
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014 1879

VLSI Design of a Large-Number Multiplier for
Fully Homomorphic Encryption

Wei Wang, Xinming Huang, Senior Member, IEEE, Niall Emmart, and Charles Weems

Abstract— This paper presents the design of a power- and area-
efficient high-speed 768 000-bit multiplier, based on fast Fourier
transform multiplication for fully homomorphic encryption oper-
ations. A memory-based in-place architecture is presented for
the FFT processor that performs 64 000-point finite-field FFT
operations using a radix-16 computing unit and 16 dual-port
SRAMs. By adopting a special prime as the base of the finite
field, the radix-16 calculations are simplified to requiring only
additions and shift operations. A two-stage carry-look-ahead
scheme is employed to resolve carries and obtain the multipli-
cation result. The multiplier design is validated by comparing
its results with the GNU Multiple Precision (GMP) arithmetic
library. The proposed design has been synthesized using 90-nm
process technology with an estimated die area of 45.3 mm2. At
200 MHz, the large-number multiplier offers roughly twice the
performance of a previous implementation on an NVIDIA C2050
graphics processor unit and is 29 times faster than the Xeon
X5650 CPU, while at the same time consuming a modest 0.97 W.

Index Terms— Fully homomorphic encryption (FHE), large-
number multiplication, VLSI design.

I. INTRODUCTION

THE growth of cloud computing is deepening concerns
over data privacy, especially when outsourcing computa-

tions to an untrusted service, which typically involves allowing
the service to work with client data in decrypted form. Fully
homomorphic encryption (FHE) is a technique enabling com-
putation to be performed directly on encrypted data, thereby
preserving privacy. The Gentry–Halevi scheme was the first
software implementation of FHE but its computing latency is
prohibitive for practical applications due to its intensive use of
large-number (hundreds of thousands of bits) multiplications.
Subsequent research has shown that performance can be
improved through the use of parallelism on a general purpose
graphics processor unit (GPU). However, the 200–400-W
power consumption of a typical GPU makes it impractical
to employ such an approach at data center scales. Because
multiplication is the dominating component of FHE opera-
tions, it will be a significant step toward practical application
of FHE if a high-performance, low-power, area efficient, and
high precision integer multiplier architecture can be developed.

Manuscript received February 11, 2013; revised July 14, 2013 and
August 10, 2013; accepted August 26, 2013. Date of publication November 1,
2013; date of current version August 21, 2014. This work was supported by
the National Science Foundation under Award CCF-1217590.

W. Wang and X. Huang are with the Department of Electrical and Computer
Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 USA
(e-mail: weiwang@wpi.edu; xhuang@wpi.edu).

N. Emmart and C. Weems are with the Department of Computer Science,
University of Massachusetts, Amherst, MA 01003 USA (e-mail: nemmart@
yrrid.com; weems@cs.umass.edu).

Digital Object Identifier 10.1109/TVLSI.2013.2281786

Enabling general purpose computation on encrypted data
was a problem introduced in [1] about three decades ago. In a
major breakthrough, Gentry [2] introduced the first plausible
FHE scheme in 2009. Using FHE, one may perform arbi-
trary computations directly on encrypted data without having
access to the secret key. Thus an untrusted party, such as a
cloud server, may perform computations on behalf of a client
without compromising privacy. This property of FHE makes it
potentially very valuable for the fast-growing cloud computing
industry.

Although Gentry’s FHE scheme is theoretically promising,
it has been impractical for actual deployment. For instance,
Gentry and Halevi [3] presented the first implementation
of an FHE variant using software. They used sophisticated
optimizations to reduce the size of the public key and the com-
puting time of the large-number primitives based on the GMP
library [4]. For the lowest security setting of dimension 2048,
every source bit becomes encrypted as about 760 000 bits.
The encryption of one bit took 1.69 s on a high-end Xeon
processor, while the recryption primitive took 27.68 s. After
every few bit-AND operations, a recrypt operation must be
applied to reduce the noise in the ciphertext to a manageable
level, thus inducing significant overhead.

Subsequently, we took Gentry and Halevi’s FHE algorithm
and accelerated it on a GPU platform [5]. Targeted to an
NVIDIA C2050 GPU with 448 cores running at 1.15 GHz, the
processing time for 1-bit encryption was reduced to 45 ms and
the recyption was reduced to 1.8 s, which are about 37.6 and
15.4 times faster than the original implementation on the CPU.
Although the GPU trial provided significant acceleration, the
major problem remains that the power consumption of a high-
end GPU today is about 200–400 W. Using GPUs to scale
FHE up to data center levels is thus infeasible. The solution
is to build low-power customized circuits that can provide
comparable or superior performance to the fastest GPU while
reducing power consumption by orders of magnitude.

