
A System-On-Chip FPGA Design for Real-Time
Traffic Signal Recognition System

Yuteng Zhou, Zhilu Chen, and Xinming Huang
Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, MA 01609, USA

Abstract—Traffic signal detection has long been an important
function in an advanced driver assistance system (ADAS). This
paper presents a complete system design based on the techniques
of blob detection, histogram of oriented gradients (HOG) and
support vector machine (SVM). Blob detection is applied to detect
potential candidates, and then HOG and SVM is for feature
classification. A novel hardware/software co-design architecture
is developed for traffic light recognition at real-time. With well-
balanced workload on FPGA fabric and the on-chip ARM
processor, the entire system-on-chip can achieve a processing rate
of 60 fps for XGA 1024-by-768 video. The system can achieve an
accuracy rate of over 90% on both red lights and green lights.
The proposed system can be improved by replacing HOG with
more advanced feature algorithm to obtain higher accuracy.

Index Terms—ADAS, traffic signal, real-time, blob detection,
HOG, SVM, FPGA, system-on-chip

I. INTRODUCTION

Traffic signal recognition is an important feature in ad-
vanced driver assistance systems (ADAS) and self-driving
vehicles [1]. Similar to traffic sign detection methods [2],
vision-based solutions are popular for traffic light detection.
The key challenge is to implement the algorithms for real-
time processing, which is then meaningful to drivers, and
to achieve a high detection rate at the same time [3]. A
typical approach is to first detect potential blobs first, and
then differentiate true traffic lights from false positives [4]
[5]. Previously, FPGA-based platforms have been widely used
for the implementations of real-time image processing and
computer vision. Similar works such as recognizing traffic
signs has already been implemented on FPGA, achieving a
tremendous speedup and significant lower power consumption
comparing to the software solutions on a general purpose CPU
[6].

In this paper, we propose a complete system-on-chip (SOC)
FPGA design with balanced workload on hardware and soft-
ware. We adopt the traditional detection and classification
approach [7] [2]. The detection part requires pre-filtering
mainly to eliminate pixels unlikely to be part of a traffic light.
The system is targeted to detect both green lights and red
lights, so color filter is employed to separate them into two
processing branches. Then we apply blob detection to locate
the possible traffic light objects. For object recognition, we
use histogram of oriented gradients (HOG) to extract shape
features and then apply support vector machine (SVM) as the
classifier.

In this work, detection is implemented on the FPGA fabric
and classification is implemented on the on-chip ARM proces-

Figure 1. Overall system diagram with detection and classification

sor. The system implementation supports a frame rate of 60
frames per second (fps), while still attaining a high detection
rate over 90% on both green and red traffic lights. The rest
of this paper is organized as follows. Section II presents
methodologies for traffic light detection and classification.
Section III presents detailed implementation on the SOC
FPGA. Section IV presents the experimental results and finally
Section V concludes the paper.

II. METHODS FOR TRAFFIC LIGHT DETECTION AND
CLASSIFICATION

The input to the FPGA system is the real-time video
stream at 60 fps captured by an RGB camera mounted on
a car. We first divide the system into two parts, detection and
classification as shown in Fig. 1. The detection part consists of
pre-filtering which extracts green pixels and red pixels. After
that, blob detection is applied to estimate the positions each
blob. After detection, all the potential green blobs for green
traffic lights and red blobs for red traffic lights are obtained
including many false positives. Since a typical traffic light’s
length-width ratio is between 1/4 to 4, blobs with odd length-
width ratio are eliminated. Then each potential blob is resized
to 32-by-32 pixels. Furthermore, the HOG algorithm extracts
324 features from each blob that are then fed to the SVM
classfier. The result of SVM decides whether current blob is
a traffic light or not. By rapidly scanning through every blob
on an image, we are able to detect all red and green traffic
lights at the current scene.

