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ABSTRACT

This paper presents a study on multicast communications in cognitive radio networks (CRNs)using directional antennas.
The objective is to maximize the throughput of the CRN. The spectrum is divided into multiple channels and licensed to
the primary network. While the CRN is accessing the spectrum, the interference power is carefully controlled to avoid
impacting the operation of the primary network. The mathematical model is presented and subsequently formulated as a
mixed integer non-linear programming (MINLP) problem, which is non-deterministic polynomial-time hard. Therefore, a
greedy algorithm is designed to approximate the optimal performance. The MINLP problem is then relaxed and an upper
bound is developed. Simulation results are presented to compare the performance of the greedy algorithm and the upper
bound, which demonstrates the efficacy of the greedy algorithm as well as the tightness of the upper bound. Copyright ©
2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In order to fully utilize the scarce spectrum resources,
emerging cognitive radio technology becomes a promis-
ing approach to exploit the under-utilized spectrum [1].
In a cognitive radio network (CRN), unlicensed wireless
users (secondary users) are allowed to dynamically access
the licensed bands, as long as the licensed wireless users
(primary users) in those particular bands are not inter-
fered. Wireless devices equipped with cognitive radios
are enabled to implement various functionalities, includ-
ing frequency agility, transmit power control and access
coordination, which render more efficient use of available
spectrum.

In this paper, we consider a CRN that consists of multi-
ple base stations (BSs) and secondary users (SUs). Each
BS supports a set of SUs. The spectrum of interest is
divided into a set of multiple orthogonal channels using
frequency division multiple access, which are licensed to
primary users (PUs). We assume that the channel usage
pattern for PUs is quasi-static so that SUs have ample
time to implement primary-user detection and thereby
avoid interfering with PUs’ connections. We consider the

scenario of multicast communication in the CRN. An
example deployment of a CRN is depicted in Figure 1.

Cognitive radio networks may operate in infrastructure-
based systems. As a practical application, IEEE 802.22
based regional area networks dynamically allocate TV
spectrum to SUs [2] while they keep provisioning service
to PUs. The TV bands are selected because they feature
very favorable propagation characteristics and are scarcely
used because of popularity of cable and satellite TV ser-
vices. Therefore, CRN must avoid interfering with PUs in
PRN as the licensed TV customers by carefully controlling
its beam configuration and channel selection. Because TV
signals are transmitted from BSs to users, only downlink
scenario is considered in this paper.

Directional antenna in the context of wireless net-
works can largely reduce the radio interference, thereby
improving the utilization of wireless medium and con-
sequently the network performance. In addition, direc-
tional antennas permit energy savings by concentrating
transmission energy where it is needed. Directional anten-
nas can be loosely classified into omni-directional anten-
nas, modestly directional antennas and highly directional
antennas. Omni-directional antennas have fixed beamwidth
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Figure 1. An example deployment of a cognitive radio network. Head portraits represent primary users. Cell phones represent
secondary users.

and unsteerable orientation. Modestly directional antennas
have fixed beamwidth and steerable orientation. At last,
highly directional antennas have variable beamwidth and
steerable orientation. In fact, the omni-directional antennas
and modestly directional antennas are special cases of the
highly directional antennas. In this paper, we are mainly
discussing the highly directional antennas.

In this paper, we study the joint problem of antenna
directionality and channel assignment (ADCA) to maxi-
mize the CRN throughput, which is defined as the sum
rate of all links supporting SUs. Because transmitters only
interfere with user nodes in their directional coverage area,
antenna beamwidth and orientation exert a great role in
network throughput performance. Given a configuration of
directional antennas, the network throughput can be greatly
improved by intelligent channel assignment in terms of
spatial diversity. Therefore, ADCA are mutually affected
and of great importance to CRN throughput.

To formulate the ADCA problem mathematically, we
characterize behaviors and constraints for multiple param-
eters from a multicast CRN. Special attention is given
to modeling of antenna directionality, beam covering,
channel assignment and interference modeling. Because
the formulation of the ADCA problem falls into mixed
integer non-linear programming (MINLP), which is non-
deterministic polynomial-time hard (NP-hard) in general,
we aim to derive a near-optimal solution. In particular, we
propose a greedy algorithm to iteratively increase the over-
all throughput. During each iteration, one BS is chosen

to build multicast links with SUs to produce maximum
throughput increase, which can be formulated as a mixed
integer linear programming (MILP) problem and solved
by the branch and bound algorithm. Because the solution
obtained by the proposed greedy algorithm represents a
lower bound for the objective, we compare it with the upper
bound developed later. Simulations show that the perfor-
mance obtained by the greedy algorithm are very close to
the upper bound, thus suggesting the following: (i) that the
upper bound is very tight; and (ii) that the solution obtained
by the greedy algorithm is near-optimal.

The rest of this paper is organized as follows. In
Section 2, we review the related work about channel
assignment and directional antenna. In Section 3, we
describe the network model. In Section 4, we propose
a greedy algorithm to solve the ADCA problem. In
Section 5, simulation results are presented to compare the
solutions obtained by the greedy algorithm and the upper
bound. Section 8 concludes this paper.

2. RELATED WORK

This paper is related to our previous work [3]. Although
sharing the same objective, this paper is mainly con-
cerned with ADCA, while deferring power control as a
future work.

Adaptive phased-array antennas and specifically direc-
tional antennas are being given significant attention in
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recent times, especially in the context of ad hoc networks.
In [4], the authors presented a constraint formulation in
terms of MILP, which can be used for an optimal solu-
tion of the minimum-energy multicast problem in wire-
less ad hoc networks with directional antennas. In [5],
the authors identified several criteria and investigated the
impact on overall system performance in the context of
ad hoc wireless networks with directional antennas, that is
reducing radio interference and improving the utilization
of wireless medium. In [6], the authors consider a wireless
ad hoc network where each node employs a single-beam
directional antenna and is provisioned with limited energy.
An online routing algorithm was proposed for successive
multicast communication requests with the aim of maxi-
mizing the network lifetime. There are also papers using
directional antennas on wireless mesh networks (MWNs).
In [7], an analytical model is derived, which allows the
incorporation of various node distribution models, radio
channel models and antenna models. In [8], DMesh, a
WMN architecture was proposed that combines spatial
separation from directional antennas with frequency sepa-
ration from orthogonal channels to improve the throughput
of WMNs. In addition, a distributed, directional channel
assignment algorithm was proposed for mesh routers that
effectively exploits the spatial and frequency separation
opportunities in a DMesh network.

