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Public safety organizations increasingly rely on wireless technology to provide effective communications during emergency and
disaster response operations. This paper presents a comprehensive study on dynamic placement of relay nodes (RNs) in a disaster
area wireless network. It is based on our prior work of mobility model that characterizes the spatial movement of the first
responders as mobile nodes (MNs) during their operations. We first investigate the COverage-oriented Relay Placement (CORP)
problem that is to maximize the total number of MNs connected with the relays. Considering the network throughput, we then
study the CApacity-oriented Relay Placement (CARP) problem that is to maximize the aggregated data rate of all MNs. For both
coverage and capacity studies, we provide each the optimal and the greedy algorithms with computational complexity analysis.
Furthermore, simulation results are presented to compare the performance between the greedy and the optimal solutions for the
CORP and CARP problems, respectively. It is shown that the greedy algorithms can achieve near optimal performance but at
significantly lower computational complexity.
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1. Introduction

Public safety organizations increasingly rely on wireless tech-
nology to establish disaster area communication systems for
first responder operations. The reason mainly lies in the fact
that in catastrophe situations, wired network suffers from
low sustainability, high expense, slow deployment, and being
unadaptable to mobility. It is crucial for the replacement net-
work to be highly dynamic in accordance with the mission-
critical mobile users. Considering the first responders as
mobile nodes (MNs), the communication range of each MN
is often limited by its power constraint. Since MNs are highly
mobile within the disaster area, using infrastructureless ad
hoc networks would result in unexpected disconnection
for some MNs and frequent rediscovery of routing paths.
Therefore, mobile relay nodes (RNs) can be introduced to
relay the communications between MNs and the base station.
In this paper, we exemplify the movable RNs as vehicles
loaded with wireless communication equipment. The RNs
installed on wheeled vehicles move themselves to places
where the first responders are actively working in the field.

Although RNs form the backbone network, the number of
users each RN can support is often limited, because each
RN can only provide limited number of channels. Due to
the abundance of available bandwidth in disaster area, we
assume that each RN can set its bands at unused frequencies,
so that they do not interfere with each other. With MNs
and RNs defined, we term such a dynamic communication
system as a disaster area wireless network (DAWN), shown
in Figure 1.

In our prior work [1], we proposed a mobility model
to describe the movement pattern of MNs within a large
disaster area. Moreover, we studied the coverage problem
with no capacity constraints on RNs. In this paper, we
assume that each RN can support a limited number of users.
Then the problem to be studied is formulated as finding the
deployment of a given number of RNs such that: (1) most
MNs can be covered; (2) the network throughput can be
maximized.

We first study the COverage-oriented Relay Placement
(CORP) problem of deploying a set of M RNs to cover
a maximum number of MNs. As an initial setup, we
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Figure 1: A realistic scenario of DAWN.

consider the subproblem of Relay Assignment for COverage-
oriented Relay Placement (RA-CORP) which is, for any given
RNs’ placement, to obtain the optimal associations between
RNs and MNs using maximal matching method. Secondly,
the Greedy Incremental COverage (GICO) algorithm is
proposed to iteratively find the optimal location for the RN,
one at each time. Thirdly, we put forward the constrained
exhaustive search (CES) method to produce the optimal
solution to the CORP problem as a benchmark for the GICO
algorithm.

We also investigate the CApacity-oriented Relay Place-
ment (CARP) problem to maximize the total throughput
of DAWN. In this case, the Relay Assignment for CApacity-
oriented Relay Placement (RA-CARP) can be formulated
as the assignment problem and solved by the Hungarian
method [2]. Subsequently, we propose the Greedy Incremen-
tal Capacity (GICA) algorithm to find the RNs’ positions
one by one. In comparison, the optimal placement of all
RNs can be obtained by solving a complicated binary integer
programming problem but at very high computational
complexity.

The rest of this paper is organized as follows. In Section 2,
related work on disaster area networks, mobility model, and
base station placement in wireless networks is summarized.
In Section 3, we describe the mobility model of MNs
within the disaster area; Section 4 presents the problem
formulation of maximizing coverage for DAWN; Section 5
presents the technical approaches to solve the CORP prob-
lem. In Section 6, we present the problem formulation of
maximizing aggregate throughput for DAWN. Subsequently,
Section 7 presents the technical approaches to solve the
CARP problem; simulation results are given in Section 8,
followed by conclusions in Section 9.

2. Related Work

2.1. Disaster Area Wireless Network. Recently, many kinds
of wireless networks have been proposed to be applied
to disaster area relief operations. In [3], Hiroaki et al.
propose and evaluate a mobile ad hoc network system to
pursue the location and personal information of victims in
occurrence of disaster. In [4], Kanchanasut et al. describe an
emergency communication network platform designed for
collaborative simultaneous emergency response operations
using a combination of mobile ad hoc networking and a
satellite IP network operating with conventional terrestrial
internet. In [5], Malan et al. introduce a wireless infrastruc-
ture intended for emergency medical care, integrating low-
power, wireless vital sign sensors, and PC-class systems. In
addition, Zussman and Segall propose to construct an ad
hoc network of wireless smart badges in order to acquire
information from trapped survivors [6]. Besides, a novel
ballooned wireless mesh network [7] has been proposed
for emergency information system. All these works either
assume the majority network nodes are static or mention
little about their mobility model. Therefore, they fail in
constructing the disaster area communication system to
accommodate dynamic node configurations.

2.2. Macroscopic Mobility Model. In the recent years, several
different macroscopic mobility models have been proposed
and used for performance evaluation of networks. The fluid
mobility model [8–10] conceptualizes traffic flow of users
as the flow of a fluid, which models mobility in terms of
the mean number of users crossing the boundary of a given
area. Derived from transportation theory, these models give
an aggregated description of the movement of several users,
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ranging from street scale and city scale [11–13] to national
and international scales [12, 14]. Furthermore, two different
event-driven role-based mobility models are designed for
disaster area relief applications [15, 16]. However, these two
models only apply in small area with specific disaster sites.

2.3. Base Station Placement. There have been extensive
researches dedicated to base station placement problem in
wireless sensor networks. In [17], a multiobjective metric is
proposed for placing multiple base stations at the optimal
positions in wireless sensor networks, including coverage,
fault tolerance, energy consumption, and network delay. In
[18], Shi and Hou propose a (1-ξ) optimal approximation
algorithm to place base station so that the network lifetime
could be maximized. In [19], a polynomial time heuristic
is proposed for optimal base station selection within a
wireless sensor network. In [20], Pan et al. study base station
placement problem to maximize network lifetime. Most of
existing base station placement schemes are designed for
wireless networks with nodes at specific positions. Therefore,
they are not suitable for the proposed mobile scenarios.

