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RESIDUAL SMOOTHING TECHNIQUES FOR ITERATIVE METHODS*
LU ZHOU AtqD HOMER E WALKER

Abstract. An iterative method for solving a linear system Ax b produces iterates {xk with associated residual
norms that, in general, need not decrease "smoothly" to zero. "Residual smoothing" techniques are considered that
generate a second sequence {Yk via a simple relation yk (1 0k)yk- + r/kxk. The authors first review and comment
on a technique of this form introduced by Sch6nauer and Weiss that results in {Yk} with monotone decreasing residual
norms; this is referred to as minimal residual smoothing. Certain relationships between the residuals and residual
norms of the biconjugate gradient (BCG) and quasi-minimal residual (QMR) methods are then noted, from which it
follows that QMR can be obtained from BCG by a technique of this form; this technique is extended to generally
applicable quasi-minimal residual smoothing. The practical performance ofthese techniques is illustrated in a number
of numerical experiments.
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1. Introduction. In recent years, there has been a great deal of interest in iterative meth-
ods for solving a general nonsymmetric linear system

where A 6 ;nn and x, b 6 n. The quality of the iterates {xk produced by a method is often
judged by the behavior of {llrll}, where rk b Axk; in particular, it is usually desirable
that {llr II} converge "smoothly" to zero.

In the widely used generalized minimal residual (GMRES) method [13], each xk is char-
acterized by

lib- Axkl[ min lib- Axll,
xxo+tEk(ro,A)

where 112 is the Euclidean norm and the Krylov subspace/Ck(r0, A) is defined by

/Ck(ro, A) span {ro, Aro Ak-’ro}.
For GMRES, then, {[[rkl[2} converges to zero optimally among all Krylov subspace methods,
for which xk 6 x0 +/Ck(r0, A). Other methods, such as biconjugate gradient (BCG) [12],
[4] and conjugate gradient squared (CGS) [15], have certain advantages over GMRES but
often exhibit very irregular residual-norm behavior. This irregular behavior has provided an
incentive for the development of methods that have similar advantages but produce better
behaved residual norms, such as the biconjugate gradient stabilized (Bi-CGSTAB) methods
[10], [17] and methods based on the quasi-minimal residual (QMR) approach [2], [3], [6]-[8].

Another approach to generating well-behaved residual norms has been pursued in [14]
and [18]. In this approach, an auxiliary sequence {yk} is generated from {xk} by a relation

Y0 X0,
(1.1)

y (1 rlk)y-i + rlx, k=l,2
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in which each r/k is chosen to minimize lib A((1 O)Yk-1 + r/xk)ll2 over 0 6 JR, i.e.,

S_I(Fk--Sk-1)
(1.2) 0k

Ilrk s_a 112
where sk- b Ayk-1. (A weighted Euclidean norm is allowed in [18], but this is not

important here.) The resulting residuals sk b Ayk clearly have monotone decreasing
Euclidean norms, and IIs 112 _< IIr 112 for each k.

Our purpose here is to explore residual smoothing techniques of the form (1.1). In 2, we
elaborate briefly on the particular technique of 14] and 18] described above, which we refer to
here as minimal residual smoothing (MRS). In 3, we first note that the residuals and residual
norms of the QMR and BCG methods are related in certain ways, from which it follows that
QMR can be obtained from BCG by a technique of the form (1.1). We then extend this to
a quasi-minimal residual smoothing (QMRS) technique applicable to any iterative method.
We describe a number of illustrative numerical experiments in 4 and discuss conclusions
in 5.

A notational convention: When helpful, we denote iterates and residuals associated with
a particular method by superscripts indicating that method.

2. Minimal residual smoothing. Assuming we have some iterative method that gener-
ates iterates {xk and corresponding residuals {rk }, we formulate the MRS technique of 14],
18] as follows:

ALGORITHM 2.1. Minimal residual smoothing 14], 18].

INITIALIZE: SET So r0 AND Y0 x0.