Another feature we have to consider is to make the entire
system working in real-time. Since our system is used to warn
drivers while red traffic lights are on, consider the typical
human response time is about 0.26 second [8], which means
our system has to process images no slower than 4 fps to
be meaningful. So a hardware/software co-design architecture
becomes necessary, which implements computationally heavy
tasks on FPGA fabric and at the same time maintains high-
speed data exchange with the embedded processor. The hard-
ware/software partition strategy and FPGA implementation are
explained in details in Section III.

978-1-4799-5341-7/16/$31.00 ©2016 IEEE

1778

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on February 24,2021 at 04:12:48 UTC from IEEE Xplore. Restrictions apply.

hue
comparator

saturation
comparator

value
comparator

? 1:0

? 1:0

? 1:0

AND

Figure 2. Apply HSV threshold to obtain binary images

A. Pre-filtering

The input to our system is in RGB format. Each pixel
is represented by 3 bytes, with each byte representing one
color channel. Due to changing luminance and varied weather
conditions on road, a pixel appearing green to human eyes
does not necessarily indicate a large absolute value in green
channel, because it also relies on values of other two color
channels. The disadvantage of RGB color space is that it
cannot reflect the relations among red, green and blue. As the
first step in pre-filtering, we convert RGB to HSV color space.
HSV is a cylindrical-coordinate representations of colorful
pixels, representing relationships between each color channel
[9]. HSV stands for hue, saturation, and value. In HSV color
domain, green and red colors can be easily picked out by
setting proper thresholds.

Equations below show the pixel format conversions from
RGB to HSV [10]:

H =

60× G−B

MAX−MIN + 0 (if MAX = R)

60× B−R
MAX−MIN + 120 (if MAX = G)

60× R−G
MAX−MIN + 240 (if MAX = B)

(1)

S =MAX −MIN (2)

V =MAX (3)

As the last step in pre-filtering, a single pixel is binarized.
For instance, value is 1 if pixel is considered green, otherwise
0, as indicated in Fig. 2. The same process is repeated for red
pixels in parallel.

B. One-Pass Blob Detection

Blob detection collects connected pixels from pre-filtering
step. The principal idea is to label different clusters of pixels
to different values on the entire image. Here we use 4-
connectivity to determine whether pixels are connected or
not. 4-connectivity means, for center pixel, only 4 pixels
(N,E,W,S) are considered to be its neighbors. For the purpose
of high efficiency, one-pass labeling is utilized. We are able to
output all the potential blobs by scanning through the entire
image only once. More details on one-pass implementation is
explained in Section 3.2.

Figure 3. Examples of some typical traffic lights

Figure 4. Diagram of HOG computation procedure

C. HOG Algorithm

Standard traffic lights have fixed length-width ratio from
1/4 to 4 as indicated in Fig. 3. Blobs with too large or too
small length-width ratio can be eliminated. Prior to computing
HOG, each blob is resized to 32-by-32 pixels. Then each input
image is firstly divided into blocks. A block size is 16 * 16
pixels, containing 4 cells with each cell size 8 * 8 pixels. Next
the block starts sliding horizontally and then vertically, with
a step size of 8 pixels. This results in a total of 9 blocks on a
32-by-32 image.

The HOG computation typically consists of three steps.
They are weighted magnitude and bin class calculation, block
histogram generation, normalization as illustrated by Fig. 3.

As the first step, gradients of each pixel in both x and y
directions are computed:

Gx(x, y) = |Mx(x+ 1, y)−Mx(x− 1, y)| (4)

Gy(x, y) = |My(x, y + 1)−My(x, y − 1)| (5)

Then, the gradient magnitude and the gradient angle can be
calculated:

G(x, y) =
√
Gx(x, y) +Gy(x, y) (6)

θ = arctan
Gy(x, y)

Gx(x, y)
(7)

The gradient magnitude is further divided into 9 different
bin classes. According to angle value with range 0-180 de-
grees, every 20 degrees represent one bin class. For each cell,
a block histogram is generated by summing up the weighted
magnitudes for the corresponding bin class, resulting in 9
feature descriptors in one cell. For the whole image, there
are 324 feature descriptors in total.