Previously, the general-purpose GPU had also been used for
acceleration of security algorithms such as elliptic curve cryp-
tography [6]. But the GPU architecture was originally geared
for graphics operations and later extended for general-purpose
computations. It is not the most power-efficient architecture
for a specific algorithm or applications. One approach is to
attach an application-specific integrated circuit (ASIC) to the
CPU which is dedicated to encryption/decryption operations.
At the microarchitectural level, it can be implemented as
an extension of the instruction set. Previously, customized
ASIC or IP blocks have been designed to accelerate the
well-known encryption schemes such as the Advanced

1063-8210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1880 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014

Encryption Standard (AES) and Rivest-Shamir-Adleman
(RSA) [7], [8]. Today, many embedded processors have AES
or RSA cores included. This paper is aimed at taking a
similar approach and designing a specific hardware or IP
blocks for accelerating the core computations in FHE.

Since the most computationally intensive operations in the
FHE primitives are large-number modular multiplications, our
initial attempt is to tackle the design of a large-number
multiplier that can handle 768 000 bits, in support of the
2048-dimension FHE scheme demonstrated by Gentry and
Halevi. In addition to FHE, large-number arithmetic also has
other important applications in science, engineering, and math-
ematics. Specifically, when we need exact results or the results
that exceed the range of floating point standards, we usually
turn to multiprecision arithmetic [9]. An example application
is in robust geometric algorithms [10]–[12]. Replacing exact
arithmetic with fixed-precision arithmetic introduces numerical
errors that lead to nonrobust geometric computations. High-
precision arithmetic is a primary means of addressing the
nonrobustness problem in such geometric algorithms [10].

The rest of this paper is organized as follows. Section II
gives a brief introduction to FHE. Section III presents
Strassen’s fast Fourier transform (FFT) based multiplication
algorithm. Section IV shows the architecture of the VLSI
design of the finite-field FFT engine and the multiplier.
Section V gives results based on VLSI synthesis and simu-
lation. Conclusions follow in Section VI.

II. GENTRY’S FHE

One of the holy grails of modern cryptography is FHE,
which allows arbitrary computation on encrypted data. Given
a need to perform a binary operation on the plaintext, FHE
enables that to be accomplished via manipulation of the cipher-
text without the knowledge of the encryption key. For example,
E(x1)+ E(x2) = E(x1 + x2) and E(x1)� E(x2) = E(x1 ⊗x2).

The first FHE was proposed by Gentry in [2] and [13] and
was seen as a major breakthrough in cryptography. However,
its preliminary implementation is too inefficient to be used in
any practical applications. A number of optimizations were
used in the Gentry–Halevi FHE variant, and the results of a
reference implementation were presented in [3]. Due to limited
space, here we only provide a high-level overview of the
primitives.

Encryption: To encrypt a bit b ∈ {0, 1} with a public
key (d, r), encryption first generates a random “noise vector”
u = 〈u0, u1, . . . , un−1〉, with each entry chosen as 0 with
the probability p and as ±1 with probability (1 − p)/2 each.
Gentry [3] showed that u can contain a large number of zeros
without impacting the security level, i.e., p could be very large.
A message bit b is then encrypted by computing

c = [u (r)]d =
[

b + 2
n−1∑
i=1

uir
i

]
d

(1)

where d and r are parts of the public key. For the small
setting with a lattice dimension of 2048, d and r have a size
of about 785 000 bits [3].

When encrypted, arithmetic operations can be performed
directly on the ciphertext with the corresponding modular
operations. Suppose c1 = Encrypt(m1) and c2 = Encrypt(m2);
then we have

Encrypt(b1 + b2) = (c1 + c2) mod d (2)

Encrypt(b1 ∗ b2) = (c1 ∗ c2) mod d. (3)

Decryption: The source bit b can be recovered by computing

b = [c · w]d mod 2 (4)

where w is the private key. The size of the w is the same as
that of d and r .

Recryption: Briefly, the recyption process is simply the
homomorphic decryption of the ciphertext. The actual pro-
cedure of recyption is very complicated, so we choose not to
explain it here. But from the brief description above, we can
see that the fundamental operations for FHE are large-number
addition and multiplication. Addition has far less computing
complexity than multiplication, so we focus on the hardware
architecture of the multiplication using VLSI design.

III. LARGE-INTEGER MODULAR MULTIPLICATION

A. Multiplication Algorithms

Large-integer multiplication is by far the most time-
consuming operation in the FHE scheme. Therefore, we
have selected it as the first block for hardware acceleration.
A review of the literature shows that there is a hierarchy of
multiplication algorithms. The simplest algorithm is the naive
O(N2) algorithm (often called the grade school algorithm).

The first improvement to the grade school algorithm was due
to Karatsuba [14] in 1962. It is a recursive divide-and-conquer
algorithm, solving an N bit multiplication with three N/2 bit
multiplications, giving rise to an asymptotic complexity of
O(N log2 3). Toom and Cook generalized Karatsuba’s approach,
using polynomials to break each N bit number into three or
more pieces. Once the subproblems have been solved, the
Toom–Cook method uses polynomial interpolation to construct
the desired result of the N bit multiplication [15]. The asymp-
totic complexity of the Toom–Cook algorithm depends on k
(the number of pieces) and is O(N log(2k−1)/ log(k)).