3. System Modeling and Applications

3.1. Mobility Model. As shown in Figure 2, we discretize
the entire disaster area into squares, each square with a
Catastrophic Intensity (CI) value to indicate the severity of
damage. The squares that are yet to be cleared are called
raw squares. Those working-in-progress squares are also
termed as busy squares. Both raw squares and busy squares
are considered as uncleared squares. A square is said to be
cleared if the CI value is reduced to zero. Faced with the
mission of relieving such a large-scale disaster area, first
responders ought to start from places near the boundary of
the disaster area. The first responders do not stop working
in the square until it is cleared. When first responders
finish clearing a square, they split up and enter the adjacent
uncleared squares. More specifically, the diversification is
determined by the CI values and the current workforce in
the neighboring squares. If obstacles and unreachable spots
exist in the disaster area, as the stripe squares in Figure 2,
first responders will make a detour according to our mobility
model. As the first responders move deeper and broader
spatially, they can finally clear the entire disaster area. The
details of the mobility model can be referred to our prior
work [1].

3.2. Network Model. We consider a set of MNs moving
within the disaster area following the mobility model
described previously and assume that a fixed number of RNs
are ready for deploying to connect all MNs to the backbone
network. We assume that all MNs have small transmission
range r. The transmission region of an MN is defined as
the area in which all points are within distance r from the
MN. The ith MN ni can communicate bi-directionally with
the jth RN r j if the distance between them d(ni, r j) ≤ r.
In other words, ni is said to be covered by r j if r j is within
the transmission region of ni. RNs are able to communicate
with each other without distance constraints and they form

Cleared squares

Backbone network Backbone network

RN RN
RN

RN
Busy
squares

Raw squares Raw squares

Figure 2: A realistic scenario of DAWN in the middle of the disaster
area relief process. The squares with head portraits denote busy
squares. White squares denote cleared squares. Dark squares denote
disaster area yet to clear. Stripe squares represent unreachable spots
within the disaster area.

the backbone network. We assume that the relay stations
can be installed on vehicles and can quickly move to any
locations in the disaster area. We assume each MN occupies
one orthogonal channel associated with an RN for at least
one time unit to communicate bi-directionally. Since the
RN has a limited bandwidth, each RN can only support a
certain number of MNs. As a note, no interference issues
are considered in our network model due to abundant
unoccupied spectrum in the disaster area.

4. Maximizing Node Coverage:
Problem Formulation

We first provide the notation used in this section. Let Vi, j

denote the set of four vertices of square si, j . Ck denotes the
disk centering at rk with radius as r. A spot p is said to be
covered by Ck if d(p, rk) ≤ r, denoted as p ∈ Ck. A polygon
G is said to be covered by Ck if for any point p within G,
d(p, rk) ≤ r, denoted as G ⊂ Ck.

For the CORP problem, RNs should be placed at
positions to connect the maximum number of MNs. As MNs
follow a macroscopic mobility model, we choose to cover the
active (busy) squares instead of tracking the individual MNs.
In other words, if a busy square is covered, then all MNs
within the square are connected. We now claim Theorem 1
to show that a square can be covered by a circle if and only if
its four vertices are within that circle.

Theorem 1 (covering a polygon). Assume a polygon G =
(V ,E), where V and E denote the set of vertices and edges,
respectively. If for all vertex vi ∈ V , d(vi, rk) ≤ r, then G ⊂ Ck.

Proof. First of all, we need to acknowledge the fact that if
d(vi, rk) ≤ r, d(vj , rk) ≤ r, then for all p ∈ e(vi, vj)(e(vi, vj)
denotes the edge connecting vi and vj), d(p, rk) ≤ r (it
is obviously true since the edge is fully contained in one
circle if the two terminals are within the same circle). For
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Feasible area of a busy square

Figure 3: The feasible area to place the RN to cover one busy square.
The 4 circles demarcate one region around the square, which can be
approximated using a circle, shown as the shadow area.

Square 1 Square 2

Square 3

Figure 4: An example of three feasible circles mutually intersected,
representing, respectively, as the round area with skew strips,
horizontal strips, and points. The overlap area of the three circles
in the middle represents the placement region where one RN can
cover the three squares.

all p ∈ G, we have p ∈ e(p1, p2), where p1 ∈ e(vm1, vn1)
and p2 ∈ e(vm2, vn2). Since for all vi ∈ V , d(vi, rk) ≤ r, then
d(p1, rk) ≤ r and d(p2, rk) ≤ r. As a result, d(p, rk) ≤ r, and
G ⊂ Ck.

Based on Theorem 1, the region where one RN should
be placed to cover one busy square approximates to a circle
(shown as Figure 3), which is defined as the f easible circle
of each square. For every busy square in the DAWN, each
has a corresponding feasible circle. These feasible circles may
overlap each other and the intersected areas are referred as
shared regions. As shown in Figure 4, three feasible circles
are intersected and an RN placed in the shared region
(shaded area) can cover all 3 squares at the same time. In
a DAWN, these shared regions form a candidate set for RN
placement. In this paper, our analysis and simulations are
derived directly based on the concept of shared regions,
instead of using traditional Cartesian coordinates.

The CORP problem is defined as follows. Given a set of
busy squares, in which each contains some MNs inside with
transmission range r, andM RNs each with capabilityC, find

the optimal placement of the RNs, such that the maximum
number of MNs is covered.

5. Maximizing Node Coverage:
Technical Approaches

In this section, we first present a maximal matching method
to solve the RA-CORP problem if the RNs’ positions are
known. Secondly, we propose the GICO and CES algorithms
to tackle the CORP problem. In addition, we conduct
complexity analysis for both algorithms.

5.1. Relay Assignment for Fixed RN Positions (RA-CORP).
The RA-CORP problem tries to find the optimal association
between MNs and RNs. We use a bipartite graph to represent
the RA-CORP problem, and then use a sparse matrix-based
algorithm to find the maximum-sized matching between the
MNs and RNs.

Definition 1. Denote the feasible circle of the jth busy square
bj as f j . Assume fi1 , fi2 , . . . , fili have some area overlap, then
the intersection area is defined as a shared region that only
MNs within busy squares bik , (1 ≤ k ≤ li) can access, denoted
as sr( fi1 , fi2 , . . . , fili ), or simply as sri.