The concept of cognitive radio was first coined by Mitola
in his dissertation work [9] and later in his visionary paper
[10]. Haykin provides a thorough overview of cognitive
radio and describes the fundamental cognitive capabili-
ties and cognitive tasks [11]. A cognitive radio is defined
as an intelligent wireless communications system that is
capable of sensing its surrounding environment, learning
from experience, and adapting certain operating param-
eters (e.g., transmit-power, carrier-frequency, and modu-
lation strategy) in real-time [11]. There are two primary
objectives: highly reliable communications whenever and
wherever needed and efficient utilization of the radio spec-
trum. Akyildiz et al. give a survey on the dynamic spec-
trum access for cognitive radios [1,12]. The basic concept
of CRN is described by Thomas et al. together with a
case study to illustrate how such a network might operate
[13]. In [14], the concept of cognitive radio is extended to
multihop networks.

A number of channel assignment schemes has been pro-
posed in recent years. In [15], a distributed and adap-
tive approach is proposed to manage spectrum usage in
dynamic spectrum access networks. However, this paper
does not take into account the control of transmit power.
In addition, the more practical physical interference model
is not studied. In [16], Chin et al. address the problem of
dynamically assigning channels in ad hoc wireless net-
works via power control to satisfy their minimum QoS
requirements. The objective then is to maximize the num-
ber of co-channel links subject to some stability condi-
tions. In [17], a cluster-based multipath topology control
and channel assignment scheme is proposed, which explic-
itly creates a separation between the channel assignment

and topology control functions, thus minimizes flow dis-
ruptions. In [18], Raniwala et al. propose a greedy load-
aware channel assignment scheme when network nodes are
with multiple radios. The goal of channel assignment is to
bind each network interface to a radio channel such that
the available bandwidth on each link is proportional to its
expected load. In [19], Alicherry et al. mathematically for-
mulate the joint channel assignment and routing problem,
taking into account the interference constraints, the num-
ber of channels in the network and the number of radios
available at each mesh router. A centralized algorithm is
developed to solve the problem to yield the optimized
network throughput. The channel assignment algorithm
is used to adjust the flow on the flow graph to keep the
increase of interference for each channel to a minimum. In
[20], Ramachandran et al. propose an interference-aware
channel assignment algorithm and protocol for multi-radio
WMNs. The proposed solution intelligently assigns chan-
nels to radios to minimize interference and thus enhance
network performance.

Multicast communication on CRNs has been extensively
researched recently. In [21], a cross-layer optimization
approach is proposed to multicast video in CRNs. The
problem is to optimize the overall received video qual-
ity as well as achieving fairness. Important design factors
are considered, including video coding, rate control, spec-
trum sensing and spectrum access. However, the model
employed only involves one BS. In [22], an optimization
framework for multicast scheduling in CRNs is presented.
Eventually, two multicast scheduling algorithms are pro-
posed accordingly. In [23], Ren et al. address the multicast
problem in CRNs. A low complexity algorithm is pro-
posed to construct the minimum-energy multicast tree and
transform the original problem into a directed Steiner tree
problem. However, few research works have addressed the
multicast problem for CRNs involving multiple BSs and
directional antennas.

3. PROBLEM MODELING

We consider a CRN that consists of multiple BSs and
SUs. Each BS supports a set of SUs. The spectrum
of interest is divided into a set of multiple orthogonal
channels using frequency division multiple access, which
are licensed to PUs. We assume that the channel usage
pattern for PUs remain static so that SUs have time
to implement primary-user detection and thereby avoid
interfering with PUs’ connections. From this observation,
the studied CRNs should satisfy both demanding delay-
sensitive and loss-sensitive applications. Therefore, both
video multicast and data multicast can be applied to our
proposed model.

To explore advantages offered by the use of directional
antennas, we consider the scenario of downlink multicast
traffic in the CRN. Each BS employs exactly one channel
to support one or multiple SUs.

Table I lists frequently used notations in this section.
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Table I. Notation.

Symbol Definitions

B The number of BSs
N The number of SUs
C The number of channels
Q The number of tunable angle beamwidths
� A number of very large value
� The minimum signal to interference and noise ratio (SINR)
bi The ith BS
sj The jth SU
pj The jth PU
�min The minimum angle of beamwidth

tk;q
i Binary variable indicating if channel k of bi has beamwidth q�min

xk;q
i;j Binary variable indicating the assignment of bi to sj when tk;q

i =1

yk;q
i;j Binary variable indicating bi covers sj when tk;q

i =1

yk;q1
i;j ,yk;q2

i;j Two binary variables decomposed from yk;q
i;j

'k
i The antenna orientation of bi on channel k

�k
i The beamwidth of bi on channel k

ˇi;j The counter-clockwise angle of the line from bi to sj

lk;q
i;j The link between bi and sj when tk;q

i =1

pk;q
i;j The received power of lk;q

i;j

di;j The distance of bi and sj

ck;q
i;j The rate of lk;q

i;j

N0 The ambient noise power

� The interference threshold value to protect PUs

kj� The channel on which pj operates

pkj�;q
i;j� The power received on pj from bi when tkj�;q

i D 1

ykj�;q
i;j� Binary variable indicating bi covers pj when tkj�;q

i D 1

ykj�;q1
i;j� , ykj�;q2

i;j� Binary variables decomposed from ykj�;q
i;j�

ˇi;j� The counter-clockwise angle of the line from bi to pj

BS, base stations; SU, secondary user; PU, primary user.

3.1. Directional antenna model

We use a directional antenna propagation model as shown
in Figure 2, where antenna orientation 'u.0� 'u < 2�/ of
node u is defined as the angle measured counter-clockwise
from the horizontal axis to the first side of the beam. The
antenna beamwidth is specified as the angle of �u.�min �

�u � 2�/, where �min denotes the minimum angle of
beamwidth. To model the discrete version of antenna
beamwidth, we introduce an integer parameter Q that rep-
resents the total number of angle values to which the
beamwidth can be adjusted, that is, �min; 2�min; : : : ;Q�min

(Q�min � 2�). We introduce binary variable tk;qi indicat-
ing if the i th BS bi ’s beam on channel k has beamwidth

q�min when t
k;q
i D 1. Obviously, it is required thatPQ

qD1 t
k;q
i � 18i ; k.