The next set of algorithms in the hierarchy are based on
using FFTs to compute convolutions. According to Knuth [15],
Strassen came up with the idea of using FFTs for multi-
plcation in 1968, and worked with Schönhage to generalize
the approach, resulting in the famous Schönhage–Strassen
algorithm [16], with an asymptotic complexity of O(N ·log N ·
log log N).

All the operations in FHE are modular operations. Usually,
two different approaches are used to address the modular
multiplication. The first is to do multiplication first, followed
by modular reduction. The other approach, proposed in [17],
interleaves the multiplication with modular reduction. This is
an efficient grade-school approach, performing the equivalent
of two O(N2) multiplications. The interleaved Montgomery
approach is quite commonly used for modular multiplication
in the RSA algorithm, see [8] and [18].

WANG et al.: VLSI DESIGN OF A LARGE-NUMBER MULTIPLIER FOR FHE 1881

TABLE I

OPERATION COUNTS FOR A 786 432-bit MODULAR MULTIPLICATION

To understand the arithmetic cost of different multiplica-
tion algorithms, we implement three different modular mul-
tiplication algorithms in carefully tuned MIPS 64 assembly
and count the number of ALU operations for each. The
first algorithm uses the interleaved version of Montgomery
multiplication proposed in [17]. This is an efficient grade-
school approach, performing the equivalent of two O(N2)
multiplications. The second algorithm uses the noninterleaved
three-multiplication Montgomery reduction implemented with
Karatsuba multiplication (it uses the Karatsuba method if
the arguments are larger than three words, and switches to
grade-school multiplication to handle the base case when the
arguments are small). The third algorithm adopted in this paper
is based on FFT multiplication and is described in detail in
the next section. This algorithm also uses a traditional three-
multiplication Montgomery reduction. The operation counts of
the three algorithms are presented in Table I.

Comparing the Karatsuba and FFT multipliers, both of
which compute the product and then reduce the result mod-
ulo N , we can see that FFT multiplication is faster, requiring
only one-third of the number of instructions as the Karatsuba
multiplier. Comparing the FFT multiplier with interleaved
Montgomery approach which is widely used in RSA for mod-
ular multiplication, we see that the FFT multiplier uses only
1/20th of the number of instructions. The interleaved version
of Montgomery multiplication is popular and efficient in RSA,
but it is no longer efficient for the modular multiplication in
FHE. In all, the approach we adopt for modular multiplication
is the most efficient algorithm. From above, we can see that
large-number multiplication is the most crucial part for the
modular multiplication. Therefore, we take the first step to
design a fast multiplier for hardware implementation.

For further reading, there are a number of papers that
cover hardware implementation of large-number multiplica-
tion. Yazaki and Abe [19] implement a 1024-bit Karatsuba
multiplier, and in [20] they investigate a hardware implementa-
tion of FFT multiplication. Kalach [21] investigates a hardware
implementation of finite field FFT multiplication. However,
that paper does not present any information about the hardware
resources and performance.

B. FFT Multiplication

FFT multiplication is based on convolutions. For example,
to compute the product A times B , we express the numbers
A and B as sequences of digits (in some base b) and then
compute the convolution of the two sequences using FFTs.

Fig. 1. FFT multiplication.

Fig. 2. FFT-based multiplication algorithm.

Once we have the convolution of the digits, the product A
times B can be found by resolving the carries between digits.
The FFT multiplication algorithm is presented in Fig. 1 and
as a diagram in Fig. 2.

The FFT computations can done either in the domain of
complex numbers or in a finite field or ring. In the complex
number domain, it is trivial to construct the roots of unity
required for the FFT, but the computations must be done with
floating point arithmetic and the round-off error analysis is
quite involved. In the finite field/ring case, all the computations
are done with integer arithmetic and are exact. However, the
existence and the calculation of the required root of unity will
depend heavily on the structure of the chosen finite field/ring.

For our FFT multiplier, we follow the steps of our previous
work [9] and implement the FFT in the finite field Z/pZ,
where p is the prime 264–232 +1. This prime is from a special
class of numbers called Solinas primes (see [22]). As we shall
see, this choice of p has three compelling advantages for FFTs.

1) We can do very large FFTs in Z/pZ. Since 232 divides
p − 1, we can do any power-of-2-sized FFT up to 232.

2) There exists a very fast procedure for computing x
modulo p for any x .

3) For small FFTs (up to size 64), the roots of unity are all
powers of 2. This means that small FFTs can be done
entirely with shifting and addition, rather than requiring
expensive 64-bit multiplications.

1882 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014

C. FFTs in the Finite Field Z/ pZ

To perform FFTs in a finite field, we need three operators:
addition, subtraction, and multiplication, all modulo p, where
p = 264–232 +1. Addition and subtraction are straightforward
(if the result is larger than p then subtract p, and if the result
is negative, then add p). For multiplication, if X and Y are
in Z/pZ, then X ∗ Y will be a 128-bit number, which we can
represent as X ∗ Y = 296a + 264b + 232c + d (where a, b, c,
and d are each 32-bit values). Next, using two identities of p,
namely, 296 mod p = −1 and 264 mod p = 232 − 1, we can
rewrite the product of X ∗ Y as

X ∗ Y ≡ 296a + 264b + 232c + d (mod p)

≡ −1(a) + (232 − 1)b + (232)c + d

≡ (232)(b + c) − a − b + d.