At any time, MNs are distributed within a set of
busy squares. The feasible circles of these busy squares
intersect and yield a set of shared regions SR =
{sr( fi1 , fi2 , . . . , fili ), 1 ≤ i ≤ KCA}, where KCA denotes
the cardinality of the set SR. A fixed number of RNs
{r1, r2, . . . , rM} are deployed at sr( f j1 , f j2 , . . . , f jl j ), 1 ≤ j ≤
M. Each RN can support at most C MNs within the
squares covered by the RNs. Then the RA-CORP problem is
formulated as

max
N∑

i=1

M∑

j=1

xi j ,

s.t. xi j ∈ {0, 1}, ∀i, j,
∑

j∈Hi

xi j ≤ 1, ∀i,

∑

i∈Qj

xi j ≤ C, ∀ j,

(1)

where xi j = 1 denotes that ni is connected with r j and 0
otherwise.Hi denotes the set of RNs that cover ni.Qj denotes
the set of MNs that are covered by r j . The second constraint
demands that each MN can at most connect to one RN. The
third constraint shows that at most C MNs can connect to
one RN.

Given MNs placed within busy squares, and RNs
deployed in some shared regions, the bipartite graph can be
generated as in Figure 5, where N denotes the number of
MNs. We prove that the maximal matching problem within
a bipartite graph shown as Figure 5 is tantamount to the RA-
CORP problem. In Figure 5, each MN can be assigned to any
subband of an RN that covers the busy square where the MN
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Figure 5: The bipartite graph example showing the association relationship between MNs and RNs.

is. Each line in Figure 5 shows that the corresponding MN
can be connected to the RN with one channel. As each node
of the bipartite graph can only be incident on one line, this
bipartite graph correctly satisfies the second constraint in (1).
Moreover, this bipartite graph extends each RN by C times
to obtain the matchings between MNs and channels of RNs;
this transformation successfully captures the third constraint
in (1). Therefore, the RA-CORP problem is equivalent to the
maximal-matching problem in a bipartite graph as shown in
Figure 5.

In this paper, we use a sparse matrix-based approach [21]
to find the maximal matching between MNs and channels of
RNs for each RN. This approach yields the optimal solution.
The complexity of finding the maximal matching within a
bipartite graph is O(M ×N2).

5.2. Relay Placement for Optimal Coverage (CORP). We first
claim Theorem 2 about complexity of the CORP problem.

Theorem 2. The CORP problem is NP-complete.

Proof. See Appendix A.

Then we perform aggregation for all shared regions to
reduce the solution space. Since the CORP problem is NP-
complete, we introduce a heuristic approach GICO to solve
the problem. To measure the performance of GICO, we also
give the optimal solution by employing the CES algorithm.

5.2.1. Aggregation. The aggregation procedure aims to
reduce the cardinality of the set of shared regions, thus
greatly reduces the solution space. Given a set of shared
regions SR, the aggregation proceeds as in Algorithm 1.
We say sr( fi1 , fi2 , . . . , fili ) belongs to sr( f j1 , f j2 , . . . , f jl j ) or
sr( f j1 , f j2 , . . . , f jl j ) contains sr( fi1 , fi2 , . . . , fili ) if {i1, i2, . . . ,

ili} ⊆ { j1, j2, . . . , jl j}. Let SR and SR denote the set
of all shared regions, and reduced set of shared regions,
respectively. |SR| denotes the cardinality of the set SR.

The procedure reduces the cardinality of the set of shared
regions by removing those that are contained by others.
The procedure reduces the solution space without losing
any coverage options. The reason is that RNs placed in sri
that contains sr j can cover busy squares {bj1 , bj2 , . . . , bjl j }.
Therefore, the set SR can contain all shared regions but with
the minimal cardinality.

5.2.2. Greedy Incremental Coverage (GICO). The GICO
algorithm is based on the following idea. Although it is not

Aggregation(SR)
1 SR ← sr1;
2 for i=2 to KCA

3 sign=0;
4 for j=1 to |SR|
5 if sr j belongs to sri
6 remove sr j from SR;
7 sign=1;
8 end if ;
9 if sri belongs to sr j
10 sign=2;
11 break;
12 end if ;
13 end for;
14 if sign==0 or sign==1
15 add sri to SR;
16 end if ;
17 end for;
18 return SR;

Algorithm 1: Aggregation procedure.

computationally feasible to perform an exhaustive search for
placing M RNs simultaneously, it is possible to choose an
optimal position to place one RN at a time. When the RN
is placed at each shared region, the optimal relay assignment
can be obtained by utilizing the maximal matching method.
The best shared region for placing one node can be found
by exhaustively searching all shared regions in SR. Once
the location for this RN is fixed, the next RN can be placed
following the same procedure. It should be noted that when
placing next RN, those previously placed RNs should be
jointly considered for relay assignment in order to compute
the coverage values. In this approach, the RNs are placed one
by one until all M RNs are deployed in the set ŜR.

As listed in Algorithm 2, GICO works as follows. ŜR
represents the shared regions that have been chosen to place
RNs. KCO denotes the cardinality of SR. It is possible that
ŜR contains multiple same shared regions, which means
that multiple RNs should be placed in that shared region.
At line 4, each shared region in the set SR is added into
the current set ŜR and the set S̃R is obtained. The proce-
dure at line 5 calculates and stores the maximal matching
based on RNs’ deployment according to the current S̃R.
RA-CORP(S̃R) denotes the calculated optimal maximal
matching while S̃R denotes the set of shared regions that
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GICO (SR)
1 ŜR ←∅;
2 for i=1 to M
3 for j=1 to KCO

4 S̃R ← ŜR + S R j

5 valuej ←RA-CORP(S̃ R̃)
6 end for;
7 [maximum, index]=Max(value);
8 ŜR ← ŜR + S Rindex;
9 end for;
10 return ŜR;

Algorithm 2: GICO.

each contains one RN. After executing the procedure of lines
4 and 5 for KCO times, the best next shared region to place
one RN is found (line 7) and added to the set ŜR (line 8).
Therefore, after greedily choosing RN placement one by one
for M times, we can finally obtain the solution.