Definition: A joint downlink channel assignment, power
control and antenna directionality scheme is specified by a
matrix X, which is defined as (1).

k
iϕ

k
iθ

u

Figure 2. Directional antenna propagation model.

XD fxk;qi;j jx
k;q
i;j 2 f0; 1g; i 2 f1; 2; :::; Bg;

j 2 f1; 2; :::; N g; k 2 f1; 2; :::; C g; q 2 f1; 2; :::;Qg
(1)

x
k;q
i;j is denoted as the binary variable with xk;qi;j D 1

indicating the assignment of the kth channel of bi to the
j th SU sj when the beamwidth of the transmitter antenna

is of q�min. Similarly, denote yk;qi;j as the binary variable
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with yk;qi;j D 1 indicating bi ’s beam on channel k covers
sj when bi ’s antenna beamwidth on channel k is of q�min.

x
k;q
i;j � y

k;q
i;j

x
k;q
i;j � t

k;q
i

(2)

Now, we begin to build coverage relations between bi
and sj on channel k determined by the antenna orienta-

tion 'ki when beamwidth �ki D q�min. It can be easily
drawn as Figure 3. The corresponding mathematical equa-
tions are shown in (3) and (4). Let ˇi ;j denote the angle
measured counter-clockwise from the horizontal axis to the
directional line from bi to sj . When q�min � ˇi ;j , (3)
is depicted by the thick lines in Figure 3(a). When
ˇi ;j � q�min, (4) is depicted by the thick lines in
Figure 3(b).

y
k;q
i;j D

8̂<
:̂
0 W 0� 'ki < ˇi ;j � q�minI

1 W ˇi ;j � q�min < '
k
i � ˇi ;j I

0 W ˇi ;j � '
k
i < 2� I

(3)

y
k;q
i;j D

8̂<
:̂
1 W 0� 'ki < ˇij I

0 W ˇi ;j � '
k
i < 2� C ˇi ;j � q�minI

1 W 2� C ˇi ;j � q�min � '
k
i < 2� I

(4)

The relations between yk;qi;j and 'ki are obviously non-
linear. In the following two cases, we shall show that these
relations can be linearized [4].

� Case 1: q�min � ˇi ;j

From Figure 3(a), we can observe that yk;qi;j can be

linearly derived by two new binary variables yk;q1i;j

and yk;q2i;j , which are defined in (5) and (6).

y
k;q1
i;j D

(
0 W 0� 'ki < ˇi ;j � q�minI

1 W ˇi ;j � q�min � '
k
i < 2� I

(5)

y
k;q2
i;j D

(
1 W 0� 'ki < ˇi ;j I

0 W ˇi ;j � '
k
i < 2� I

(6)

Note that (5) and (6) are also depicted by thick lines

in Figure 4(a) and (b), respectively. Because yk;qi;j can

be decomposed into yk;q1i;j y
k;q2
i;j , we need to derive

linear constraints for yk;q1i;j and yk;q2i;j . A close look
would lead us to the finding that the binary variables
can be constrained by the quadrangles in Figure 4(a)
and (b), respectively. Therefore, the decomposition of

y
k;q
i;j can be shown by (7).

y
k;q
i;j D y

k;q1
i;j C y

k;q2
i;j � 1I

y
k;q1
i;j �

1

ˇi ;j � q�min
'ki I

y
k;q1
i;j �

1

2� � ˇi ;j C q�min

�
'ki � ˇi ;j C q�min

�
I

Figure 3. Two possible relations between yk;q
i;j and 'k

i . (a) q�min � ˇi;j ; (b) ˇi;j � q�min.

Figure 4. The decomposition of yk;q
i;j when �min � ˇi;j .
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y
k;q2
i;j �

�1

ˇij

�
'ki � ˇi ;j

�
I

y
k;q2
i;j �

�1

2� � ˇi ;j

�
'ki � 2�

�
I

(7)

� Case 2: q�min � ˇij ;

From Figure 4, similarly, we can observe that yk;qi;j
can be linearly derived by two new binary variables

y
k;q1
i;j and yk;q2i;j , which are defined in (8) and (9).

y
k;q1
i;j D

(
1 W 0� 'ki < ˇij I

0 W ˇij � q�min � '
k
i < 2� I

(8)

y
k;q2
i;j D

(
0 W 0� 'ki < 2� C ˇi ;j � q�minI

1 W 2� C ˇij � q�min � '
k
i < 2� I

(9)
(8) and (9) are also depicted by thick lines in
Figure 5(a) and (b), respectively.

Similarly, when q�min � ˇi ;j , the decomposition

of yk;qi;j can be shown by (10).

y
k;q
i;j D y

k;q1
i;j C y

k;q2
i;j I

y
k;q1
i;j �

�1

ˇij

�
'ki � ˇi ;j

�
I

y
k;q1
i;j �

�1

2� � ˇi ;j

�
'ki � 2�

�
I

y
k;q2
i;j �

1

2� C ˇij � q�min
'ki I

y
k;q2
i;j �

1

q�min � ˇi ;j

�
'ki � 2� � ˇi ;j C q�min

�
I

(10)

3.2. Rate calculation

In this paper, we assume all BSs use the same trans-
mit power P on all channels. The more complex issues
of power control will be deferred for future research.
Let us denote the link on channel k between BS bi and
SU sj when the beamwidth of bi ’s antenna is of q�min

as lk;qi;j . Let di ;j denote the physical distance between
bi and sj . n denotes the path loss index. The received

power of lk;qi;j is denoted as pk;qi;j , which can be calculated
using (11).

p
k;q
i;j D

2�P

q�mind
n
i;j

(11)

The rate of link lk;qi;j , denoted as ck;qi;j , can be calculated
as (12) based on (11).
N0 denotes the ambient noise power, B denotes the

number of BSs, N denotes the number of SUs. The termPB
aD1

PN
bD1

PQ
qD1 t

k;q
a y

k;q
a;j p

k;q
a;j represents the inter-

ference power on channel k at sj .

