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Abstract—Drivers’ failure to observe traffic signs, especially
the stop signs, has led to many serious traffic accidents. Video-
based traffic sign detection is an important component of driver-
assistance systems. In earlier systems, simple color and shape-
based detection methods have been broadly applied. Recently,
feature-based traffic sign detection algorithms are proposed to
obtain more accurate results, especially when combined with
the previous two. The Speeded Up Robust Features (SURF)
algorithm is an outstanding feature detector and descriptor with
rotation and illumination invariance. Unfortunately, due to its
computational complexity, the application of SURF algorithm
remains limited in real-time systems. In this paper, we present a
real-time SURF-based traffic sign detection system by exploiting
parallelism and rich resources in FPGAs. The proposed hardware
design is able to accurately process video streams of 800 × 600
resolution at 60 frame per second.

Index Terms—Driver-assistance system, traffic sign detection,
SURF, FPGA

I. INTRODUCTION

Video-based driver-assistance system is becoming an indis-
pensable part of smart vehicles. It monitors and interprets the
surrounding traffic situation, which greatly improves driving
safety. Related computer vision algorithms have been studied
extensively and producing inspiring results in this area. A
variety of methods have been applied to driver-assistance
applications such as obstacle detection [1], lane detection [2],
parking assistance [3], etc. In addition, researchers have been
paying the same, if not more, attention to the realization of
real-time algorithms in embedded driver-assistance systems
with limited resources and power [4][5].

In driver-assistance systems, traffic sign detection is among
the most important and helpful functionalities. Many traffic
accidents happen due to drivers’ failure to observe the road
traffic signs, such as stop signs, do-not-enter signs, speed
limit signs, and etc. Three kinds of methods are often applied
to perform road traffic sign detection – color-based, shape-
and-partition-based, and feature-based algorithms [6]. Traffic
signs are designed with unnatural color and shape, making
them conspicuous and well-marked. Color-based and shape-
based method are the initial and straightforward ones to be
used for sign detection [7][8]. However, these methods are
sensitive to the environment. Illumination change and partial
occlusion of traffic signs seriously degrade the effectiveness
of these methods. The third type of methods is based on
feature extraction and description. These algorithms detect and
describe salient blobs as features. The features usually stay

unaffected under illumination, position and partial occlusion
variance. Reported feature-based algorithms contain Scale
Invariant Feature Transformation (SIFT) [9], Histogram of
Oriented Gradient (HoG) [10], Haar-like feature algorithms
[11], etc.

Speeded Up Robust Features (SURF) [12] is one of the
best feature-based algorithms and has been widely used in
computer vision applications [13][14][15]. It extracts Hessian
matrix-based interest points and generates a distribution-based
descriptor, and is a scale- and rotation-invariant algorithm.
These features make it perfect for object matching and de-
tection. A matching result between standard stop sign and
natural image is shown in Fig. 1. The key advantage of SURF
is to use integral image for feature detection and description,
which greatly boosts the process efficiency. Even so, like other
feature-based algorithms, SURF is computationally expensive
and often results in very low frame rate. In order to employ
SURF for real-time applications in portable driver-assistance
systems, parallel processing architectures and platforms need
to be considered. By analyzing the parallelism during each
step of the SURF algorithm, we choose Field Programmable
Gate Array (FPGA) as the embedded platform because of
its rich resources for computations and convenient access to
local memories. Finally, we implement a SURF-based real-
time road traffic sign detection system on a Xilinx Kintex-7
FPGA with SVGA video input and output.

Figure 1. SURF matching example

This paper is organized as follows. Section 2 presents
SURF algorithm and an overview of its main steps and
functionalities. Section 3 introduces the hardware architecture
to implement the SURF algorithm on FPGA. In Section 4,
we present the experimental platform and results. Section 5
concludes our work.
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II. SURF ALGORITHM

This section overviews the SURF algorithm [12]. The algo-
rithm consists of three main steps: integral image generation,
interest point localization, and interest point description.

I∑ (P ) =

x∑
i=0

y∑
j=0

I(x, y) (1)

Integral image is one of the main advantages of SURF.
Integral image I∑ (P ) in P = (x, y) represents the sum of all
the pixels on the left and top of P as in (1). Integral image
is used in both the subsequent interest point detection and
description to obtain higher efficiency. Once integral image is
computed, it takes only 3 additions/subtractions to get the sum
of the pixels intensities over an upright rectangular region (see
Fig. 2,

∑
= I∑ (D)− I∑ (C)− I∑ (B)+ I∑ (A)). Another

benefit is that the calculation time is independent of the box
size.