This means that a 128-bit number can be reduced modulo p
to just a few 32-bit additions and subtractions.

Further, note that 2192 mod p = 1, 296 mod p = −1,
2384 mod p = 1, etc. This leads to a fast method to reduce
any sized value modulo p. Break the value up into 96-bit
chunks and compute the alternating sum of the chunks. Then
reduce the result as above.

In addition to the arithmetic operator, there are three other
criteria in order to perform multiplication with finite field
FFTs. First, to compute an FFT of size k, a primitive root
of unity rk must exist such that rk

∧k mod p = 1 and r∧
k i mod

p 	= 1 for all i between 1 and k−1. Second, the value k−1 must
exist in the field. Third, we must ensure that the convolution
does not overflow, i.e., k/2(b − 1)2 < p, where k is the FFT
size and b is the base used in the sampling. Finally, we must
ensure that the numbers we are multiplying are less than bk/2.

In a finite field, the process for doing an FFT is analogous
to FFTs in the complex domain; thus

Xi =
k−1∑
j=0

x j (rk)
i j (mod p). (5)

The inverse FFT (IFFT) is just

xi = k−1
k−1∑
j=0

X j (rk)
−i j (mod p) (6)

for all the usual methods for decomposing FFTs, such as
Cooley–Tukey [23], except (rk)

j takes the place of e j2π i/k .
With large FFTs, the primitive roots almost always look

like random 64-bit numbers; e.g., the r65 536 that we use is
0xE9653C8DEFA860A9. However, for FFTs of size 64 or less,
the roots of unity will always be powers of 2. As noted above,
2192 mod p = 1, which means (23)64 mod p = 1 and therefore
r64 = 23 = 0 × 08. Likewise, r16 = 212.

For our hardware implementation, we will choose
k = 65 536 and b = 224. These values meet the criteria above
and allow us to multiply two numbers up to bk/2 = 2786 432,
i.e., 786 432 bit in length, which is sufficient to support
Gentry–Halevi’s FHE scheme for the small setting with a
lattice dimension of 2048.

D. 192-bit Wide Pipelines

It is often the case in our hardware FFT implementation
that we need to perform a sequence of modular operations
(additions, subtractions, and multiplications by powers of 2).

If we were to implement this as 64-bitwide operations, we
would need to reduce the result modulo p between each stage
of the pipe. Although the process to reduce a value modulo
p is quite fast, it still requires a lot of hardware. It turns out
that, if we extend each 64-bit value to 192 bits (by padding
with zeros on the left) and run the pipeline with 192-bitwide
values, then we can avoid the modulo p operations after each
pipeline stage by taking advantage of the fact that 2192 mod p
is 1. We do this as follows:

1) Addition: Suppose we wish to compute x + y. There are
two cases: If we get a carry out from the 192nd bit, then we
have trunc(x + y)+2192, which is the same as trunc(x + y)+1
modulo p (where trunc(z) returns the least significant 192 bits
of z). If it did not carry out, then the result is just x + y.
We can implement this efficiently in hardware using circular
shifting operations.

2) Multiplication by a Power of 2: First, let us consider
multiplication by 2. Suppose we have a 192-bit value x and we
wish to compute 2x . There two cases. If the most significant
bit of x is zero, then we simply shift all 1-bits to the left. If
the top bit is set, then we need to compute trunc(2x) + 2192,
which is the same as trunc(2x) + 1 modulo p. In both case,
it is just a left circular shift by 1 bit. Thus to compute 2 j ∗ x ,
we simply do a left circular shift by j bits.

3) Subtraction: Since 296 mod p = −1, we can simply
rewrite x − y as x + 296y. The 296 is a constant shift.

For the final reduction from 192 bits back down to 64 bits,
as above, we can represent a 192-bit number z as z = 2160a +
2128b + 296c + 264d + 232e + f , where a, b, c, d, e, and f are
each 32 bits

z ≡ 2160a + 2128b + 296c + 264d + 232e + f

≡ −(232 − 1)a − 232b − c + (232 − 1)d + 232e + f

≡ (232e+ f)+(232d+a)−(232b+c)−(232a+d). (7)

IV. VLSI DESIGN OF THE LARGE-NUMBER MULTIPLIER

For high-throughput applications, a pipelined FFT archi-
tecture is often used [24]. However, the pipelined design
requires a memory buffer at every stage [24], which becomes
problematic in the context of large-integer operations. For a
64 000 FFT and 64 bits per data sample, we would need
4 Mbits of memory after each stage. Generally, a large FFT
involves numerous stages, which makes the total area for mem-
ory too large to be considered for hardware implementation.