3.3. Interference constraints

For link lk;qi;j to be reliable, we require that (13)

In practice, � can be the minimum signal to interfer-
ence and noise ratio (SINR) required to achieve a cer-
tain bit error rate performance at each SU. The value of
� depends on specific coding, modulation and detection
schemes being employed.

c
k;q
i;j D log2

0
@1C p

k;q
i;j

N0C
PB
aD1

PN
bD1;b¤j

PQ
qD1 t

k;q
a y

k;q
a;j p

k;q
a;j

1
A (12)

p
k;q
i;j

N0C
PB
aD1;a¤i

PN
bD1

PQ
qD1 t

k;q
a y

k;q
a;j p

k;q
a;j

� � if x
k;q
i;j D 1 (13)

Figure 5. The decomposition of yk;q
i;j when q�min � ˇij .

Wirel. Commun. Mob. Comput. 2015; 15:260–275 © 2012 John Wiley & Sons, Ltd. 265
DOI: 10.1002/wcm



Directional antenna for cognitive radio networks W. Guo and X. Huang

Note that (13) can be transformed as (14).

x
k;q
i;j .�N0C �/

C �

BX
aD1;a¤i

NX
bD1

QX
qD1

t
k;q
a y

k;q
a;j p

k;q
a;j � p

k;q
i;j � �

(14)
where � denotes a very large value.

3.4. Protecting primary users

To protect operations of PUs, we require that the interfer-
ence power caused by all SUs on each channel is below a
threshold value �, shown as follows:

PB
iD1

PQ
qD1 t

kj�q

i y
kj�q

i;j� p
kj�;q

i;j� � �8j� 2 P (15)

where kj� denotes the index of the channel on which pj is

receiving signals. y
kj�;q

i;j� denotes the binary variable with

y
k�j ;q
i;j� D 1 indicating bi ’s transmission beam on chan-

nel kj� covers the j th PU pj when the beamwidth of

bi ’s antenna is q�min. Let p
kj�;q

i;j� denote the interference
power on channel kj� from bi to pj when the beamwidth
of bi ’s antenna is q�min. As (7) and (10), we then can

derive determinant conditions (16) and (17) on y
kj�;q

i;j�

using '
kj�
i , q�min and ˇi ;j�, which denotes the angle

from the horizontal axis to the directional line from bi
to pj .

� Case 1: ˇi ;j� � q�min

y
kj�;q

i;j�
� y

kj�;q1

i;j�
C y

kj�;q2

i;j�
� 1I

y
kj�;q1

i;j�
�

1

ˇi;j� � q�min
'
kj�

i
I

y
kj�;q1

i;j�
�

1

2� � ˇi;j�C q�min

�
'
kj�

i
� ˇi;j�C q�min

�
I

y
kj�;q2

i;j�
�
�1

ˇi;j�

�
'
kj�

i
� ˇi;j�

�
I

y
kj�;q2

i;j�
�

�1

2� � ˇi;j�

�
'
kj�

i
� 2�

�
I

(16)
� Case 2: ˇij� � q�min

y
kj�;q

i;j�
� y

kj ;q1

i;j�
C y

kj�;q2

i;j�
I

y
kj�;q1

i;j�
�
�1

ˇi;j�

�
'
kj�

i
� ˇi;j�

�
I

y
kj�;q1

i;j�
�

�1

2� � ˇi;j�

�
'
kj�

i
� 2�

�
I

y
kj�;q2

i;j�
�

1

2� C ˇi;j� � q�min
'
kj�

i
I

y
kj�;q2

i;j�
�

1

q�min � ˇi;j�

�
'
kj�

i
� 2� � ˇi;j�C q�min

�
I

(17)

3.5. Objective

Recall that the objective of the ADCA problem is to max-
imize the sum rate achieved by all SUs, which can be
formulated as (18).

max
PB
iD1

PN
jD1

PC
kD1

PQ
qD1 x

kq
i;j c

k;q
i;j

(18)

where C denotes the number of channels.
Remark: In this paper, we assume the channel usage

pattern for PUs is fairly static. With the objective of max-
imizing the overall throughput, the optimal solution to
the configuration of CRN, in terms of antenna orienta-
tion, beamwidth and channel assignment, tends to be static.
Therefore, it is not necessary to introduce scheduling in a
slotted time system to the formulation.

4. DESIGN OF A GREEDY
ALGORITHM

In this section, we present a greedy algorithm. This algo-
rithm increases the sum rate of CRN iteratively until it can
not be increased. The main idea is presented in Section 4.2,
which includes maximum throughput estimation, BS sort-
ing and channel usage implementation. The details of each
module is described in Section 4.3.

4.1. Intuition

The main difficulty for the ADCA problem lies in the

objective function as (18), where ck;qi;j is a nonlinear term

with xk;qi;j and yk;qi;j in the denominator contained in a log-
arithmic function. It is obviously very hard to approximate
the optimal solution via relaxing the objective function.

Then, we realize the variables xk;qi;j and yk;qi;j in the objec-
tive function represents interference power from multiple
BSs. If we divide the large optimization task and distribute
subtasks to each BS heuristically, the objective function
for each smaller optimization problem would be much
easier in the sense that interference from only one BS is
considered during one iteration.

4.2. Description of the greedy algorithm

Our greedy algorithm increases the overall network
throughput iteratively and terminates until the overall net-
work throughput can not be increased further. We assume
that each BS maintains one database recording position
information of all PUs and SUs, current channel assign-
ment, antenna orientation and beamwidth, named as Table
of Assignment Links (TAL). At the beginning of an itera-
tion, each BS pretends that the existing links that connect
itself are annihilated. Then each BS proceeds calculating
the best possible throughput increase under the interfer-
ence constraints imposed by both PUs and existing links
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Figure 6. The flow chart showing how our greedy algorithm
works.

within the CRN. After calculating the potentially maxi-
mum throughput increase, each BS exchanges its result
with other BSs, and finally, the globally largest is iden-
tified as associated with one BS. Then, the chosen BS

is required to implement its channel assignment, antenna
orientation and beamwidth to best increase the overall net-
work throughput. At the last step of each iteration, new
results of assigned links should be updated in the TALs
of all BSs. The basic diagram of our greedy algorithm is
shown in Figure 6.