ITERATE: FOR k 1, 2 DO:

COMPUTE Xk AND rk.
COMPUTE 0k by (1.2).
SET Sk Sk-1 + rlk(rk Sk-1) AND Yk Yk-1 + rlk(Xk Yk-1).

There is a potential numerical difficulty with Algorithm 2.1. In practice, when the per-
formance of an iterative method has become degraded through numerical error, the computed
value of rk can differ significantly from b Axk. When this happens, the value of sk computed
in Algorithm 2.1 can differ significantly from b Ayk. Algorithm 2.2 below is a mathemat-
ically equivalent variation that does not suffer this difficulty provided an accurate value of
Apk is available for each Pk xk xk-, which is very often the case. In Algorithm 2.2,
both Sk and Yk are determined directly from Pk and Apk; in particular, rk is not involved in
the computation at all. The intermediate quantities uk and vk are maintained so that, after the
updating in the final step, we have rk sk uk and xk Yk + vk. The comparative practical
behavior of Algorithms 2.1 and 2.2 is illustrated in 4.1.

ALGORITHM 2.2. Minimal residual smoothing.

INITIALIZE: SET So r0, Yo x0, AND u0 Vo 0.

ITERATE: FOR k 1, 2 DO:

COMPUTE Pk Xk --Xk-1 AND Apk.

SET Uk Uk-1 nt- Apk AND Vk Ok-1 -k- Pk.
T TCOMPUTE Ok Sk_lUk/Uk Uk.

SET Sk Sk-1 rlkUk AND Yk Yk-1 + rkVk.
UIIAVF U +- (1 O)u Art) v +- (1 Ok)v.

This should not be confused with the QMR squared method, designated QMRS in [8].
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In MRS, each sk is the vector of minimal Euclidean norm along the line containing
sk-1 and rk. There is an obvious extension, viz., inductively determining sk as the vector of
minimal Euclidean norm in the affine subspace containing sk-1 and rk rk-e for some .
This extension can be implemented reasonably economically (in O(n) + O(g2) arithmetic
operations for each k). However, there is no guarantee of improvement, and, in experiments
that we carried out, it was not more effective than basic MRS in reducing the residual norm.

3. Quasi-minimal residual smoothing.

3.1. How QMR smoothes BCG. We first develop certain relationships between the
QMR and BCG residuals and their norms. We recall the BCG method as follows"

ALGORITHM 3.1.1. Biconjugate gradient method [12], [4].

INITIALIZE:

CHOOSE x0 AND SET qo ro b Axo.
CHOOSE/70 7 0, AND SET 0 /70.

ITERATE: FOR k 1, 2 DO:

~T r_ /_lAq_l ANDSET Xk nt-kqk-1COMPUTE (k rk_ Xk-1
SET r r-i Aqk-1 AND/Tk /Tk-1 Ar-l.
COMPUTE /k /7rk//771_ rk-1
SET qk rk -t- ?’kqk-1 AND k /Tk + }’kk-1.

We consider the basic QMR method obtained from the general method in [7] by omitting
diagonal scaling and using the classical nonsymmetric Lanczos process [11] without look-
ahead. To discuss this, we note that r0 rk-1 generated by Algorithm 3.1.1 clearly form a
basis of/Ck(r0, A). Set Vk (Vl Vk) with vi ri-1/oi-1 and Pi-1 [Iri-1 ll2 for each i.
The columns of Vk also form a basis of/Ok(r0, A), and any x 6 x0 +/Ck(r0, A) can be written
as

(3.1.1) x xo + Vkz, z IR.

By the nonsymmetric Lanczos process, we have

(3.1.2) AVk Vk+l gk,

where H 6 ](k+l)xk is tridiagonal. From (3.1.2), the residual for x in (3.1.1) is

(3.1.3)
b Ax ro A Vkz ro Vk+l Hkz

V+l(poel- Hkz),

QMRwhere el (1, 0 0) r Nk+l The kth QMR iterate is defined by . xo + Vkzk,
where zk satisfies

Ilpoel Hzkll2 , min IlPoel Hzll2.