In contrast to the pipelined FFT design, a memory-based
FFT architecture adopts an in-place strategy, which allows
us to store the intermediate results into the same memory
as the input data. Doing so effectively minimizes the mem-
ory requirement for the FFT computation [25]. To improve
throughput, multiple memory banks can be used for parallel
access. In our 64 000 FFT architecture, a total of 16 dual-port
memory banks are used, and each memory bank is 256 000 bits
in size. Fundamentally, the 64 000 FFT is implemented using

WANG et al.: VLSI DESIGN OF A LARGE-NUMBER MULTIPLIER FOR FHE 1883

four stages of 16-point FFTs. The basic concept of a stage
is to perform 4096 16-point FFTs, followed by application
of twiddle factors and then transposition. If we repeat that
process four times (164 = 64 000), then the result is a
64 000 FFT. Using an in-place memory-based design, these
four stages are computed sequentially using the same hardware
unit and memory.

A. Radix-16 FFT Unit

One of the key elements of our design is a high-throughput
16-point FFT engine. As discussed in Section III-C, for small
(k ≤ 64) FFTs, the root of unity will always be a power of 2.

In a finite field based on the Solinas prime p, a 16-point
FFT can be performed using just shift and modulo addition
operations. A 16-point FFT can be expressed as (8), noting
409616 mod p = 2192 mod p = 1. As discussed above, for
192-bit operations, any carry-out bit can be simply routed back
as a carry-in bit, which is particularly suitable for hardware
design

X (k) =
15∑

n=0

x(n)212·nk%192 mod p (8)

x(n) = 1

16

15∑
k=0

X (k)2(192−12nk)%192 mod p. (9)

For a 192-bit addition, a traditional ripple-carry adder
would generate a long carry chain and slow the clock speed
considerably. Thus we employ carry-save adders as the basis
for our high-speed design. Given three n-bit numbers a,
b, and c, the carry-save approach produces a partial sum
ps and a shift-carry sc, where psi = ai ⊕ bi ⊕ ci and
sci = BarrelLeftShifter((ai∧bi)∨(ai∧ci)∨(bi∧ci), 1). We can
cascade 2 three-input carry-save adders to form a four-input
adder. A diagram of the sum-16 unit is shown in Fig. 3. The
summation unit is a pipeline architecture that takes 16 inputs
every clock cycle. A normalization unit at the end performs
a modulus p operation shown in (7) and converts the 192-bit
result back to 64 bits.

The architecture for a radix-16 finite field FFT unit is shown
in Fig. 4. It consists of 16 shifters and 16 summation units. At
each clock cycle, the radix-16 unit takes 16 data inputs and
outputs the 16-point FFT results after a few cycles of pipeline
delay.

B. 64 000-Point FFT Processor

The 64 000-point FFT can be decomposed into four stages
of 16-point FFTs. At each stage, a total of 64 000 samples
are processed through the radix-16 FFT unit. At 16 samples
per cycle, that gives a total of 4096 cycles per stage. This
architecture reads 16 input values from memory and writes
16 output values to the memory every clock cycle. Therefore,
the memory needs to be partitioned into 16 banks. An in-
place memory addressing scheme is applied to ensure there is
no memory access conflict. With reference to the derivation
in [25] and [26], a conflict-free in-place scheme for radix-16

Fig. 3. Diagram of sum-16 unit.

Fig. 4. Architecture of the radix-16 FFT unit.

Fig. 5. Data storage pattern in the memory banks.

FFT can be described as follows:

DataCount = [d15, d14, . . . , d0] (10)

BankNum = ([d15, d14, d13,d12] + [d11, d10, d9, d8]
[d7, d6, d5, d4] + [d3, d2, d1, d0]) mod 16 (11)

Address = [d15, d14, . . . , d4]. (12)

DataCount denotes the original address of the input data
sample. BankNum is the corresponding bank assignment after
partitioning. Address is the new address in the assigned bank.
For 64 000 samples, the memory is partitioned into 16 banks,
and each bank has 4096 samples. The data storage pattern in
the memory banks is shown in Fig. 5.

The overall architecture of the FFT processor is shown
in Fig. 6. Before entering the processor, the data has been

1884 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014

Fig. 6. Architecture of the 64 000-point FFT processor.

Fig. 7. Architecture of modular multiplication unit.

reshuffled according to (11) and (12). The Address generation
unit generates the corresponding bank number and address for
each data sample. After all 64 000 samples have been received
and stored in the memory banks, the FFT processor begins
the computation. At each clock cycle, it reads 16 samples
from the memory banks according to the BankNo and Address
generated by the address generation uinit. These 16 values
are then permuted into a proper order by the interchange unit
and fed to the Radix-16 unit. Subsequently, the radix-16 FFT
results are modular-multiplied with twiddle factors supplied
from ROMs. The final results of each stage are permuted to the
desired order before being stored back into the memory banks.

The modular multiplier is designed as shown in Fig. 7.
The 64-bit multiplier has four pipeline stages. The 128-bit
multiplication result is then split into four 32-bit components
a, b, c, and d . After going through the addition, shifting, and
subtraction as in Fig. 7, a 64-bit modular multiplication result
is obtained.