5.2.3. Constrained Exhaustive Search (CES). In order to
obtain the optimal solution as a benchmark for our GICO
algorithm, we need to search all possible combinations
of the shared regions. However, even after employing the
aggregation procedure to reduce the size of solution space,
the complexity for searching the optimal solution could still
be as high as (KCO)M. Therefore, we resort to devising the
CES algorithm to further reduce the solution space by adding
one constraint to the combinations of shared regions. The
constraint is that for each set of M RN placements, each RN
should cover at least one MN based on the RA-CORP results.
In particular, the number of RNs placed in one shared region
times RNs’ capability should not exceed the total number of
MNs in those busy squares that are covered by the RNs by
more than C, shown as

Ni
RN × C ≤

ili∑

j=i1
N

j
MN + C, (2)

whereNi
RN denotes the number of RNs placed at sri andN

j
MN

denotes the number of MNs in the busy square bj .

5.3. Complexity Analysis. We first discuss the complexity
of the aggregation procedure. Based on Algorithm 1, the
procedure between line 5 to line 12 is iterated (KCA−1)×KCO
times, and the procedure between line 14 to line 16 is iterated
KCA − 1 times. As neither KCO nor KCA is influenced by N ,
the complexity for the aggregation procedure is O(1).

Secondly, we analyze the complexity of GICO. Based
on Algorithm 2, the complexity of the GICO algorithm is
O(M2N2KCO), because the procedure from line 4 to line 5 is
iterated MKCO times, and the worst case complexity for the
maximal matching method is O(MN2).

For CES, the complexity analysis is more complicated.
According to the constraint in (2), each shared region cannot
host more than a limited number of RNs. Therefore, we

assume on average each shared region can host ε (1 ≤ ε ≤
M) RNs, as shown in

ε = 1
KCO

KCO∑

i=1

⎡
⎢⎢⎢

∑ j=ili
j=i1 N

j
MN

C

⎤
⎥⎥⎥
. (3)

In other words, the list of shared regions can be extended
to a longer one with length εKCO, on which each shared
region can host at most one RN. As the worst case complexity
for the maximal matching method is O(MN2), the compu-

tation complexity for CES can be stated as O(MN2
(
εKCO

M

)
).

Now we claim that the complexity of the CES algorithm is
higher than GICO, as shown in Theorem 3.

Theorem 3 (complexity of GICO and CES). The complexity
of the GICO algorithm is lower than the complexity of the CES
algorithm.

Proof. As already explained, the complexity of GICO
is O(M2N2KCO) while the complexity for CES is

O(MN2
(
εKCO

M

)
). We can tell that KCO has little relation

with N , while M is roughly linearly related with N , that
is, M = λN(1/N ≤ λ ≤ 1), because the more MNs, the
more channels are required to access them to the backbone
network. Then we can develop the ultimate form for the
complexity of GICO as

O
(
M2N2KCO

) = O
(
KCOλ2N4

) = O
(
N4
)
. (4)

By substituting ε in (5) with (3), the ultimate form for
the complexity of CES is developed as

O

⎛
⎝MN2

⎛
⎝
εKCO

M

⎞
⎠
⎞
⎠

= O
(
MN2 (εKCO)!

(εKCO −M)!M!

)

= O

⎛
⎝λN3

((
εKCO
M

)λ)N
⎞
⎠

= O

⎛
⎜⎜⎝N

3

⎛
⎜⎝

⎛
⎝ 1
M

KCO∑

i=1

⎡
⎢⎢⎢

∑ j=ili
j=i1 N

j
MN

C

⎤
⎥⎥⎥

⎞
⎠
λ⎞
⎟⎠

N⎞
⎟⎟⎠.

(5)

Obviously, the term (1/M)
∑KCO

i=1 	
∑ j=ili

j=i1 N
j
MN/C
 > 1.

Therefore, the complexity for GICO is less than the complex-
ity for CES.

6. Maximizing Aggregate Throughput:
Problem Formulation

In Section 4, we formulate the CORP problem, which
is aimed to maximize the number of MNs that can be
connected to the backbone network. However, the objective
of the CORP problem does not address the quality of service
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Centroid point o

Figure 6: An example to describe the centroid point of a shared
region. The intersection points of the shared region sr f1, f2, f3 are
points a, b, and c. Then the centroid point o of the triangle abc is
regarded as the position of any RN that is placed within SRf1, f2, f3 .

(QoS) requirements of individual links. In other words, the
deployment of RNs has to consider not only the coverage but
also the QoS performance with intelligent channel allocation.
Therefore, we put forward the CARP problem in the interest
of enhancing the QoS performance of DAWN.

To measure the throughput of individual links, we ought
to set the positions of RNs as exact Cartesian coordinates.
In particular, instead of defining the position of an RN as
a region, we specify its position as the centroid point of the
polygon, whose vertices are the intersection points of the arcs
of a region in counterclockwise order. An example is shown
in Figure 6. Let us denote the coordinates of the intersection
points of sri as {(xp, yp), 1 ≤ p ≤ ili}, the coordinates of
the centroid point as (xoi , yoi), where oi denotes the centroid
point of sri. Then the coordinates of the centroid point is
calculated as

xoi =
1

6A

⎡
⎣
ili−1∑

p=1

(
xp + xp+1

)(
xp yp+1 − xp+1yp

)

+
(
xili + x1

)(
xili y1 − x1yili

)
⎤
⎦,

yoi =
1

6A

⎡
⎣
ili−1∑

p=1

(
yp + yp+1

)(
ypxp+1 − yp+1xp

)

+
(
yili + y1

)(
yili x1 − y1xili

)
⎤
⎦,

(6)

where A denotes the area of the polygon formed by
connecting the intersection points in a counterclockwise
order, which can be calculated using

A = 1
2

[(
ili−1∑
p=1

xp yp+1 − xp+1yp

)
+
(
xili y1 − x1yili

)]
. (7)

Based on Shannon formula, the channel capacity of a link
can be expressed as (8) using path loss model

F =W × log2

(
1 +

PtGtGr(w/4π)2

dαPnoise

)
, (8)

where F denotes the capacity of the channel, W denotes the
bandwidth of the channel, d denotes the distance between
the transmitter and receiver of the link, α denotes the
path loss coefficient, Pt denotes the transmit power, Pnoise

denotes the noise power, Gt and Gr are the transmitter and
receiver antenna gains, respectively, w = c/ f denotes the
wavelength of the transmitted signal, f denotes the frequency
of the transmitted signal, c is the velocity of radio-wave
propagation in free space, which is equal to the speed of light.