For later reference, we recall from [7] that

QMR(3.1.4) II,k 112 < /k + rk.

In [7], the upper bound C+ rk is used in a preliminary test for termination in QMR. We
comment further on it below.
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To develop the desired relationships between QMR and BCG, we note that q0 qk-1

generated by Algorithm 3.1.1 also form a basis of/Ck(r0, ,4). Set

and

Gk+l

We assume that Algorithm 3.1.1 can successfully carry out the kth step, in which case 31, 3k
are all nonzero and the columns of Yk form a basis of/Ck(ro, A). From Algorithm 3.1.1, we
have

(3.1.5) AYk Vk+l Gk+l Ik,

where

Since the columns of Y, are a basis for Kk(ro, A), we can write x 6 xo + Kk(ro, A) as
x xo + Yk for 6 k. Then from (3.1.5), we have

(3.1.6)
b- Ax ro AYk ro- Vk+IGk+It

Vk+l [G+I (el-/Y)]
Comparing (3.1.3) and (3.1.6), one easily verifies that

(3.1.7) r, min Ilpoel nzcz[12 min IIGk+l(el k)ll2.

The least-squares problem on the right-hand side of (3.1.7) is easily solved. Setting
(1, 2, Ck)r gives

2 min po2(1 1)2 + p2(1 2)2 q-...--t- p2 p2.2rk k-l(k-1 k)2 -I- kbk"

With a change of variables o 1, 1 1 2 k-1 k-1 k, k k, we have

k

r= min pg.e
i"

zik=o i --I i=0

The unique minimizer is given by

=0,1 k,
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and so

rk yJ __1
j=0 p}

Then the upper bound in (3.1.4) is

1
/k+ rk k-j=0

and it follows from (3.1.6) that the QMR residual vector is

(3.1.9) r?MR Vk+l (Polo Pkk)T
k L

[]jk..=0

_
2 iFBCG"

i=oPip)

These results are of interest in their own right. We summarize them in the following
theorem and then discuss some consequences.

QMRTHEOREM 3.1. With Pi IIr/BCGIla for 0 k, the QMR residual rk is given
by (3.1.9) as a convex combination of the BCG residuals rcG, rk’BCG" The upper bound

QMRx/k + 1 rk on I1 I1 in (3.1.4) is given by (3.1.8) as the square root of the harmonic mean
ofp p2

Equation (3.1.9) gives considerable insight into how QMR produces relatively smoothly
decreasing (if not monotonically decreasing) residual norms. If I[’rkBeG II is small for some

k, then BeG QMR
rk is given large weight in the convex combination (3.1.9) and I1 I1= is small.

If subsequent BCG residual norms increase, then the effect of this increase is mollified by
QMRrelatively small weights in (3.1.9) and any increase in IIr I1 is correspondingly small.

These observations are borne out in Experiments 3 and 4 in 4.2 below, in which each QMR
residual norm is roughly comparable to the best BCG residual norm obtained so far.

QMRIt follows from (3.1.8) that the upper bound /k + rkon IIr = is greater than or equal
rBcGtO minj=0 k I[rCG[[ with equality if and only if [[rCG[[ k lie. In fact, this

.QMRupper bound can be a significant overestimate of litk II, e.g., when A is nearly symmetric.
Indeed, if A were symmetric, then the nonsymmetric Lanczos process would become the
symmetric process, the vectors r/BcG would be mutually orthogonal, and we would have
.QMR[Irk 112 rk from (3.1.9).
From (3.1.9), we immediately obtain

(3.1.10)

QMR Z’ff .QMR Z’k2 BCG
r_l +rk

QMR ’ QMR .2k BCG
a’k-1 + -Xk

2 2This has two useful consequences" First, since z’ff/’_ + Z’//Pk 1, we conclude that
the QMR method is obtained from the BCG method by a smoothing technique of the form
(1.1). We generalize this technique in 3.2 below. Second, (3.1.10) gives a convenient and
economical way ofobtaining the QMR iterates and residuals from BCG. We note, however, that