C. Large-Number Multiplier

The high-level architecture of the large-number multiplier
is shown in Fig. 8. It consists of two FFT processors for
computing the FFTs of the two inputs a and b. Then a

Fig. 8. Architecture of the large-number multiplier.

component-wise product is performed on the two FFT results.
Subsequently, we reuse one of the FFT processors to perform
the IFFT operation. The operations in each step are described
as follows.

1) Data Input: The input data samples from a and b are
reshuffled and stored in the corresponding addresses in
the memory banks.

2) FFT: Two 64 000-point FFT processors are used in the
architecture. To reduce the hardware needed, both FFT
processors share the twiddle factor ROMs. They also
share the control signals generated by the Controller.

3) Component-Wise Product: For the pointwise product,
we reuse the modular multipliers in the FFT processor.
Specifically, at the fourth stage of FFT(a), instead of
multiplying by constant 1, the result of FFT(b) is fed to
the modular multipliers. Effectively this computes the
component-by-component pointwise product of FFT(a)
and FFT(b). We thus avoid adding another set of multi-
pliers into the design and thereby save chip area.

4) IFFT : One of the FFT processors is reused for the IFFT
computation. This reuse effectively saves about one-third
of the chip area.

5) Resolve Carries: A customized Resolve Carries unit
produces the final result of large-number multiplication.

D. Resolve Carries

To further explain the process of resolving carries, we
take the 768 000-bit Strassen’s multiplier as an example. But
note that the design approach is general. We first decompose
each 768 000-bit multiplicand into 32 000 groups of 24-bit
numbers. Each 24-bit number is then extended to a 64-bit data
sample. Owing to the convolution property of multiplication,
the multiplication results are expected to be 64 000 groups of
24-bit numbers, or up to 1 536 000 bits, which leads to the
64 000 FFT in the design. Following Strassen’s algorithm, the
IFFT output is 64 000 samples of 64-bit data. The Resolve
Carries unit must then obtain the actual 1 536 000 bits results
from the IFFT output data.

Since each group of data is supposed to be 24-bits, each
64-bit value in the IFFT output is actually overlapped by

WANG et al.: VLSI DESIGN OF A LARGE-NUMBER MULTIPLIER FOR FHE 1885

Fig. 9. Two-stage pipeline carry resolving unit.

40 bits with the next value. For our design, we extend
the 64-bit numbers into a 72-bit format having three blocks of
24-bit numbers. The alignment among the words is illustrated
in Fig. 9.

Recall that the IFFT module outputs 16 data samples per
clock cycle. A total of 64 000 data values are output in 4096
consecutive cycles. Therefore, we must resolve the carries
quickly to match the pipeline throughput. A traditional ripple-
carry adder is again too slow to add 16 numbers in a row.
Thus, a hierarchical carry-look-ahead scheme is employed
as in Fig. 9. The algorithm has two steps. It first adds
the words in parallel, followed by resolving the carry chain
in one cycle [27]. The carry look-ahead function is shown
in (13)

carry = ((c << 1) + carryin + critical) XOR critical (13)

where critical[i] and c[i] are two Boolean arrays and carryin
is a single carry bit from the previous word. If zi is critical
(zi = MAX_INT), the i th bit of critical[i] is set, while the
i th bit of c[i] is set if zi always generates a carry (zi >
MAX_INT). For a 24-bit word, MAX_INT = 0 xFFFFFF. For
a best performance, we use a two-stage pipeline design for the
Resolve Carries unit as shown in Fig. 9. The carry-look-ahead
scheme and two-stage pipeline enable the Resolve Carries unit
to match the throughput of the FFT/IFFT processor output data
at a high clock speed.

V. EXPERIMENTAL RESULTS

The design of the large-number multiplier was implemented
using System Verilog. The multiplier ASIC was synthesized
for 90-nm technology, using the Synopsys Design Compiler,
the DesignWare building block libraries, and IBM 90-nm
CMOS 9 FLP standard-cell library. Table II lists the synthesis
results for the radix-16 unit, the 64 000 FFT processor, and the
multiplier. The number of logic equivalent gates (two-input
NAND) of the chip is 20.6 M gates. A large portion of the
chip area is occupied by the memories. For the large-number
multiplier, we have two FFT processors, each of which has

TABLE II

SYNTHESIS RESULTS USING 90-nm CMOS TECHNOLOGY

(IBM 90-nm 9 FLP PROCESS)

TABLE III

SYNTHESIS RESULTS ON ALTERA’S STRATIX-V FPGA

TABLE IV

PERFORMANCE COMPARISON BETWEEN THE

PROPOSED DESIGN, CPU, AND GPU

16 dual port SRAM banks of size 4096 × 64 bits. The esti-
mated area of each SRAM is about 1.07 mm2, so the total area
for the SRAMs is about 34.24 mm2. In addition, the FFT/IFFT
processors also require a set of 30 ROMs to store the twiddle
factors. Each ROM is 4096 × 64 bits with an estimated chip
area of 0.154 mm2. So the total area for the ROMs is about
4.63 mm2. If combined, the total area for the RAMs and
ROMs is about 38.87 mm2, which occupies 85.8% of the
chip. Thus, the architecture of the large-number multiplier
is memory-constrained. In fact, the optimized radix-16 units
occupy just 5% of the entire multiplier area. The proposed
multiplier was also synthesized using Altera Quartus-II synthe-
size tool. After place and route, the design is implemented on
Altera’s Stratix-V 5SGXMABN1F45I2 field-programmable
gate array (FPGA). The resources utilized by the multiplier
are listed in Table III.