The notation used in this section is listed in Table II.

4.3. Details of each module

4.3.1. Table of assignment links establishment.

We first present the method of TAL establishment. For
each BS, the TAL records updated information of the posi-
tions of PUs and SUs, channel usage pattern, antenna
orientation and associated beamwidth all over CRN. The
information in TAL will help each BS avoid failing existing
links and impacting PUs by generating excessive interfer-
ence while establishing new links.

4.3.2. Maximum throughput estimation.

We now present the method for each BS to bring the
largest increase to the sum rate performance. As the BS
is trying to update the setting of beams on each channel,

Table II. Notation.

Symbol Definitions

xk;q
j Binary variable indicating the assignment of the

current BS to sj on channel k of beamwidth q�min

yk;q
j Binary variable indicating the current BS covers sj on

channel k of beamwidth q�min

ykj�;q
j� Binary variable indicating the current BS covers pj on

channel kj� of beamwidth q�min

ˇj The counter-clockwise angle of the line from the
current BS to sj

'k The counter-clockwise angle of the beam on
channel k of the current BS

tq
k Binary variable indicating if the current BS’s beam

on channel k has beamwidth q�min

E The set of existing links
pk;q

j The received power at sj from current BS when tq
k =1

pkj�;q
j� The received power at pj from current BS when tq

kj�
=1

ˇj� Then counter-clockwise angle of the line from
current BS to pj

il The index of BS of the lth existing link
jl The index of SU of the lth existing link
kl The channel of the lth existing link
ql�min The beamwidth of the lth existing link
Ik
j The overall interference power of the assigned links

at sj on the kth channel
Ij� The overall interference power of the assigned links

at pj on the kj�th channel
ck;q

j The rate of the link between the current BS and sj

cl The rate of the lth existing link
P The set of all PUs
R The set of SUs not connected to BSs

BS, base stations; SU, secondary user; PU, primary user.
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it should be aware of increasing interference to existing
links. Therefore, the achievable rate on other links would
be probably deteriorated. Moreover, hypothetically anni-
hilating all the associated links, the BS should also take
into account the interference from existing links when
establishing new connections.

� Preliminaries: let xk;qj denote the binary assignment
variable indicating the sj is connected with the cur-
rent BS at channel k of which the beamwidth is q�min.

Let yk;qj denote the binary coverage variable indicat-
ing sj is covered by the current BS at channel k of
which the beamwidth is q�min. ˇj denotes the angle
measured counter-clockwise from the horizontal axis
to the directional line from the current BS to sj . 'k
denotes the angle measured counter-clockwise from
horizontal axis to the first side of the beam on the kth
channel of the current BS. We introduce a binary vari-
able tq

k
indicating if the current BS’s beam on channel

k has beamwidth q�min when tq
k
D 1. Obviously, it

is required that
PQ
qD1 t

q
k
� 18k. Similar as (2), we

have the following:

x
k;q
j � y

k;q
j

x
k;q
j � t

q
k

(19)

As a note, yk;qj is decided by ˇj and 'k similarly as
(3) and (4), which can be mathematically formulated
as a linear constraint as in Section 3.1.

� Protecting existing links: we first introduce some
notation. Let us denote the received power at sj
from the current BS on channel k when the antenna’s
beamwidth is q�min as pk;qj . We use E to denote
the set of existing links. Let il ; jl ; kl denote the
index of the BS, SU and channel of the l th existing
link, respectively. The beamwidth of the l th existing
link is of ql�min. Ikj denotes the overall interference
power of the assigned links at sj on the kth chan-
nel. We then denote the set of existing links as E . The

value of pk;qj can be easily calculated on the basis
of (11). From (13), we can obtain the following con-
straint (20) to protect existing links against excessive
interference.

�

0
@ QX
qD1

p
kl ;ql
jl

y
kl ;ql
jl

t
ql
kl
CN0C Ijl

1
A

� p
kl ;ql
il ;jl

;8l 2 E (20)

As a note, the nonlinear term y
kl ;ql
jl

t
ql
kl

can be sub-

stituted by a binary variable ukl ;qljl
and then linearized

as follows:

y
kl ;ql
jl

C t
ql
kl
� 2u

kl ;ql
jl

y
kl ;ql
jl

C t
ql
kl
� u

kl ;ql
jl

� 1
(21)

� Interference constraint for new links: as (13), the
SINR at the receiver end should be larger than � for
newly established links, which is shown as follows:

p
k;q
j � �

�
N0C I

k
j

�
x
k;q
j 8j 2R (22)

where R represents the set of SUs without
connections.

� Protecting primary users: for ease of demonstration,
we first introduce some notation. kj� denotes the
index of the channel on which pj is operating. Ij�
denotes the overall interference power of the assigned
links at pj at the kj�th channel. ˇj� denotes the
angle measured counter-clockwise from the horizon-
tal axis to the directional line from the current BS
to pj . The received power at pj from the current
BS on channel k of beamwidth q�min is denoted as

p
kj�;q

j� . Obviously, the value of p
kj�;q

j� can be eas-
ily calculated on the basis of (11). The set of all PUs

is denoted as P . y
kj�;q

j� denotes the binary coverage
variable indicating if the current BS is covering pj

at beamwidth of q�min. p
kj�;q

j� denotes the received
power of the current BS on the kj�th channel when
the beamwidth is q�min at pj .