2This is also implicit in results in [8] derived in a different manner. A different but equivalent way of determining
the QMR iterates from BCG is also given in [8, 3].
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if" BC6 BC6rk and b axk differ significantly because of numerical error, then, as with Algorithm
QMR QMR2.1, r and b axg computed by (3.1.10) can also differ significantly. In this case, an

analogue of Algorithm 2.2 obtained by applying the general Algorithm 3.2.2 below should
perform better. In 4.2, we describe an experiment in which (3.1.10) performs poorly while
the mathematically equivalent implementation of Algorithm 3.2.2 performs satisfactorily.

3.2. General quasi-minimal residual smoothing. Suppose we have some iterative
method that generates iterates {xk} and corresponding residuals {rk}. Since the difference of
any two residuals is in the range ofA, we can find for each k >_ 1 a wk such that rk-1 -rk Awk.
Define Yk (Wl wk) and Pi IIr 112 for 0 k. With Vk+l, Gk+l, and/Qk as in
3.1, we again have (3.1.5), and so (3.1.6) holds for x xo + YkY, e k. It follows as before
that

(3.2.1)

and, for the minimizing Y, we have, as in (3.1.9),

(3.2.2)
k 1

7ri"Sk Vk+l [Gk+l(el /-k)]-- Z=O p) i=0

In analogy with (3.1.10), we can use (3.2.2) to define "smoothed" residuals and iterates by

Sk Sk-1 -Jr- rk
U--1 -k Yk 15_1 Yk-1 -[-

Pk
Xk,

2and we can determine rk simply by 1/r 1/15k_ -4- liPS. This leads to the following
algorithm.

ALGORITHM 3.2.1. Quasi-minimal residual smoothing.

INITIALIZE: SET s0 ro, YO Xo, AND Z’o PO Ilrol12.
ITERATE: FOR k 1, 2 DO:

COMPUTE Xk AND rk.
SET Pk Ilrll2 AND DEFINE "t"k by 1/rff 1/’t’/_12 + 1/p2k.
SET sk (’g/’_l)Sk-I + (/p)rk AND Yk (r#/r#-l)Yk-I + (r#/p#)Xk.

In this algorithm, as in Algorithm 2.1, the divergence ofr and b Axk through numerical
error can cause sk and b-Ay to differ significantly. We formulate a mathematically equivalent
algorithm analogous to Algorithm 2.2 that should avoid this difficulty provided an accurate
value of Apk is available for each pk xk

ALGORITHM 3.2.2. Quasi-minimal residual smoothing.

INITIALIZE: SET So ro, YO x0, u0 Vo 0, AND "to PO Ilroll2
ITERATE: FOR k 1, 2 DO:

COMPUTE Pk Xk Xk-1 AND Apk.
SET/gk Uk-1 + Apk AND Uk Uk-1 -}- Pk.
SET/gk s_ u 2 AND DEFINE Z’k BY /r# /r#_ + 1/p.

2 2 2 2SET Sk Sk-1 (Z /Pk)Uk AND Yk Yk-1

UPDATE Uk <-- (1 (/D))Uk AND Ok <--- (1 (’/7/2/Dk2))Uk"
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It would be trivial to incorporate a diagonal scaling matrix

f2k+l diag (coo cok) 6 I(+l(k+l)

into the above developments, as is typically done in deriving QMR-type methods. In place of
(3.2.1) and (3.2.2), we would then have

rk =_ min IIf2k+lak+l(el k)l12 kk j=0

and, for the minimizing ,
k 1-1 [ak+l Gk+l (el k)] Jk:0Sk Vk+ k+ Wp ri.
i=0

Algorithms 3.2.1 and 3.2.2 would be modified by replacing each occurrence of p2k by cokpk.22
Similar remarks hold for the developments in 3.1.