Figure 2. Functionality of integral image

SURF detector locates features based on the Hessian matrix.
The original definition of Hessian matrix is shown in (2),

H (P, s) =

[
Lxx (P, s) Lxy (P, s)
Lxy (P, s) Lyy (P, s)

]
(2)

where Lxx (P, s) denotes the convolution of Gaussian second-
order derivative in x−direction with input image in point P
at scale s, and similarly for Lxy (P, s) and Lyy (P, s). Simple
box filters using the integral image are used to approximate
the second-order Gaussian partial derivation, and yielding less
computation burden (see Figure 3). The problem thus reduces
from calculating Gaussian second-order derivative responses to
the box filter responses. Denoting the blob responses by Dxx,
Dyy and Dxy , then the determinant of the original Hessian
matrix in SURF is approximated as follows:

det(Happrox) = DxxDyy − (0.9Dxy)
2 (3)

where 0.9 is used to balance the Hessian determinant. In
order to achieve scale invariance, SURF applies box filters
of different sizes on the original image to search and compare
interest points. Box filters of different sizes construct the scale
space, which is divided into octaves. Table 1 gives box filter
edge sizes of the first two octaves and corresponding Gaussian
kernels scales. The local maxima of box filter responses

larger than a predefined threshold in image and scale space
are selected as interest point candidates. A non-maximum
suppression in a 3× 3× 3 neighborhood is applied to screen
out “false” candidates with position correction elements above
0.5 and localize interest points.

Figure 3. The left half shows Gaussian second order partial derivative in x-
and xy- direction; the approximation for them - box filters, are presented in
the right half, respectively. The grey regions are equal to 0.

Table I
BOX FILTER EDGE SIZES OF THE FIRST TWO OCTAVES AND

CORRESPONDING GAUSSIAN KERNELS SCALES

Octave 1 2
Box filter size l 9 15 21 27 15 27 39 51
Gaussian kernel 1.2 2.0 2.8 3.6 2.0 3.6 5.2 6.8
scale s = 1.2 l

9

SURF builds an descriptor around the neighborhood of each
interest point. First, a square region of 20s-by-20s centered on
the interest pointis constructed along the dominant direction.
In order to keep it simple, the dominant directions of interest
points are set to be upright. The region is then divided into
4 × 4 smaller sub-regions with each window size 5s-by-5s
(sampling step s). For each of these sub-regions, Haar wavelet
responses (filter size 2s) are computed at 5 × 5 regularly
distributed sample points. These responses are then weighted
by a Gaussian function (σ = 3.3s) centred at the interest point.
We use dx and dy to denote weighted Haar wavelet response
in horizontal direction and vertical direction. Each sub-region
generates a 4-D vector v = (

∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|). All

sub-regions are then concatenated into a vector, resulting in a
64-dimensional descriptor vector.

III. FPGA IMPLEMENTATION OF SURF
The SURF algorithm introduced in Section 2 is considered

as a high-speed, robust and accurate method to extract and
describe interest points of an image or a video frame. De-
scriptors of these key points could be used as pivotal features
of images and videos, and applied in many applications, such
as traffic sign detection, machine stereo vision, object tracking,
etc. However, the complexity of the algorithm itself leads to
frequent memory access and long computing latency, which
make the SURF algorithm difficult to be used in real-time
systems. On a dual-core 2.5 GHz processor, simulations of the
SURF Matlab code configured with interest point detection
at the first two octaves takes 1.38 seconds to detect and
describe all 284 feature points from an image of 800×600
resolution. More recently, an FPGA SoC architecture was
proposed and it achieved about 10 fps processing rate on a
Xilinx XC5VFX70 FPGA incorporating PowerPC-440 CPU



with floating-point processing units [16]. It was an approach of
hardware/software co-design with integral image generator and
fast-Hessian generator implemented by dedicated hardware,
and the rest of the algorithm was implemented using software
of PowerPC. But the frame rate is still unsatisfactory for real-
time systems such as traffic sign detection.