XQ

qD1
p
kj�;q

j� t
q
kj�

y
kj�;q

j� C Ij� � � 8j� 2 P
(23)

As a note, y
kj�;q

j� is decided by ˇj� and 'kj� sim-
ilarly as (3) and (4), which can be mathematically
formulated as a linear constraint as in Section 3.1. In
addition, the term t

q
kj�

y
kj�;q

j� can be substituted by a

new variable v
kj�;q

j� and then linearized as follows:

t
q
kj�
C y

kj�;q

j� � 2v
kj�;q

j�

t
q
kj�
C y

kj�;q

j� � v
kj�;q

j� � 1
(24)

� Rate calculation: we use ck;qj to denote the rate of
the link between sj and the current BS on channel k
when the antenna beamwidth is q�min, which can be
calculated as follows:

c
k;q
j D log2

0
@1C p

k;q
j

N0C I
k
j

1
A 8j 2RI (25)

Note that the rate of the existing links could proba-
bly be reduced because of newly introduced interfer-

ence. 8l 2 E , its rate cl can be changed to ckl ;q
l

if

y
kl ;q
jl

t
q
kl
D 1, which is calculated as follows:

c
kl ;q

l
D log2

0
@1C p

kl ;ql
il ;jl

N0C I
kl
jl
C p

kl ;q
jl

1
A I (26)
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� Objective function: recall that the greedy algorithm
iteratively increases the network throughput, thus the
BS should try to maximize the sum rate of newly
established links as well as probably deteriorated
existing links, which can be mathematically stated
as (27).

max
P
j2R

PC
kD1

PQ
qD1 x

k;q
j c

k;q
j CP

l2E
�
y
kl ;q
jl

t
q
kl
c
kl ;q

l
C
�
1�y

kl ;q
jl

t
q
kl

�
cl

�
(27)

It should be noted that the nonlinear term y
kl ;q
jl

t
q
kl

can be linearized as (24).

Putting together the objective and all the constraints
described earlier, we formulate a MILP problem, which
can be solved by the branch and bound algorithm.

4.3.3. Base station sorting.

This module is aimed to identify the BS, which can bring
the maximum throughput benefit, and hence, the network
throughput can be increased greedily. After each BS is
associated with a maximum throughput, they can exchange
their results with neighboring BSs in a distributed fashion.
At the end of this process, each BS should keep the maxi-
mum network throughput along with the ID of the BS that
produces this amount.

The implementation of this module entails a certain
amount of information exchange. Once a BS receives
its knowingly best network throughput, it propagates this
datum to its neighboring BSs exactly once. In particu-
lar, each BS is only concerned if its maximum network
throughput is larger than any other BS in this iteration.
Thus, they would discard their own maximum network
throughput along with the associated beam configuration
once they realize some other BS produces larger through-
put. For the case of equal throughput, the BS would also
discard its own results if the BS that produces the same
amount of throughput is indexed smaller. This sorting pro-
cedure terminates when any BS has not been notified of
any larger throughput for a preset amount of time.

4.3.4. Channel usage implementation.

Finally, we discuss the method of channel usage imple-
mentation and TAL updating. At first, this module is
applied at the BS whose maximum throughput is the
largest among all BSs in each iteration. The BS updates
the calculated channel assignment, antenna orientation and
beamwidth in its TAL. This BS also has to inform other
BSs to update their TALs for calculating the maximum
throughput during the next iteration.

4.4. Proof of convergence

We now show that the algorithm must converge. We
show that in each iteration, the algorithm increases the

throughput performance of CRN. Because the overall
throughput is upper bounded, this implies that the algo-
rithm must converge.

At the beginning of each iteration, each BS’s beam
configuration represents a feasible solution to the max-
imum throughput estimation problem formulated in
Section 4.3.2. After solving the maximum throughput esti-
mation problem, we obtain the optimal solution for each
BS. Therefore, no matter which BS is chosen to imple-
ment new settings for antenna orientation and beamwidth,
the network throughput is expected to grow larger than the
lower bound at the beginning of the iteration.

Because the network throughput performance monoton-
ically increased after every iteration, convergence of the
greedy algorithm is guaranteed.

4.5. Complexity analysis

The complexity analysis of the greedy algorithm is pre-
sented as follows. During each iteration, the majority com-
putation mainly resides in the step of maximum throughput
estimation. The solution space contains all combinations
of binary variables and continuous variables. The binary

variables include xk;qj ; y
k;q
j ; y

kj�;q

j� ; t
q
k

(as explained in
Table II), which totals as many as .N � C � Q C N �
C � Q C jPj2 � Q C C � Q/. The continuous vari-
ables include 'k , which contains at most C variables.
The MILP problem can be solved by branch and bound
algorithm, which could potentially search all 2L solutions,
where L denotes the number of binary variables. There-
fore, the running time for the greedy algorithm for one

iteration equals to O.2.2NC1/CQCjPj
2Q/. As all BSs are

required to compute the MILP problem in one iteration,
and the total number of iterations is measured as O.B/,
the total times to solve the MILP algorithm can be approx-
imated asO.B2/. Therefore, the overall computation com-
plexity for the greedy scheme can be approximated as

O.B22.2NC1/CQCjPj
2Q/DO.2.2NC1/CQCjPj

2Q/.

4.6. Notes on implementation issue

During the first few iterations, the majority of SUs can be
connected with only one BS under many circumstances.
One of them is that each BS has abundant beams and
large beamwidth such that most SUs can be covered to
achieve high network throughput. The other one is that the
number of SUs is comparatively small and they are not
far away from one BS. When one BS is covering most
of the SUs, these links are protected as existing links in
future iterations, which would cause the greedy algorithm
to converge very fast. To avoid this situation, we impose
different procedures at the beginning of the greedy algo-
rithm: the set SUs are divided into B clusters according to
their distances to the BSs; then, each BS sequentially esti-
mates the maximum throughput and implement the result
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considering the cluster of SUs to which the current BS is
the nearest.

4.7. Other algorithm

Because the existing schemes can not be directly applied
to solve the ADCA problem, we design an Reformulation-
Linearization Technique (RLT)-based heuristic scheme to
compare with the proposed greedy scheme. RLT[24] has
been widely used to solve non-linear optimization prob-
lems. Because the ADCA problem is a non-linear opti-
mization problem, involving both integer and non-integer
variables, the RLT technique can be employed to relax the
original problem to linear form and obtain the non-integer
variables. Then, on the basis of acquired solution for non-
integer variables, a greedy scheme is employed to obtain

the solution for integer variables. Specifically, tk;qa y
k;q
a;j

in (14) and t
kj�;q

i y
kj�;q

i;j in (15) are polynomial terms.
By using RLT, we can substitute these terms with new
variables, thus relaxing nonlinear terms into linear terms.
For instance,

t
kj�;q

i C y
kj�;q

i;j� �w
kj�;q

i � 1

t
kj�;q

i C y
kj�;q

i;j� � 2w
kj�;q

i

(28)