As in Theorem 3.1, each sk generated by Algorithms 3.2.1 and 3.2.2 is given by (3.2.2) as
a convex combination of r0 rk. Also, (3.2.1) and (3.2.2) imply immediately an analogue
of (3.1.4) and (3.1.8), i.e.,

Ilsn 2 < /k + 1 vk k

The remarks in the two paragraphs following Theorem 3.1, with appropriate changes, are valid
here.

We mention the possibility of applying Algorithms 3.2.1 and 3.2.2 repeatedly to produce
increasingly "smoothed" residuals and iterates. However, in an experiment that we performed,
applying these algorithms twice to a BCG sequence (i.e., applying them once to a QMR
sequence) showed no practical advantages.

In the case of the CGS method, Algorithms 3.2.1 and 3.2.2 can be applied in a straight-
forward way; however, we note an interesting alternative in this specific case. We write the
CGS method as follows:

ALGORITHM 3.2.3. Conjugate gradient squared method 15].

INITIALIZE:
CHOOSE Xo AND SET Po uo ro b Axo AND Vo Apo.
CHOOSE t70 SUCH THAT/90 t70T r0 0.

ITERATE: FOR k 1, 2 DO:

COMPUTE O’k_ /7l)k_l, Ctk_ /Ok-l/Ok-l, AND
qk Uk-1 Olk-l l)k-1.

SET Xk Xk-1 + Olk-1 (Uk-1 AI- qk) AND rk rk-1 Olk-1A (Uk-1 + qk).
SET Pk
p u + k(q + p_a), v Ap.

We define auxiliary iterates and residuals as follows: For k 0, set

(3.2.3)
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It is not hard to verify that, if we apply Algorithms 3.2.1 and 3.2.2 (modified, if necessary, to
incorporate diagonal scaling) to the iterates {k} and residuals {t;k}, then the resulting method
is equivalent to the "transpose-free" QMR-like method derived from CGS in [6]. This is not

the same as the method obtained by the straightforward application of Algorithms 3.2.1 and
3.2.2 to CGS; in 4.3, we illustrate the practical performance of these two ways of applying
QMRS to CGS. This equivalence may help to explain experiments in [3] and also Experiments
5 and 6 in 4.3 below, in which residual norms from the method of [6] are roughly comparable
to the best CGS residual norms obtained so far. (However, an example is given in [8] in which
CGS diverges while the method of [6] converges.)

One can similarly obtain the QMRCGSTAB method of [3] by applying Algorithms 3.2.1
and 3.2.2 to Bi-CGSTAB [17]. Indeed, in addition to iterates {xk} and residuals {rk}, Bi-
CGSTAB produces {sk, pk, otk, cok such that

xk xk_ + ckpk + COkSk,

Sk r_ otkApk, rk sk wkAsk.

In this case, we define auxiliary iterates and residuals by

2k Xk, ’2k+l Xk + Ck+pk+,

/2k rk, /2k+l Sk+l,

for k 0, 1 Then the method obtained by applying Algorithms 3.2.1 and 3.2.2 (modified
to incorporate diagonal scaling, if necessary) to {k and {tk is equivalent to QMRCGSTAB.

4. Numerical experiments. We report on numerical experiments that illustrate the per-
formance of the algorithms discussed previously. The test problem used in all but one of the
experiments is a discretization of

d
ou

Au+cu+ x f inD,
(4.1)

u=0 onOD,

where D [0, 1] [0, 1] and c and d are constants. In the experiments outlined here,
we took f and used a 100 100 mesh of equally spaced discretization points in D,
so that the resulting linear systems were of dimension 10, 000. Discretization was by the
usual second order centered differences. Preconditioning, when used, was with a fast Poisson
solver from FISHPACK [16]. In all experiments, computing was done in double precision on
Sun Microsystems workstations.

4.1. Comparing Algorithms 2.1 and 2.2. We compared the numerical performance of
the mathematically equivalent MRS Algorithms 2.1 and 2.2 in the following two experiments.