This section presents an FPGA-only architecture to imple-
ment the real-time SURF algorithm toward videos of 800×600
resolution at 60 fps. We will first present the overall system
architecture using data flow and state the limitation and ap-
proximation of the FPGA implementation. Then each function
module is described in detail.

A. Overall system architecture

We make every effort to follow the original SURF algorithm
as closely as possible. However, we still have to apply several
approximations for the hardware design. Firstly, traffic sign
usually occupies only a small part of a frame, which makes
most of interest points detected at the first two octaves with
small filter sizes. Based on this, the hardware architecture
computes the fast-Hessian determinants of image and detects
the interest points among them only at the first two octaves.
The current design is oriented towards videos of 800×600
resolution at 60 fps and it could be easily adapted to other
sizes. Secondly, as mentioned in Section 2, the dominant
direction of each interest point is set upright to simplify
calculation. Thirdly, we implement a modified descriptor using
larger, overlapping sub-regions to ensure better matching per-
formance. Finally, in order to make SURF suitable for FPGA-
only architecture, floating-point to fixed-point data conversion
is carefully conducted with small loss of precision. The
proposed FPGA-based SURF is implemented entirely in fixed-
point domain.
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Figure 4. Overall system block diagram

The overall system diagram is summarized in Fig. 4. The
FPGA-based SURF architecture is composed of 4 sub-modules
- Integral Image Generator, Interest Point Detector, Interest
Point Descriptor and Memory Controller Module. The input
is RGB format video with 40 MHz pixel rate. Integral Image
Generator converts the original data to gray integral image and
transfers it to Interest Point Detector and Memory Controller
Module. Interest Point Detector is aimed to find all the local
Fast-Hessian determinant maxima as interest points and to
obtain their index and scales. Memory Controller Module is

designed for writing and reading data through the SDRAM
interface. It stores the integral image and provides the integral
image of interest points surroundings to the Interest Point
Descriptor, which gets interest points descriptors from their
surroundings. In addition, a comparator module (not shown
because it is independent of SURF) matches the interest points
descriptors of the current frame with those of the traffic
sign images in the library to determine if a traffic sign is
detected. In the video output, the traffic sign is highlighted
before sending to the display. The details of each module are
explained below.

B. Integral image generation
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Figure 5. Integral image generation block diagram

Integral image generation module is the entry point of
the entire architecture. Its block diagram is shown in Fig.
5. It consists of 3 lower-level modules. The input video
data is in RGB format while all the SURF calculation is
based on gray scale. The RGB2GRAY unit is responsible for
this transformation. After that, row and column information
is produced according to control signals (vsync, hsync and
de) in Address Generation module. Finally, integral image is
calculated in the Accumulation module. Suppose the current
video position is D, its integral image can be quickly obtained
from ID = IA+ iD−IB−IC , where I denotes integral image
and i the gray value. A,B,C are the upper-left, upper and left
pixel of D, respectively. To reduce register uses, the integral
image of upper line is stored in Block RAM.

It is also noted that the video of integral image has the same
format with the original one. The only difference is that the
24-bit RGB information is replaced by a 28-bit gray integral
value.

C. Interest points detector

This module is designed to calculate fast-Hessian determi-
nants in all sample points at multi-scale and then find local
maxima at x, y and scale space as interest point candidates.
A non-maximum suppression is applied to these candidates to
screen out “false” interest points. Interest points detector is
divided into 3 blocks: Build_Hessian_Response, Is_Extreme
and Interpolate_Extremum. They are explained as follows.

1) Build_Hessian_Response: Build_Hessian_Response
block diagram is shown in Fig. 6. The largest filter size
among the first 2 octaves is 51. According to SURF algorithm,
integral image located in the rectangle of relative location
between (-26,-26) and (25,25) around sampling points are
needed to calculate responses of all box filter size of the
first 2 octaves. In our design, the initial sampling step is
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defined as 2 and octave 2 doubles that. Therefore, iterative
cycle is 4 lines. Calculation of filter response of octave 1
is carried out in line 1, 3, 5, 7, etc, while that of octave
2 in line 1, 5, 9, 13, etc. Based upon these analysis, this
block utilizes 56 Block RAMs of depth of 800 to buffer 56
integral image lines. Each Block RAM could be accessed
independently. 600 lines of integral image are stored into
the 56 Block RAMs iteratively. This architecture makes
the writing of incoming pixels and calculation of Hessian
response happen concurrently. For example, the incoming
integral image pixel of line 53 is stored into Block RAM 53
while the first 52 image lines are all available for Hessian
response calculation of octave 1 and octave 2. 100 MHz clock
frequency ensures the pace of 192 pixels (due to overlap, it
is actually 164 pixels) access for the response computation
of 6 different filter size. Pre_BRAM_FIFO buffers incoming
integral image at 40 MHz pixel rate and delivers the data at
100 MHz system clock. Hessian_Response_Computation is
the pipelined calculation unit of Hessian-matrix determinants.
To save DSP resources of FPGA, 192 pixels are serialized
into 6 groups of 32 pixels. Each group are necessary for
Hessian determinant calculation of one scale. Afterwards,
6 Hessian determinants are de-serialized and transferred to
Is-Extreme block in parallel.
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Figure 7. Is_Extreme block diagram