We validated the simulation results for the hardware mul-
tiplier against a software implementation using the GMP
library [4]. Random numbers generated by C code were used
as test vectors. The results match perfectly, thus showing that
the architecture as well as the synthesized design of the large-
number multiplier operates correctly.

For performance evaluation, we compare the throughput
of our multiplier with the software implementations on CPU
and GPU. The 768 000-bit multiplication was evaluated on a
high-end server with an Intel Xeon X5650 processor running
at 2.67 GHz with 24 GB RAM using the GMP library,
which supports arbitrary precision arithmetic, and is carefully

1886 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014

designed using fast algorithms and highly optimized assembly
code, as necessary [4]. The execution time on the CPU is
about 6 ms. The same Strassen’s multiplication algorithm was
also implemented on an NVIDA Tesla C2050 GPU, which has
448 cores running at 1.15 GHz as in [5]. It takes 0.0657 ms
to transfer a 786 432-bit number from Xeon processor to the
GPU or transfer a 786 432-bit number from the GPU back to
the Xeon processor. When the data has been transferred to the
GPU, we measure the runtime of the GPU kernel, and then
transfer the results back to the GPU. The GPU kernel execu-
tion time is 0.42 ms, excluding the data transfer time between
CPU and GPU. For our hardware implementation, it takes
4096 cycles to load the samples into SRAMs, eight stages
of FFT/IFFT with 4119 cycles per stage, and 4098 cycles to
read the multiplication results out of the memory. At 200 MHz,
the execution time of the VLSI implementation is 0.206 ms,
which is twice as fast as the GPU and 29 times faster than
the CPU as listed in Table IV. More importantly, the proposed
VLSI implementation uses approximately 0.97 W, which is
significantly less than either the GPU or CPU, making it more
suitable for scaling up.

For comparison, Yazaki and Abe [20] implemented a
32 768-bit FFT-based multiplier in hardware in an area of
9.05 mm2 using a 0.18-μm process. They achieved a runtime
1.02 ms for a 32 768-bit multiplication. Our multiplier handles
numbers 24 times larger and at 5 times the speed.

VI. CONCLUSION

In this paper, an efficient VLSI implementation of a large-
number multiplier was presented using Strassen’s FFT-based
multiplication algorithm. To the best of our knowledge, this is
the largest multiplier that has been implemented using VLSI
design. Because of memory constraints, a memory-based in-
place FFT architecture was used for the FFT processor. A set
of design optimization strategies were applied to improve the
performance and reduce the area of both the Radix-16 unit
and the Resolve Carries unit. The multiplier was synthesized
for 90-nm technology with an estimated core area 45.3 mm2.
Experimental results showed that the proposed multiplier was
about 2 times faster than GPU and 29 times faster than CPU,
and its power consumption was less than 1 W.

REFERENCES

[1] R. Rivest, L. Adleman, and M. Dertouzos, “On data banks and privacy
homomorphisms,” Found. Secure Comput., vol. 32, no. 4, pp. 169–178,
1978.

[2] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annu. ACM Symp. Theory Comput., Jun. 2009, pp. 169–178.

[3] C. Gentry and S. Halevi, “Implementing Gentry’s fully-homomorphic
encryption scheme,” in Advances Cryptology–EUROCRYPT (Lecture
Notes in Computer Science). New York, NY, USA: Springer-Verlag,
2011, pp. 129–148.

[4] (2010). The GNU Multiple Precision Arithmetic Library
[Online]. Available: http://gmplib.org/

[5] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Accelerating
fully homomorphic encryption using GPU,” in Proc. IEEE Conf. HPEC,
Sep. 2012, pp. 1–5.

[6] A. Cohen and K. Parhi, “GPU accelerated elliptic curve cryptography
in GF(2m),” in Proc. 53rd IEEE Int. MWSCAS, Aug. 2010, pp. 57–60.

[7] X. Zhang and K. Parhi, “High-speed VLSI architectures for the AES
algorithm,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12,
no. 9, pp. 957–967, Sep. 2004.

[8] M.-D. Shieh, J.-H. Chen, H.-H. Wu, and W.-C. Lin, “A new modular
exponentiation architecture for efficient design of RSA cryptosystem,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 9,
pp. 1151–1161, Sep. 2008.

[9] N. Emmart and C. C. Weems, “High precision integer multiplication
with a GPU using Strassen’s algorithm with multiple FFT sizes,” Parallel
Process. Lett., vol. 21, no. 3, pp. 359–375, Jul. 2011.

[10] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra, “Efficient exact
geometric computation made easy,” in Proc. 15th Annu. Symp. Comput.
Geometry, 1999, pp. 341–350.