Experiment 1. This was a controlled experiment in which we artificially simulated the
numerical breakdown of a convergent algorithm through exponential error growth. In each
simulation, we first generated random A and b and computed x. A-b using a direct
method; then, for k 0 kmax, we generated xk x. + 2-kuk for random uk, computed
r b-Ax, and perturbedx +-x+(k/kmax)vkandr ,-r+(k/kmax)Wforrandom

3Here, "random" means having components that are sampled independently from a normal distribution with
zero mean and unit variance. Random normal components were generated using the URAND subroutine from [5]
followed by a Box-Muller transformation; see [5, p. 247]. In the particular experiment reported in Fig. 1, the seed
2468 was used in URAND.
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vk and wk and fixed > 0 and positive integer v. We plotted log10 Ilskll2 and log10 lib Aykll2
versus k for both Algorithms 2.1 and 2.2 in a number of trials. Typical results (with n 10,

102, v 10, and kmax 50) are shown in Fig. 1. Note that in Fig. 1, the solid curve is
actually a superposition of the curves for log Ilsk 112 and log lib- Ayk]i2 generated by Algorithm
2.2; they are visually indistinguishable. In contrast, the corresponding curves for Algorithm
2.1 diverge strongly.

0.50

0.00

-0.50

-1.50

-2.50

-3.50

-4.00

-4.50

O 10 20 30 40 50

FIG. 1. Residual norms versus the number of iterations for Experiment 1. Solid curve: logl0 Ilsklt2 and
log10 lib Aykll2for Algorithm 2.2; dotted curve: logl0 Ilskll2for Algorithm 2.1; dashed curve: log0 lib Aykll2for
Algorithm 2.1.

Experiment 2. In this, we applied BCG without preconditioning to problem (4.1) with
c d 50. For insight here and in Experiment 3 below, we first plotted log10 IIrCGII2 and
log0 lib BC

Axk 112 versus k in Fig. 2. Note the divergence of II’rkBCGII2 and lib BCGII2AXk
beyond about k 280; this is apparently due to rounding errors introduced in earlier iterations
when IIrCGll2 was very large. We next plotted log0 Ilskll2 and log0 lib Aykll2 versus k
for both Algorithms 2.1 and 2.2. The results are shown in Fig. 3, in which the graphs of
log0 lib Aykll2 for Algorithm 2.1 (solid curve) and for Algorithm 2.2 (long-dashed curve)
are nearly superimposed. Note that for Algorithm 2.2, the values of log10 ]lSkl[2 stay fairly
close to the values of lOgl0 ]]b- Ayk]]2 in the later iterations, while for Algorithm 2.1, the
values of log0 Ilskll2 are wrongly forced downward by the (inaccurate) decreasing values of

IIrCGII2. In view of the superior performance of Algorithm 2.2, it was used to implement
MRS in the remaining experiments discussed below.

4.2. Smoothing methods for BCG. We compared the performance of BCG, QMR, and
MRS applied to BCG on problem (4.1) in the two experiments below. In these, MRS was
implemented as in Algorithm 2.2, and the QMR iterates and their residuals were generated
from the BCG iterates and residuals using either (3.1.10) or a mathematically equivalent
implementation of Algorithm 3.2.2. Caution: Comments below regarding the numerical
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FIG. 2. Recursive and true BCG residual norms versus the number of iterationsfor Experiments 2 and 3. Solid
curve: lo810 IlrCGll2; dotted curve: loglo lib Ax3CGI]2.
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FIG. 3. Residual norms versus the number ofiterationsfor Experiment 2. Solid curve and nearly superimposed
long-dashed curve: loglo lib Aylcll2for Algorithms 2.1 and 2.2; dotted curve: loglo Ilskllz for Algorithm 2.1" short-
dashed curve: loglo Ilslc[12for Algorithm 2.2.
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accuracy of QMR iterates are not intended to apply to the general QMR method of [7], which
uses the look-ahead Lanczos process; they only pertain to the soundness of (3.1.10) and
Algorithm 3.2.2 applied to the BCG iterates.

Experiment 3. As in Experiment 2, we considered problem (4.1) with c d 50,
without preconditioning. We first compared the accuracy of (3.1.10) and Algorithm 3.2.2 for
obtaining QMR iterates from BCG iterates. The results, which are analogous to those in Fig.