Moreover, we can relax (12) as follows:

c
k;q
i;j D log2

0
@1C p

k;q
i;j

N0

1
A I (29)

After relaxation, we can obtain the upper bound by solv-
ing a linear programming problem. We fix the non-integer
variables 'ki .1 � i � B; 1 � k � C/ and employ
the following heuristic algorithm to solve the assignment
variables X. The heuristic algorithm increases the over-
all network throughput iteratively and terminates until the
overall network throughput can not be further increased.
At the beginning of an iteration, each BS pretends that
the existing links that connect itself are annihilated. Then,
each BS proceeds calculating the best possible through-
put increase under the interference constraints imposed
by both PUs and existing links within the CRN. After
calculating the potentially maximum throughput increase,
each BS exchanges its result with other BSs, and finally,
the globally largest is identified associated with one BS.
Then, the chosen BS is required to implement its chan-
nel assignment, antenna orientation and beamwidth to best
increase the overall network throughput. At the last step
of each iteration, new results of assigned links should
be broadcasted to all BSs. One BS solves the follow-
ing binary integer programming problem during one iter-

ation. Note that ykl ;qljl
, y

kj�;q

j� and yk;qj are all known
because angle of beams on each BS are fixed. The objec-
tive is the same as (27), and constraints are extracted from
(19), (20), (23) and (22).

Max
P
j2R
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kD1

PQ
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j CP
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jl
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qD1 p
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kj�
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kj�;q

j� C Ij�

� � 8j� 2 P
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k;q
j � �

�
N0C I

k
j

�
x
k;q
j 8j 2R

1� k � C; 1� q �Q
(30)

5. PERFORMANCE EVALUATION

In this section, we present simulation results to demon-
strate the performance of our greedy algorithm. Ideally, the
best performance measure of our distributed optimization
algorithm is the solution to the centralized optimization
problem. However, as is shown in the Appendix section,
the problem formulation is in the form of MINLP and
is NP-hard. Although the exact solution to the MINLP
problem is not obtainable, we are able to develop a tight
upper bound for the objective function of the problem. As
a result, we will compare the performance of our greedy
algorithm with the upper bound.

5.1. Simulation setup

We consider a square service area of size 100 km�100 km
in which a CRN is deployed. Three BSs are placed at the
coordinates fŒ3; 4�I Œ4; 7�I Œ7; 4�g�104. Fifteen SUs and five
PUs are randomly deployed within the service area. We
assume a free-space path loss model with the path-loss
exponent n D 2. The ambient noise power at each PU and
SU isN0 D�100 dB. The channel bandwidth is of 1 MHz.
The threshold power for PUs is � D�90 dB. We arbitrarily
set the channels where PUs are receiving signals. For each
set of system parameters, we generate 20 instances of the
network scenarios with randomly distributed user nodes to
obtain the average performance.

5.2. Evaluation metric

To evaluate the performance of the greedy algorithm, the
metric we utilize is the average throughput of CRN over
the 20 instances of different network scenarios.
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5.3. Simulation results

(1) Impact of transmit power: We evaluate the impact
of transmit power on the performance of the CRN.
Figure 7 shows the performance comparison when we
change the transmit power from 0.2 to 1 W. Because the
optimal performance lies between the feasible solution via
the greedy algorithm and the upper bound, it is obvious that
the throughput performance of the greedy algorithm pro-
duces near-optimal solution. Besides, as the transmit power
increases from 0.2 to 1 W, the performance yielded by both
the greedy algorithm and the upper bound increases, which
agrees with the rate model (12). In addition, by comparing
with the RLT-based scheme, the proposed greedy algorithm
demonstrates very good performance.
(2) Impact of minimal beamwidth: Next, we look into the
impact of minimal beamwidth �min on the throughput per-
formance of CRN. From Figure 8, it can be drawn that the
greedy algorithm produces close-to-optimal performance.
Moreover, we can see that the average performance for
both via the greedy algorithm and the upper bound degrade
as �min increases. The reason lies in the fact that the
received power of each link is inversely proportional to the
beamwidth. As a result, the rate of each link is reduced
because of the increase of �min on the basis of the rate
model (12). By comparing the performance of the proposed
greedy algorithm with the RLT-based approach, it can be
seen clearly that our proposed greedy scheme outperforms
the RLT-based approach.
(3) Impact of interference threshold: In Figure 9, we evalu-
ate the impact of interference threshold on the performance
of the CRN. We can make two observations: first, the
upper bound is close to the optimal performance; second,
the greedy algorithm produces near-optimal performance.
Besides, as the interference threshold � increases from 30
to 50, both performances yielded by the greedy algorithm
and the upper bound decrease. The rationale behind is that
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Figure 7. Simulation results when P changes. Twenty random-
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generated network topologies are tested for each parameter
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with higher interference threshold, less links would be able
to succeed. In addition, our proposed greedy algorithm
generates much smaller gap between its performance and
upper bound than the RLT-based algorithm.
(4) Impact of Q: Then, we look into the impact of the
number of angles Q on the throughput performance in
Figure 10. From Figure 10, it is clear that the average of
both of the performances yielded by the greedy algorithm
and the upper bound increase when we change Q from 1
to 4. This is because more number of angles would give
rise to more opportunities that one beam covers more SUs,
which thereby increases the total throughput performance.
This phenomenon demonstrates the advantage of variable
beamwidth of directional antennas in network throughput
of multicast communication (for unicast communication,
the optimal solution usually consists of beams with mini-
mal angle to maximize throughput). Furthermore, we can
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Figure 10. Simulation results when Q changes. Twenty random-
generated network topologies are tested for each parameter
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see that the proposed greedy algorithm outperforms the
RLT-based algorithm.

6. IMPACT OF POWER THRESHOLD
FOR PUs:

As for the impact of power threshold � for PUs, we
carry out numerical investigation in Figure 11. From
Figure 11, first of all, the greedy algorithm yields perfor-
mance close to the upper bound. In addition, we can see
a slight increase as the threshold power increases from
�90 to �50 db for the performance of the greedy algo-
rithm. This is because the constraint of protecting the PUs
is relaxed as � increases. In particular, as the constraint (23)
shows, when � is enlarged, more interference to each PU is
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Figure 11. Simulation results when � changes. Twenty random-
generated network topologies are tested for each parameter

set. �min D �=4. P D 0:5 W, QD 3, � D 10.

allowed from CRNs, which leads to more possible estab-
lishment of secondary links or larger transmit power of
individual downlink secondary connections. Therefore, the
overall throughput of the cognitive network is increased.
Besides, the proposed greedy algorithm yields much better
performance than the RLT-based approach.

