
dard deviation of 1.2043 degrees. It can hardly tell which 
model is better from the mean error and standard deriva-
tion of steering angles.

The deployed simulator with CNN predictor runs at 
approximately 13 frames per second (FPS). Considering 
the input data at 10 Hz, the end-to-end lane keeping sys-
tem is able to run at real-time. The hardware platform is 
a desktop computer with Intel i5 3570 K processor run-
ning at 3.4 GHz, 32 GB DDR3 RAM and one NVIDIA GTX 
1080 GPU.

V. Discussion
It is worth investigating the causes of some failures dur-
ing evaluation. 4 out of 9 failures are possibly due to the 
shadows on the road and unclear lane markings. For ex-

ample, a failure case is shown in Figure 14. The vehicle is 
moving out of lane to the right possibly because the front 
vehicle is changing lane and lane markings are partially 
blocked. Another case is shown in Figure 15 with casting 
shadow on the road. Color distortion is observed among 
the other 5 failure cases. In addition to the limitation of 
the model, we believe the quality of the input data plays 
a role in those failures, which can be attributed to fac-
tors such as shadows on the road, extreme lighting condi-
tions, camera exposure settings and etc. Because of the 
complicated scenarios in the real world, the robustness 
of a model needs be fully examined prior to deployment. 
Therefore, a simulator built on the real world data be-
comes very useful.

(a)

(b)

(c)

(d)

FIG 12 Example of original image and augmented images given arbitrary 
vehicle poses. (a) Original image. (b) Augmented image as if the vehicle 
is shifted right by 0.5 m. (c) Augmented image as if the vehicle is rotated 
left by 7 degrees. (d) Augmented image as if the vehicle is shifted right by 
0.5 m and rotated left by 7 degrees.
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VI. Conclusions
In this work, we build an autonomous lane keeping simu-
lator based on the recorded data and vehicle dynamics 
modeling. The simulator can generate a large amount of 

augmented data for training the CNN model in an end-
to-end learning system. Hereby, we propose a state-of-
the-art CNN model for autonomous lane keeping, and 
our experimental evaluations show that training with 
the simulator results significantly outperforms train-
ing with only the recorded data. The failure occurrence 
is reduced from 98 to 9. The percentage of autonomous 
driving time is improved from 82.09% to 98.32%. Details 
of the simulator, including image projection, camera 
calibration, vehicle dynamics, and trajectory tracking 
are discussed thoroughly. In addition, the experimental 
dataset is made available online for autonomous vehicle 
research and education.

Augmented 
Data Autonomy

No. of 
Failures

Error of Position (Meters)

Mean Standard Deviation

Yes 98.32% 9 0.2179 0.1813

No 82.09% 98 0.2670 0.2071

 Table I. Evaluation result using the simulator, with and without 
augmented data.
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FIG 13 An example of the simulation result, produced by the CNN trained with data augmentation. (a) Overview of the trajectory in a test sequence. 
(b) Trajectory zoomed-in in the black rectangle in (a). (c) Trajectory zoomed-in in the black rectangle in (b).
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FIG 15 Failure case: the vehicle is moving out of lane to the right because of unclear lane markings.
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FIG 14 Failure case: the vehicle is moving out of lane to the right because lane markings are partially blocked by the front vehicle.
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