2) Is_Extreme: Is_Extreme unit (in Fig. 7) is aimed to find
local maxima of Hessian-matrix determinants as interest points
candidates. With the incoming Hessian-matrix responses of
first two octaves, local maxima are detected on layers of
filter size of 15, 21, 27 and 39. The block consists of
DataPrefetch, MaxJudge and control logic sub-blocks. For
each scale, DataPrefetch block uses 4 Block RAMs of depth
400 or 200 (400 for octave 1 and 200 for octave 2) to store
current Hessian-matrix determinant line and buffer last 3 lines.
When a determinant is stored in one Block RAM, the three
determinants on top of it are read. Two registers to buffer
the read data are refreshed concurrently. With 8 such blocks,
each determinant is sent to the downstream MaxJudge block
together with its 26 neighbors at x, y and scale space. Each
determinant is compared with its 26 neighbors as well as the
threshold to determine whether it is an interest point candidate
in MaxJudge block. To save clock cycles, this block also
performs the first and second order derivatives of Hessian-
matrix response calculation on x, y and scale simultaneously.
If it passes the local maximum and threshold check, their
derivatives are then stored into Derivative FIFO with their
locations and scales information. Control logic block generates
the address information and controls data flow of Is_Extreme
module.

3) Interpolate_Extremum: Non-maximum suppression is
carried out in this block. At the beginning, a task queue block
chooses entering data from one of the derivative FIFOs of filter
size 15, 21, 27 and 39 in Is_Extreme block. Then, the main
computation is to perform the matrix operation as in (4).

O = −H\D

= −

 Hxx Hxy Hxs

Hxy Hyy Hys

Hxs Hys Hss

 \
 Dx

Dy

Ds


= − 1

det(H)
·

 H∗
xx H∗

xy H∗
xs

H∗
xy H∗

yy H∗
ys

H∗
xs H∗

ys H∗
ss

 ·
 Dx

Dy

Ds


(4)

where D and H are first and second order derivatives of
Hessian-matrix determinant of current candidate.

Considering enormous resources demanding of division,

only fraction
1

det(H)
is computed to transform other arduous

division to multiplication. The absolute value of matrix O
elements should be less than 0.5 so that the local maximum is
accepted as interest point. The x, y and scale of interest points
are then adjusted accordingly.

D. Memory management unit

A frame of 800×600 resolution is too large for on-chip
Block RAM and can only be stored in on-board SDRAM.
Xilinx provides designers the 7 Series FPGA Memory Inter-
face Generator (MIG) to communicate with off-chip DDR3
SDRAM. It wraps the complex physical signals of DRAM
and provides an easily-access user interface. The user interface
runs at 200 MHz clock with 512-bit data width. In our design,
this unit manages all memory access, and plays the role of



a bridge between interest point detector and interest point
descriptor. It performs the following functions:

1) Grouping 8 successive integral image points and writing
them into the MIG and SDRAM. A clock domain
crossing FIFO is deployed to interface between 40 MHz
pixel rate to 200 MHz MIG data rate.

2) Generating the addresses of interest point surroundings
in the rectangle between (-13s, -13s) and (12s, 12s) with
interval s, where s is the scale. Then read command is
applied to MIG with desired pixels addresses. Due to
the single port property, we grant write command with
higher priority than read command.

3) When all the surroundings of an interest point, 26× 26
integral image pixels, are available, transferring them
to Interest Point Descriptor module serially with index
and scale information of current interest point. The
clock domain crossing between 200 MHz MIG UI clock
and 100 MHz system clock is also implemented by
independent clock FIFO.