The last step of normalization makes algorithm more robust
to varied illuminations.

bnorm =

√
b

sum(b)
(8)

1779

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on February 24,2021 at 04:12:48 UTC from IEEE Xplore. Restrictions apply.

D. Linear SVM

Linear SVM maps input non-linear descriptors to higher
dimension feature space, then a linear decision surface can be
constructed [11]. The linear SVM is expressed in (9).

Y = αyT + γ (9)

where α is the support vector, y is HOG feature descriptors
vector, and γ is the SVM offset. In our work, support vector
α and SVM offset γ is pre-trained using labeled traffic light
samples. The result of (9) indicates whether a target blob
contains a traffic light or not.

III. SOC FPGA IMPLEMENTATION

A. Software/Hardware Co-Design

To implement the whole system on SOC FPGA, delicate di-
vision of software and hardware is required. In this application,
scanning through the whole image is quite computationally
heavy, so the detection part must be implemented on FPGA
fabric. Images after blob detection are no longer original im-
ages, and only blob images are needed for HOG computation.
As shown in Fig. 5, we divide the input data streaming into two
paths: one goes through blob detection and the other retains the
original image. As to HOG and SVM, experiments in Section
IV shows it takes less than 10ms to process a single image,
proving the feasibility of our partition between hardware and
software.

video
input

red blob
positions

HOG

Processing system

detection

original image

green blob
positions

SVM

overlay

red traffic
lights

green traffic
lights

video
output

Figure 5. Hardware/sofwtare partition on SOC

B. Pipeline Structure for Detection

As described in Section 2.1, detection part consists of color
conversion and blob detection. Fig. 6 shows the hardware
architecture of detection part on the FPGA fabric. Since two
types of traffic lights are to be recognized simultaneously, two
blob detection blocks are used. Also, we implement one-pass
blob detection in order to achieve a frame rate of 60 fps.

Figure 6. Hardware architecture of detection part using FPGA fabric

For the implementation of blob detection algorithm on
FPGA, blob position table is required which records positions
of each blob detected. Shown in Fig. 7, there is a label counter
keeping track of current label number - each time a new blob is
detected, label counter adds its value by 1. The blob position
table is made up of 4 memory blocks, recording 4 vertices
of every blob. For a specific blob with label number n, its
position information is stored at nth slot in each of these 4
memory blocks.

Figure 7. Store positions for different labels in blob position table

The main difference between one-pass blob detection and
multi-pass detection is that one-pass has an extra connection
table which checks if two different labels actually indicates a
common blob. In this way, all the connected labels information
are stored into the connection table as shown in Fig. 8. We
do not need to scan through the entire image any more. As
an example in Fig. 8, when labeling the center pixel to be 5,
connection label logic knows label 7 and label 5 are indeed
in the same blob, so value 5 is written to the7th memory slot
in the connection table.

connection
label logic

address

value

5 7th memory slot

5

7 5

connection table

Figure 8. Connection table keeps record of connecting labels

After scanning through the whole image, all the information
are stored into the connection table and blob position table.
We further merge position information of same blobs as shown
in Fig. 9. The connection table indicates which labels are to
be merged, and we can update position information in blob
position table accordingly.

1780

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on February 24,2021 at 04:12:48 UTC from IEEE Xplore. Restrictions apply.

Figure 9. Merging information in blob position table

C. Blob to AXI4-Stream Interface

The interface is employed to transfer the blob position
information onto AXI4-stream bus, along with a video DMA,
realizing high-speed from FPGA to frame buffers in DDR
memory. Subsequently, the on-chip embdded ARM processor
can access image frames from DDR with a very high pixel
rate.