Since MNs follow the macroscopic mobility model, we
resort to developing the two-dimensional integral (9) to
compute the throughput of the link between an MN and its
assigned RN. In (9), (xi, yi) denotes the coordinates of the
left downward vertex of the ith busy square bi. eik denotes
the throughput of the link between one MN in bi and one
RN placed at ok. L denotes the side length of each square

eik

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
L2

∫ xi+L

xi

∫ yi+L

yi
W

×log2

(
1 +

PtGtGr(w/4π)2

d
(
ok,
(
x, y

))α
Pnoise

)
dxdy :

i ∈ {k1, k2, . . . , klk
}

,

0 : i /∈
{
k1, k2, . . . , klk

}
.

(9)

The CARP problem is formulated as follows. Given N
MNs each with transmission range r that are distributed
within a set of busy squares and M RNs each with capability
C, find the optimal positions for the RNs such that the
aggregated throughput of all established links between MNs
and RNs are maximized.

7. Maximizing Aggregate Throughput:
Technical Approaches

In this section, we investigate the CARP problem of deploy-
ing a set of RNs to maximize the total throughput of DAWN.
We first consider the optimal relay assignment for fixed RN
positions, which can be solved using the Hungarian method.
On this basis, we propose the GICA approach to tackle the
CARP problem. In addition, since the CARP problem falls
into a binary integer programming formulation, the branch
and bound algorithm [22] is adopted to produce the optimal
solution as the benchmark for the GICA approach.

7.1. Relay Assignment for Fixed RN Positions (RA-CARP). At
any time, MNs are distributed within a set of busy squares.
The feasible circles of these busy squares intersect and yield a
set of shared regions SR = {sr( fi1 , fi2 , . . . , fili ), 1 ≤ i ≤ KCA}.
A fixed number of RNs {r1, r2, . . . , rM} are deployed at the set
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of centroid points {ouj}, 1 ≤ j ≤ M. Each RN can support
at most C MNs to access the network in the squares that it
covers. Now the RA-CARP problem is formulated as

max
N∑

i=1

M∑

j=1

ea(i)k( j)xi j ,

s.t. xi j ∈ {0, 1}, ∀i, j,
∑

j∈Hi

xi j ≤ 1, ∀i,

∑

i∈Qj

xi j ≤ C, ∀ j,

(10)

where xi j = 1 denotes that ni is connected with r j and 0
otherwise; a(i) denotes the index of the busy square where
ni is. k( j) denotes the index of the shared region where r j is
placed. The second constraint denotes that each MN can at
most connect to one RN. The third constraint shows that at
most C MNs can connect to one RN.

Given MNs placed within busy squares and RNs deployed
in some shared regions, the bipartite graph can be generated
as in Figure 5. It can be seen that for each MN-RN pair, there
are C edges each with a weight equal to the capacity value of
the corresponding link. Note that for those pairs that the RN
does not cover the MN, the edges are assigned weights equal
to 0. We now can generate a gain matrix g shown as

g =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g11 g12 · · · g1J

g21 g22 · · · g2J

: : :

: : :

gN1 gN2 · · · gNJ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (11)

where J = M × C and gi j = ea(i),k(	 j/C
). We now present the
Hungarian method [2] as follows.

Step 1. If g is not a square matrix, we have to augment g into
a square matrix by padding rows or columns with all zeros.

Step 2. Multiply the matrix g by −1.

Step 3. Subtract the minimum value of each row from row
entries.

Step 4. Subtract the minimum value of each column from
column entries.

Step 5. Select rows and columns across which you draw lines,
such that all zeros are covered and that no more lines have
been drawn than necessary.

Step 6. If the number of lines equals the number of rows,
choose a combination of zero elements from the modified
gain matrix such that the position of each chosen element
is incident on a unique row and column. Then the optimal
assignment result consists of the RN-MN pairs as represented
by the chosen elements in the modified gain matrix. If the
number of lines is less than the number of rows, go to Step 7.

GICA(O)
1 Ô ←∅;
2 for i=1 to M
3 for j=1 to KCA

4 Õ ← Ô + O j

5 valuej ←RA-CARP(Õ)
6 end for;
7 [maximum, index]=Max(value);
8 Ô ← Ô + Oindex ;
9 end for;
10 returnÔ;

Algorithm 3: GICA.

Step 7. Find the smallest element which is not covered by
any of the lines. Then subtract it from each entry which is
not covered by the lines and add it to each entry which is at
the intersection of a vertical and horizontal line. Go back to
Step 5.

7.2. Relay Placement for Maximal Aggregate Throughput
(CARP). We claim Theorem 4 about complexity of the
CARP problem.

Theorem 4. The CARP problem is NP-complete.

Proof. See Appendix B.

Since the CARP problem is NP-complete, we introduce a
heuristic approach GICA to solve the problem. To measure
the performance of GICA, we also present the optimal
method for the CARP problem.

7.2.1. Greedy Incremental Capacity (GICA). According to
Algorithm 3, the algorithm works as follows. Ô denotes the
set of centroid points that have been chosen to place RNs.
O denotes the set of centroid points of all shared regions. Ô

denotes the set of centroid points that have been chosen. Õ
denotes a current set of centroid points with each hosting
one RN. At line 4, each centroid point in O is added to Ô

and the set Õ is obtained. The procedure at line 5 calculates
and stores the total throughput yielded by the Hungarian
method based on Õ. RA-CARP(Õ) denotes the calculated
optimal association between MNs and RNs. After executing
the procedure of lines 4 and 5 for KCA times, the best next
centroid point to place one RN is found (line 7) and added to
Ô(line 8). Therefore, after greedily choosing centroid points
one by one for M times, we can finally obtain the set of
centroid points Ô to place RNs.

7.2.2. Optimal Solution to CARP Problem. We show that
the RA-CARP can be formulated as a binary integer pro-
gramming problem when RNs are placed at fixed positions.
Subsequently, the GICA method utilizes the Hungarian
method to greedily place one RN at an iteration. Therefore,
the solutions yielded by GICA cannot be guaranteed optimal
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because the RN assignment and placement are considered
separately. It would be natural to believe that only when
we search all solution space can the optimal solution be
produced.