E. Interest point descriptor
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Figure 8. Interest point descriptor block diagram

Unlike original SURF implementation, modified SURF cal-
culates descriptor from a square region with edge size of 24s.
Equally, this rectangle is split up to 16 sub-region. Each sub-
region is 9s×9s (sampling step s). Adjacent sub-regions have
overlap of 9×4 points. To perform modified SURF descriptor
computation, a 26× 26 matrix around interest point needs to
be extracted from the integral image to calculate the 2D Haar
wavelet transform at x and y direction. The wavelet filter size is
2×2 with interval s. This block buffers 3 lines of serial-coming
integral image pixels to calculate Haar wavelet response of the
central lines. After that, the 24×24 responses are reconstructed

as 16 9 × 9 sub-blocks. We use Gaussian mask (σ = 3.3s)
to weight Haar wavelet responses of sampling points in each
sub-block simultaneously. Gaussian mask of possible scales
has been pre-calculated and loaded to look up table during
the initial stage. After that, we sum dx, dy and |dx|, |dy| of
all 16 sub-regions respectively and get the pre-descriptor. The
pre-descriptor is organized as a 64 × 1 vector. Finally, the
pre-descriptor is Gaussian-scaled and normalized to get the
final descriptor for a precise matching result. An accumulation
unit is used to compute normalization factor. Fig. 8 shows
key design details, such as data flow and bus width, that are
important to achieve real-time performance.

F. Descriptor Comparator

After interest point descriptors calculation, the comparator
computes the similarity of current frame and pre-built traffic
sign libraries to determine whether a traffic sign is detected.
As an initial experiment, the system stores only stop signs
in the library using on-chip Block RAM. We choose 128
representative interest points in the standard stop sign image,
then calculate their descriptors for the library.

When the descriptor of an interest points enters this module,
the comparator reads descriptors of interest points in the
library for matching. The entering descriptor needs to be
compared with every descriptor in the library. The speed is
unacceptable if the match is conducted completely serially. As
a tradeoff between speed and resource use, the 128 descriptors
are divided into 8 independent groups. The groups are matched
with the current descriptor concurrently while 16 descriptors
in a group enter in pipeline mode. This pipeline architecture
reduces the processing time considerably.

The descriptor of each interest point is compared with 128
descriptors in the library, which produces a distance vector
with 128 values. For the subsequent interest points, only the
smallest distance to each descriptor in the library is retained.
After all the interest points descriptors are processed, this
module produce a vector with shortest distances to each of
the 128 library descriptor. These 128 values are then sorted
and the sum of the smallest 30 values is then compared with
the threshold. If the sum is less than the threshold, then a stop
sign is detected.

IV. RESULTS

We build the system on a Kintex-7 FPGA board shown in
Fig. 9. The video frames are sent to a Xilinx KC705 platform
through the AVNET video I/O board on the FMC connector.
FPGA detects traffic signs of every video frame and output
the video for display using the same adaptor.

Table 2 presents the design summary on Kintex 7 FPGA.
The maximum frequency is 125.92 MHz (the Xilinx memory
interface IP core runs independently at a separate 200 MHz
clock zone). All timing constraints are met. The test frame
rate is 60 fps of 800 × 600 resolution. The FPGA-SURF
implementation achieves real-time while producing the same
results in video stream as original CPU-based SURF, thus very
promising for future industry application.



Figure 9. Traffic sign detection system

Table II
DEVICE UTILIZATION SUMMARY

Resources Used Available Utilization
Number of Slices Registers: 108,581 407,600 26%
Number of Slice LUTs: 179,559 203,800 88%
Number of bonded IOBs: 173 500 34%
Number of RAM36s: 182 445 40%
Number of RAM18s: 80 890 8%
Number of DSP48s 244 840 29%

V. CONCLUSION

In this paper, we present a real-time implementation of the
Speeded Up Robust Features (SURF) algorithm for a traffic
sign detection on a Xilinx KC705 FPGA platform. Aiming
to reduce the computational complexity, parallel architecture
and data flow methods are applied in the system design.
Furthermore, the pipeline design effectively produces high
frame rate video processing. We have demonstrated traffic
signed detection using SURF on an FPGA with real-time
SVGA video at 60 fps.
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