7. DISCUSSION

Although the current network model assumes that the
channel usage pattern remains static, the proposed algo-
rithm can be easily extended to handle the case when
PUs dynamically change their channel usage pattern. We
assume when PUs update operating channels, the BSs in
CRN can sense which PUs have moved to which chan-
nels. Because each BS maintains one database recording
position information of all PUs and SUs, current chan-
nel assignment, antenna orientation and beamwidth, they
can update the channel usage pattern information accord-
ingly. Therefore, each BS checks if its supported down-
link multicast connections have caused interference to
the PUs who newly updated their operating channel. The
proposed greedy algorithm can be implemented involv-
ing only the BSs that have caused interference to PUs
due to their dynamic channel usage. In particular, each
BS pretends that the existing links that connect itself are
annihilated. Then, each BS proceed in calculating the
best possible throughput increase under the interference
constraints imposed by both PUs with updated channel
usage and existing links within the CRN. After calculat-
ing the potentially maximum throughput increase, each
BS exchanges its result with other BSs, and finally, the
globally largest is identified as associated with one BS.
Then the chosen BS is required to implement its chan-
nel assignment, antenna orientation and beamwidth to best
increase the overall network throughput. At the last step
of each iteration, new results of the assigned links should
be updated in the TALs of all BSs. With PUs dynami-
cally changing channel usage pattern, all the approaches
would be extended to apply in time dimension. Thus,
results are also time-based. Until a specific time, the pro-
posed greedy algorithm still keeps increasing the overall
throughput performance iteratively every time after sens-
ing channel usage change from the primary network. The
adaptation to the CRN is incremental by implementing the
greedy algorithm. In contrast, the RLT-based approach has
to tear down all connections and rebuild them again once
interference is caused to primary network due to channel
usage update, which is very expensive. Besides, if scruti-
nized after a random primary network change of channel
usage pattern, the greedy algorithm works by the same
token as if the channel usage pattern were static among
PUs. Therefore, given a specific time, the greedy algo-
rithm should still yield performance that is relatively close
to upper bound performance and much better than RLT-
based approach.
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In real applications, different BSs usually exert different
transmit power levels in CRNs. Although BSs use iden-
tical transmit power for secondary downlink connections
in the proposed network model, the greedy algorithm can
be easily be applied to scenarios where BSs use differ-
ent transmit power. Transmit powers play their role in the
second step of greedy algorithm, when each BS calcu-
lates its biggest throughput increase. Because this step is
implemented by each BS independently, different transmit
powers on BSs will not cause any effect to the procedure
of the BS’s execution. Therefore, it is safe to claim that
the proposed greedy algorithm is seamlessly applicable to
CRNs where BSs use different transmit power levels. The
results of proposed method would change though. Each BS
would generate new throughput values with transmit power
changed. Although it is hard to predict the change of the
final absolute performance for the greedy algorithm with
BSs using different transmit powers, the greedy algorithm
should still yield performance that is close to the upper
bound and much better than the RLT-based approach. The
reason lies in the fact that the change of BSs’ transmit
powers will only affect the performance amplitudes of all
approaches to the same extent and keep their relative per-
formance unchanged. The impact of the parameters on the
approaches described in Section 5 should remain valid.

The current network model assumes homogeneous SUs
in CRNs. It is worth noting that the proposed greedy algo-
rithm can easily address heterogeneous SUs in CRNs. In
particular, each BS will maintain one database recording
position information of all PUs and SUs, current chan-
nel assignment, antenna orientation and beamwidth, as
well as SINR threshold of all SUs. When calculating the
maximal throughput increase during the greedy algorithm,
each BS modifies constraint (22) using the SINR thresh-
old value based on the current SU, which the constraint
applies to. By incorporating the modified constraint (22),
each BS can calculate the potentially maximal through-
put increase. After calculating the potentially maximum
throughput increase, each BS exchanges its result with
other BSs, and finally, the globally largest is identified as
associated with one BS. Then the chosen BS is required to
implement its channel assignment, antenna orientation and
beamwidth to best increase the overall network throughput.

8. CONCLUSION

In this paper, we presented a study on multicast commu-
nications in CRN using directional antennas. We develop
a mathematical model for such problem with joint consid-
eration of ADCA. The main contribution of this paper is
the development of a greedy optimization algorithm that
iteratively increases the overall CRN network throughput.
Simulation results show that the achievable performance
via our greedy algorithm is close to the upper bound and
also outperforms the RLT-based approach. Because the
unknown optimal solution lies between the upper bound
and the lower bound (feasible solution obtained via our

greedy algorithm), we conclude that the results obtained
by the greedy algorithm are very close to the optimal solu-
tion. Besides, it can also be drawn that the upper bound is
very tight.

APPENDIX A: ANTENNA
DIRECTIONALITY AND CHANNEL
ASSIGNMENT PROBLEM
FORMULATION AND UPPER BOUND

To develop a performance benchmark for the greedy
algorithm, we first formulate the cross-layer optimization
problem. Putting together all the constraints described in
Section 3, we have the formulation (A.1). The optimiza-
tion problem is in the form of MINLP, which is NP-hard in
general. Because we are not able to obtain the exact solu-
tion, we develop an upper bound to this problem, which
can be used as a measure for the performance of the greedy
algorithm.
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(A.1)
The upper bound for the MINLP problem can be obtained
by relaxation. First of all, according to (12), the calculation

of ckqij is very complicated; we can relax it as follows:

c
k;q
i;j D log2

�
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p
k;q

i;j

N0

�
I (A.2)

Because the terms representing the interference power
is removed from the denominator, each individual value
of ck;qi;j becomes larger, at least no less than the original
definition (12). It is obvious that with the newly defined
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objective, the upper bound will always be no less than the
solution to the original problem.

To relax the third inequality constraint, we can remove

the nonlinear term �
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For the nonlinear term t
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it with a new binary variable w
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i ; then, we need to add
two more constraints as follows:
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With the mentioned three steps, we can reformulate the
MINLP problem as a MILP problem, which can be solved
by the branch and bound algorithm.
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