Hereby we introduce two binary variables xi j and yjk.
xi j = 1 denotes that ni is connected with r j and 0 otherwise;
yjk = 1 denotes that r j is placed at the centroid point of
the kth shared region and 0 otherwise. Then we can jointly
formulate the CARP problem as

max
N∑

i=1

M∑

j=1

KCA∑

k=1

ea(i)k × xi j × yjk,

s.t. xi j ∈ {0, 1}, ∀i, j,
yjk ∈ {0, 1}, ∀ j, k,

M∑

j=1

xi j ≤ 1, ∀i,

N∑

i=1

xi j ≤ C, ∀ j,

KCA∑

k=1

yjk = 1, ∀ j,

M∑

j=1

KCA∑

k=1

yjk =M.

(12)

Since the objective term ea(i)k × xi j × yjk contains the
product of two variables xi j and yjk, it is difficult to solve.
According to [23], the product of multiple binary variables
x1x2 · · · xt can be substituted by a new variable z with
two constraints that ensure that z = 0 if there exists
i(1 ≤ i ≤ t), xi = 0, and z = 1 if for all i(1 ≤ i ≤
t), xi = 1. Therefore, we transform (12) into a binary integer
programming problem shown as

max
N∑

i=1

M∑

j=1

KCA∑

k=1

ea(i)k × zi jk,

s.t. zi jk ∈ {0, 1}, ∀i, j, k,

xi j + yjk − zi jk ≤ 1, ∀i, j, k,

xi j + yjk ≥ 2zi jk, ∀i, j, k,

xi j ∈ {0, 1}, ∀i, j,
yjk ∈ {0, 1}, ∀ j, k,

M∑

j=1

xi j ≤ 1, ∀i,

N∑

i=1

xi j ≤ C, ∀ j,

KCA∑

k=1

yjk = 1, ∀ j,

M∑

j=1

KCA∑

k=1

yjk =M.

(13)

Now the CARP problem is formulated as a binary integer
programming problem. We then utilize the branch and
bound algorithm to solve it. The algorithm searches for
an optimal solution by solving a series of LP-relaxation
problems, in which the binary integer requirement on the
variables xki j is replaced by the weaker constraint 0 ≤ xki j ≤ 1.
More details can be referred to [22].

7.3. Complexity Analysis. We first discuss the computation
complexity of the Hungarian method to assign MNs when
RNs are placed at fixed positions. According to [2], the
complexity is O(max {N ,C ×M}4).

Then we analyze the complexity of the GICA algorithm.
Let KCA denote the number of shared regions. Based on
Algorithm 3, as the procedure on lines 4 to 5 is iteratedMKCA
times, the computation complexity of the GICA algorithm is
O(
∑M

j=1 KCA max {N ,C × j}4) = O(N5).
The optimal method to the CARP problem uses the

branch and bound algorithm to solve a binary integer
programming problem. As the number of binary variables
is MNKCA +MN +MKCA, the worst case complexity for the

optimal method is O((2KCAλN+λN+λKCA)
N

). It is apparent that
the complexity of the GICA algorithm is much lower than
the optimal algorithm.

8. Simulation Results

In this section, we present the numerical results obtained
from the simulation using high level programming language.
For the CORP problem, we compare the performance of
the GICO algorithm and the CES algorithm. For the CARP
problem, we compare the performance of the GICA algo-
rithm and the optimal algorithm. It is illustrated that the two
greedy algorithms both merit close-to-optimal performance
and low complexity.

8.1. Simulation Setup. We present the simulation results in a
10× 10 square disaster area. The CI values of each square are
initially set as 5 or randomly chosen in the interval [1 10] in
Table 1. We implement two initial distributions of MNs: 40
MNs assemble at s1,1 or evenly divided at 4 corners s1,1, s10,1,
s1,10, s10,10. Thus we can obtain four different scenarios with
each of the two distributions of CI values when MNs follow
each of the two initial deployments. The bandwidth for each
channel is 1 Mbps. The area of each square is 1000×1000 m2.
Disaster relief efficiency coefficient is ξ = 1, which means
each first responder can clear 1 unit of CI per unit time. The
transmit power of MNs Pt is set to 1 watt. The transmitter
and receiver antenna gains Gt = Gr = 10. The frequency is
2.4 × 109 Hz. The noise power Pnoise is 1 × 10−8 watt. The
path loss exponent is set as α = 2. The transmission range r
of MNs is set as 1500 meters.

8.2. Simulation Results for Maximal Coverage. We introduce
coverage percentage as the measurement of coverage perfor-
mance, which is defined as the ratio of the number of covered
MNs to the total number of MNs working in the disaster area.
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Table 1: The initial configuration of CI values of squares in disaster area. The CI values are randomly chosen between the interval [1 10].

Square index 1 2 3 4 5 6 7 8 9 10

1 2 10 10 5 9 2 5 10 8 10

2 7 1 9 10 7 8 8 4 7 2

3 8 1 3 1 1 9 7 4 10 1

4 5 4 8 8 2 5 5 7 8 8

5 3 7 7 2 2 5 10 4 6 3

6 8 3 6 7 9 10 6 2 2 3

7 9 3 9 3 10 4 2 3 7 5

8 4 9 6 6 10 3 8 8 4 6

9 1 1 6 8 10 2 6 5 1 4

10 2 8 4 6 2 7 3 7 7 8

Figure 7 shows the covering percentage of four scenarios
for the entire disaster area relief process. It is clear that
GICO performs very close to the optimal CES algorithm.
In addition, results of all four scenarios share a similarity;
the covering percentage is quite high during both initial and
final periods (equal to 1), while lower during the middle
of the disaster area relief process. The reason is that in the
middle of the process, all the MNs are working in many
widely distributed busy squares within the disaster area, thus
the covering percentage is low due to limited covering range
of RNs. On the other hand, in both initial and final periods,
MNs are located in only a few spatially close squares, which
renders covering the MNs an easy task as long as the channel
resources are abundant. It is also worth pointing out that
results from Figure 7(c) vibrate more dynamically than other
3 subfigures. This phenomenon shows that the number of
busy squares is relatively small during the disaster area relief
process if the first responder starts from one location and the
CI values are random.

Next, in Figure 8, we look at the average covering
percentage over the entire disaster area relief process for four
scenarios when the capability of each RN changes. As can be
observed, both algorithms yield better coverage performance
if each RN can support more MNs. This is because more
channel resources brought by RNs can accommodate more
MNs. In addition, it is worth mentioning that as the
capability of RNs is enlarged, less improvement is rendered
for the covering percentage. The reason is that when one
RN can cover more MNs, less uncovered MNs are left to
boost the covering percentage in the future. In the end, it
is clear that the GICO algorithm produces close-to-optimal
solutions.