IV. ONBOARD IMPLEMENTATION RESULT

We implement the entire system on Xilinx Zynq ZC-702
board. The input video resolution is 1024×768 XGA. High-
est frequency of FPGA implementation reaches 147.34MHz,
so higher resolutions can also be supported. Overall FPGA
utilization is shown in Table 1. Since input data streaming
rate is at 60 fps, our one-pass blob detection is adequate to
follow such a rate for object detection. We also measure the
time taken by the processor to classify all the traffic light
candidates on a single frame. The time varies from 1.96ms to
9.66ms, orless than 10ms all the time. For the embedded ARM
processor, we are able to achieve over 100 fps performance.

Table I
FPGA RESOURCE UTILIZATION

Used Available utilization
Slice Registers 47656 106400 44.78%

Slice LUTs 49183 53200 92.44%
DSP48E1s 4 220 1.81%

Block RAM 25 140 17.85%

Also, we test our system through 10 video clips recorded
in different road and weather conditions. A sample image is
shown in Fig. 10. Table 2 shows we have achieved a high
recall and precision rate. Equations are given:

recall =
true positives

true positives+ false negatives
(10)

precision =
true positives

true positives+ false positives
(11)

Figure 10. Green traffic lights is detected by the proposed system at real-time

Table II
DETECTION ACCURACY

Recall Precision
Red traffic lights 92.11% 99.29%

Green traffic lights 94.44% 98.27%

V. CONCLUSION

In this paper, we present an FPGA based SOC design for
real-time traffic light recognition. We successfully implement
the entire system on Xilinx Zynq board, achieving real-time
processing rate of 60 fps and beyond. With the advent of deep
learning network, it is likely to obtain a higher detection rate
by replacing HOG algorithm with stronger feature extractors.

REFERENCES

[1] R. Okuda, Y. Kajiwara, and K. Terashima, “A survey of technical
trend of adas and autonomous driving,” in VLSI Technology, Systems
and Application (VLSI-TSA), Proceedings of Technical Program-2014
International Symposium on. IEEE, 2014, pp. 1–4.

[2] A. Møgelmose, M. M. Trivedi, and T. B. Moeslund, “Vision-based
traffic sign detection and analysis for intelligent driver assistance sys-
tems: Perspectives and survey,” Intelligent Transportation Systems, IEEE
Transactions on, vol. 13, no. 4, pp. 1484–1497, 2012.

[3] Y.-C. Chung, J.-M. Wang, and S.-W. Chen, “A vision-based traffic light
detection system at intersections,” Journal of Taiwan Normal University:
Mathematics, Science and Technology, vol. 47, no. 1, pp. 67–86, 2002.

[4] M. Omachi and S. Omachi, “Traffic light detection with color and edge
information,” in Computer Science and Information Technology, 2009.
ICCSIT 2009. 2nd IEEE International Conference on. IEEE, 2009, pp.
284–287.

[5] Y. Shen, U. Ozguner, K. Redmill, and J. Liu, “A robust video based
traffic light detection algorithm for intelligent vehicles,” in Intelligent
Vehicles Symposium, 2009 IEEE. IEEE, 2009, pp. 521–526.

[6] Y. Zhou, Z. Chen, and X. Huang, “A pipeline architecture for traffic
sign classification on an fpga,” in Circuits and Systems (ISCAS), 2015
IEEE International Symposium on, May 2015, pp. 950–953.

[7] J. V. Gomes, P. R. Inácio, M. Pereira, M. M. Freire, and P. P. Monteiro,
“Detection and classification of peer-to-peer traffic: A survey,” ACM
Computing Surveys (CSUR), vol. 45, no. 3, p. 30, 2013.

[8] “Reaction time statistics.” [Online]. Available: http://www.
humanbenchmark.com/tests/reactiontime/statistics

[9] “Hsl and hsv.” [Online]. Available: https://en.wikipedia.org/wiki/HSL_
and_HSV

[10] T. Hamachi, H. Tanabe, and A. Yamawaki, “Development of a generic
rgb to hsv hardware,” in The 1st International Conference on Industrial
Application Engineering 2013 (ICIAE2013), 2013.

[11] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

1781

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on February 24,2021 at 04:12:48 UTC from IEEE Xplore. Restrictions apply.