[11] C. K. Yap and V. Sharma, Robust Geometric Computation. New York,
NY, USA: Springer-Verlag, 2008.

[12] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap, “A core library for
robust numeric and geometric computation,” in Proc. 15th Annu. Symp.
Comput. Geometry, 1999, pp. 351–359.

[13] C. Gentry, “A fully homomorphic encryption scheme,”Ph.D. dis-
sertation, Dept. Comp. Sci., Stanford Univ., Stanford, CA, USA,
2009.

[14] A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers
by automatic computers,” in Proc. USSR, 1962, pp. 293–294.

[15] D. Knuth, The Art of Computer Programming, vol. 2. Reading, MA,
USA: Addison-Wesley, 2006.

[16] A. Schönhage and V. Strassen, “Schnelle Multiplikation Großer Zahlen,”
Computing, vol. 7, no. 3, pp. 281–292, 1971.

[17] P. Montgomery, “Modular multiplication without trial division,” Math.
Comput., vol. 44, no. 170, pp. 519–521, 1985.

[18] G. D. Sutter, J.-P. Deschamps, and J. L. Imaña, “Modular multiplication
and exponentiation architectures for fast RSA cryptosystem based on
digit serial computation,” IEEE Trans. Ind. Electron., vol. 58, no. 7,
pp. 3101–3109, Jul. 2011.

[19] S. Yazaki and K. Abe, “VLSI design of Karatsuba integer multipliers
and its evaluation,” IEEE Trans. Electron., Inf. Syst., vol. 128, no. 2,
pp. 220–230, Feb. 2008.

[20] S. Yazaki and K. Abe, “An optimum design of FFT multi-digit multiplier
and its VLSI implementation,” Bull. Univ. Electro-Commun., vol. 18,
no. 1, pp. 39–45, 2006.

[21] K. Kalach and J. P. David, “Hardware implementation of large number
multiplication by FFT with modular arithmetic,” in Proc. 3rd Int. IEEE-
NEWCAS Conf., Jun. 2005, pp. 267–270.

[22] J. Solinas, “Generalized mersenne numbers,” Blekinge College Technol.,
Karlskrona, Sweden, Tech. Rep. 06/MI/006, 1999.

[23] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Math. Comput., vol. 19, no. 90, pp. 297–301,
1965.

[24] L. Jia, Y. Gao, and H. Tenhunen, “A pipelined shared-memory architec-
ture for FFT processors,” in Proc. 42nd IEEE Midwest Symp. Circuits
Syst., vol. 2. Aug. 1999, pp. 804–807.

[25] L. Johnson, “Conflict free memory addressing for dedicated FFT hard-
ware,” IEEE Trans. Circuits Syst. II, Analog Dig. Signal Process.,
vol. 39, no. 5, pp. 312–316, May 1992.

[26] H. Lo, M. Shieh, and C. Wu, “Design of an efficient FFT processor for
DAB system,” in Proc. IEEE ISCAS, vol. 4. May 2001, pp. 654–657.

[27] N. Emmart and C. Weems, “High precision integer addition, subtraction
and multiplication with a graphics processing unit,” Parallel Process.
Lett., vol. 20, no. 4, pp. 293–306, Jun. 2010.

Wei Wang received the B.E. degree from Shandong
University, Jinan, China, in 2007, and the M.E.
degree from Tsinghua University, Beijing, China, in
2010. He is currently pursuing the Ph.D. degree from
the Electrical and Computer Engineering Depart-
ment, Worcester Polytechnic Institute, Worcester,
MA, USA.

His current research interests include circuit and
system designs for fully homomorphic encryption
and RSA cryptosystems.

WANG et al.: VLSI DESIGN OF A LARGE-NUMBER MULTIPLIER FOR FHE 1887

Xinming Huang (M’01–SM’09) received the Ph.D.
degree in electrical engineering from the Virginia
Institute of Technology, Blacksburg, VA, USA, in
2001.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineer-
ing, Worcester Polytechnic Institute, Worcester, MA,
USA. He was a Member of Technical Staff with
the Wireless Advanced Technology Laboratory, Bell
Labs of Lucent Technologies, Murray Hill, NJ, USA,
from 2001 to 2003. His current research interests

include circuits and systems, with emphasis on reconfigurable computing,
wireless communications, video processing, and secure embedded systems.

Niall Emmart received the B.S. degree in pure
mathematics from the University of Massachusetts,
Amherst, MA, USA, in 1992, where he is currently
pursuing the Ph.D. degree in computer science with
a focus on GPGPU computing.

He ran Yrrid Software, from 1992 to 2012, a small
firm focusing on legacy system integration with the
web.

Charles Weem received the B.S. (Hons.) and M.A.
degrees from Oregon State University, Portland,
OR, USA, in 1977 in 1979, respectively, and the
Ph.D. degree from the University of Massachusetts,
Amherst, MA, USA, in 1984.

He is a Co-Director of the Architecture and
Language Implementation Laboratory, University of
Massachusetts, where he is an Associate Profes-
sor. His current research interests include advanced
architectures for media and embedded applications,
GPU computing, and high precision arithmetic.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