In Figure 9, we compare the performance of GICO
and CES in terms of the average covering percentage over
the entire disaster area relief process when the number of
RNs changes. It is clearly shown that the GICO algorithm
produces close-to-optimal solutions. As expected, in all four
scenarios, both GICO and CES yield better performance
in terms of average covering percentage as the number of
RNs increases. This can be explained by the fact that more
channel resources brought by RNs can accommodate more
MNs. The coverage percentage asymptotically approaches

1 when the number of RNs becomes more than 6 for
one starting location and 10 for 4 starting locations. By
comparing the 4 subfigures, we can point out that the two
curves corresponding with the scenarios that MNs start from
1 corner rises more sharply than the curves demonstrating
scenarios that MNs start from 4 corners. The rationale is that
during early periods, when MNs start from 4 corners, MNs
disperse quickly to more squares than the case starting from
a single location. Then limited RNs would produce better
performance with MNs more crowded. Therefore, when RNs
are very limited, it is preferable to start the MNs from 1
corner for coverage-oriented DAWN.

8.3. Simulation Results for Maximal Throughput. In
Figure 10, we look at the average total throughput over the
entire disaster area relief process for four scenarios when
the number of RNs changes. As expected, it can be noted
that both algorithms yield better performance in terms of
total link throughput when the number of RNs increases,
which is due to the fact that more RNs can accommodate
more MNs or produce more reliable links. In addition, it is
worth mentioning that as the capability of RNs increases,
less improvement is rendered for the total link throughput.
This is because when the capacity of channels is larger,
less chances are given for those uncovered MNs or MNs
with unreliable links to improve the total throughput.
By comparing the 4 subfigures, we can see that when the
capability of RNs is small, GICA produces better results for
the scenarios that MNs start from 1 corner than that of all
MNs starting from 4 corners. This is because during early
periods, when MNs start from one corner, MNs expand
less quickly to more squares than the scenarios that MNs
start from 4 corners. Therefore, when the capability of RNs
is very limited, it is preferable to start MNs from 1 corner
for capacity-oriented DAWN, too. In the end, it is easily
seen that the GICA algorithm produces close-to-optimal
solutions.

Next, in Figure 11, we look at the average total through-
put over the entire disaster area relief process when the
capability of RNs changes. It can be noted that for four
scenarios, both algorithms yield better performance in terms
of total link throughput when each RN can support more



EURASIP Journal on Wireless Communications and Networking 11

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

C
ov

er
in

g
pe

rc
en

ta
ge

1 3 5 7 9 11 13 15 17 19 21

Time

GICO
CES

(a) At initial stage, 40 MNs are in s1,1 at time 0, and CI values of all
squares are 5

0.5

0.6

0.7

0.8

0.9

1

1.1

C
ov

er
in

g
pe

rc
en

ta
ge

1 3 5 7 9 11 13 15

Time

GICO
CES

(b) At initial stage, 40 MNs are evenly deployed in s1,1, s1,10, s10,1, s10,10

at time 0, and CI values of all squares are 5

0.9

0.95

1

1.05

C
ov

er
in

g
pe

rc
en

ta
ge

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Time

GICO
CES

(c) At initial stage, 40 MNs are in s1,1 at time 0, and CI values of all
squares are randomly chosen between 1 and 10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1
C

ov
er

in
g

pe
rc

en
ta

ge

1 3 5 7 9 11 13 15 17 19

Time

GICO
CES

(d) At initial stage, 40 MNs are evenly deployed in s1,1, s1,10, s10,1, s10,10

at time 0. CI values of all squares are randomly chosen between 1 and 10

Figure 7: The covering percentage over the entire disaster area relief process in four scenarios. r = 1.5L, C = 10, M = 5.

MNs. The rationale behind is that more channel resources
brought by RNs can accommodate more MNs or produce
more reliable links. In addition, it can be observed that
as the capability of RNs is enlarged, less improvement is
rendered for total link throughput. This is because when one
RN can cover more MNs, less uncovered MNs are left. By
comparing the 4 subfigures, it can be found that although the
algorithms yield similar results for 4 different scenarios when
the capability of RNs is small, the throughput performance
converges at a higher value as the capability of RNs increases
for scenarios that MNs start from 1 corner than scenarios
that MNs start from 4 corners. This phenomenon stems from
the fact that when MNs start from 1 corner, a smaller average

number of busy squares are generated over the disaster
relief process. Even when the capability for RNs is high,
the network throughput performance still suffers from wide
distribution of the MNs for scenarios that MNs start from 4
corners. Therefore, it is preferable to start MNs from 1 corner
for capacity-oriented DAWN regardless of the capability of
RNs. In the end, as can be observed, the GICA algorithm
produces close-to-optimal solutions.

9. Conclusion

In this paper, we study the dynamic deployment of mobile
relays in DAWN to enable and improve the communications



12 EURASIP Journal on Wireless Communications and Networking

0.2

0.4

0.6

0.8

1

1.2

C
ov

er
in

g
pe

rc
en

ta
ge

2 4 6 8 10 12 14 16

Number of MNs each RN can support

GICO
CES

(a) At initial stage, 40 MNs are in s1,1 at time 0, and CI values of all
squares are 5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ov

er
in

g
pe

rc
en

ta
ge

2 4 6 8 10 12 14 16

Number of MNs each RN can support

GICO
CES

(b) At initial stage, 40 MNs are evenly deployed in s1,1, s1,10, s10,1, s10,10

at time 0, and CI values of all squares are 5

0.2

0.4

0.6

0.8

1

1.2

C
ov

er
in

g
pe

rc
en

ta
ge

2 4 6 8 10 12 14 16

Number of MNs each RN can support

GICO
CES

(c) At initial stage, 40 MNs are in s1,1 at time 0, and CI values of all
squares are randomly chosen between 1 and 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
C

ov
er

in
g

pe
rc

en
ta

ge

2 4 6 8 10 12 14 16

Number of MNs each RN can support

GICO
CES

(d) At initial stage, 40 MNs are evenly deployed in s1,1, s1,10, s10,1, s10,10

at time 0. CI values of all squares are randomly chosen between 1 and 10

Figure 8: Average covering percentage over the entire relief process versus different capability of RNs in four scenarios. r = 1.5L, M = 5.

for the first responders during their operations. A mobility
model is used to capture the movement pattern of the MNs
and their communications to the RNs. Given a fixed number
of relay nodes, the optimization problem is to determine
the locations of the RNs as the MNs move in the disaster
area nomadically. Two performance objectives, including
maximal node coverage and maximal network capacity, are
considered, respectively, in this study.

In the coverage problem (CORP), the performance
objective is to place the RNs that can connect the maximum
number of MNs in the network. As a preliminary step, we
employ a maximal matching method to find the optimal

relay node assignment for the static network scenario,
that is, all RNs are fixed. Subsequently, we present the
greedy incremental coverage algorithm (GICO) and the
optimal constrained exhaustive search (CES) algorithms.
The GICO algorithm is suboptimal but with significantly
less computational complexity than the CES algorithm. The
simulation results show that GICO algorithm can achieve
close to optimal performance at different network setup and
configurations.

In the capacity problem (CARP), the performance
objective is to maximize the aggregated network throughput
for all MNs in the DAWN. As an initial step, we first
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Figure 9: Average covering percentage over the entire relief process versus different number of RNs in four scenarios. r = 1.5L, C = 10.

consider the relay node assignment for the static case that
can be solved using the Hungarian method. Similarly, we
also present both the greedy incremental capacity algorithm
(GICA) and the optimal algorithm. The optimal solution
for CARP can be obtained through the binary integer
programming approach but at much higher computational
complexity. The simulation results show that the GICA
algorithm can produce near optimal results.

In addition, it is observed that network generally yields
better coverage and throughput performance for scenarios
in which all MNs start from 1 corner than from 4 corners
of a disaster area. The tradeoff is that it would require

longer time to clear the entire disaster area. As a conclusion,
we advocate using the greedy algorithms to determine the
dynamic relay placement in the deployment of disaster
area wireless networks, in which real-time computation is
practically more important.

Appendices

A. Proof of Theorem 2

NP-completeness applies directly not to optimization prob-
lems, however, but to decision problems, in which the answer
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Figure 10: Average total link throughput over the entire relief process versus different number of RNs in four scenarios. r = 1.5L, C = 10.

is simply “yes” or “no” [24]. We first present the decision
problem CORP-D associated with the CORP problem as
follows. Given a set of busy squares, the number of MNs in
each square, the transmission range r and M RNs each with
capability C, is it possible to cover all MNs using exactly M
RNs? To prove the NP-completeness of the CORP problem,
it suffices to prove that the decision problem CORP-D is NP-
complete.

We start by arguing that CORP-D∈NP. Then we
prove that the CORP-D problem is NP-hard by showing
that MSC≤pCORP-D, (≤p denotes a transformation of

polynomial time. MSC denotes the NP-complete minimum
set cover problem). Because the CORP-D problem is both NP
and NP-hard, it is NP-complete.

To show CORP-D∈NP, we deploy M RNs in the shared
regions. Then to find if such deployment ofM RNs can cover
all MNs is tantamount to solving the RA-CORP problem.
As the RA-CORP problem has been proved to be solved in
polynomial time, CORP-D ∈NP.

We next prove that MSC≤pCORP-D, which shows that
CORP-D is NP-hard. Let < U ,Y ,Z > be an instance of the
MSC problem, where X denotes the collection of subsets of
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Figure 11: Average covering percentage over the entire relief process versus different capabilities of RNs in four scenarios. r = 1.5L, M = 5.

a set Y , Z denotes the minimum cardinality of the set U ′

such that U ′ ⊂ U and ∪u∈U ′u = Y . To obtain an instance
of the CORP-D problem we only need to define the capacity
bound C for each RN. Let C be the number of all MNs. Then
we build the relationship between instances of the CORP-D
problem and the MSC problem as follows. (1) Each element
in the set Y corresponds to one MN; (2) each shared region
corresponds with one subset ui ∈ U . (3) ni is covered by the
jth shared region if yi ∈ uj . Then we must prove thatM RNs
can cover all MNs if, and only if, there exists U ′ ⊂ U , such
that ∪u∈U ′u = Y and |U ′| ≤ Z.

First, suppose that N MNs in a set of busy squares can
be covered by Z RNs, each with a capacity of N . Then for r j
deployed at one shared region, the corresponding subset is
chosen as one element in U ′. Since Z RNs can cover all N
MNs, it is easy to see that ∪u∈U ′u = Y and |U ′| ≤ Z.

Now assume that there exists U ′ ⊂ U , such that
∪u∈U ′u = Y and |U ′| ≤ Z. For ui ∈ U , we can place one
RN ri at the ith shared region. In the meantime, ri covers nj
if yj ∈ ui. Since ∪u∈U ′u = Y , all N MNs are covered by the
RNs. Since |U ′| ≤ Z, the number of RNs placed is no larger
than Z.
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Thus we have shown that the CORP-D problem is NP-
complete, which completes the proof.

B. Proof of Theorem 4

We start by arguing that CARP-D∈NP (CARP-D is the
decision problem associated with the CARP problem). Then
we prove that CARP-D is NP-hard by showing that CORP-
D≤pCARP-D. Because the problem CARP-D is both NP and
NP-hard, the problem CARP is NP-complete.

To show CARP-D∈NP, we deploy M RNs in the shared
regions. Then to find if such deployment of M RNs can
produce the objective amount of throughput is tantamount
to solving the RA-CARP problem. As the RA-CARP problem
has been proved to be solved in polynomial time, the
problem CARP-D∈ NP.

We next prove that CORP-D≤pCARP-D, which shows
that the problem CARP-D is NP-hard. Let 〈SR, MN ,M,C〉
and a positive integer I ≤ N be an instance of the CORP-
D problem. To obtain an instance of the CARP-D problem
we only need define the capacity of each link between one
MN and RN. Let the capacity for every link between each
RN and MN be 1 unit. Then we recognize the instance of the
CARP-D problem the same as the instance of the CORP-D
problem. This transformation surely consumes polynomial
time. Subsequently, we must prove that I units of throughput
can be produced if and only if I MNs can be covered by the
same set of RNs.

First, suppose that I MNs in a set of busy squares can
be covered by M RNs. Then for nj covered by ri, one link is
established between nj and ri to produce one unit of capacity.
Since I MNs are covered, it is easy to see that I units of
throughput can be produced.

Now we assume that the overall network capacity is I
units. Then for each link between nj and ri, we render ri cover
nj . As there are I links available, each associated with one
MN, I MNs can be covered by the same set of RNs.

Thus we have shown that the problem CARP-D is NP-
complete, which completes the proof.
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