QMR3, are shown in Fig. 4, in which the graphs of log10 lib x 112 for (3.1.10) (solid curve)
and for Algorithm 3.2.2 (long-dashed curve) are nearly indistinguishable. The remarks made
in Experiment 2 about Fig. 3 are valid here, with the appropriate changes. In view of the
superior performance of Algorithm 3.2.2, it was used instead of (3.1.10) or Algorithm 3.2.1
in the remaining experiments reported below, except where noted.
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-4.00
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FIG. 4. Residual norms versus the number ofiterationsforExperiment 3. Solidcurve andnearly indistinguishable
.QMR for(3.1.10);long-dashed curve: logl0 lib AxQMrll2for (3.1.10) andAlgorithm 3.2.2; dotted curve: logl0 II"k 112

short-dashed curve: logl0 IIrMRII2 for Algorithm 3.2.2.

We next compared the performance of BCG, QMR, and MRS applied to BCG on this
problem. The results are shown in Fig. 5. Note that the solid curve in Fig. 5 is the recursive
residual value log10 I1 BEG 112, rather than the true value log10 lib CGx 112, cf. Fig. 2. Both
QMR and MRS were very effective in smoothing the BCG iterates. Although fine details are
hard to make out in parts of Fig. 5, the performance ofQMR and MRS was, in fact, very similar
over all iterations; of course, the MRS residual norms were monotone decreasing while those
of QMR, although trending downward fairly smoothly, were not. Note that both QMR and
MRS very effectively stabilized the iterates and residuals at about the point of greatest true

residual reduction of BCG.
Experiment 4. We applied the three methods with preconditioning to problem (4.1) with

c d 100. The preconditioning resulted in relatively well-behaved BCG residual norms,
and QMR and MRS applied to BCG performed very similarly. There was no evidence of
numerical error. The results are shown in Fig. 6.
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4.3. Smoothing methods for CGS. In the two experiments below, we compared the
performance on problem (4.1) of CGS, the "transpose-free" QMR-like method of [6] (referred
to as TFQMR below), CGS with QMRS, and CGS with MRS. We implemented TFQMR by
applying QMRS to {k} and {?k} defined in (3.2.3); see 3.2. The implementation of CGS
with QMRS was straightforward.

Experiment 5. We applied the methods without preconditioning to problem (4.1) with
c d 5. The results are given in Fig. 7. The three smoothing methods very effectively
smoothed the very ill-behaved CGS residuals and performed roughly the same, although MRS
tended to give slightly smaller residual norms than the other two methods. Although not
shown in Fig. 7, significant divergence of IlrGs 112 and lib cGsx 112 began at about iteration
262 and, as in Experiment 3 and Fig. 5, all three smoothing methods effectively stabilized the
iterates and residuals at about the point of greatest true CGS residual reduction.
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FIG. 7. Residual norms versus the number of iterations for Experiment 5. Solid curve: lOgl0 IIrfGS 112; dotted
curve: lOgl0 of the TFQMR residual norms; short-dashed curve: lOgl0 Ilsk 112 for QMRS Algorithm 3.2.2 applied to

the CGS iterates; long-dashed curve: lOgl0 Ilsk 112 for MRS Algorithm 2.2 applied to the CGS iterates.

Experiment 6. We applied the methods with preconditioning to problem (4.1) with c
d 50. Because cs cs

rk and b remained very close throughout this experiment,AXk
we used Algorithm 3.2.1 rather than Algorithm 3.2.2. The results are given in Fig. 8. It is
evident that all three smoothing methods worked very effectively, especially in stabilizing the
iterates and residuals once the limits of residual reduction were reached. It is also notable
how similarly QMRS and MRS behaved, although MRS ultimately gave the smallest residual
norms of all methods.

5. Summary and conclusions. We have focused on two residual smoothing techniques
of the general form (1.1), minimum residual smoothing (MRS) and quasi-minimal residual
smoothing (QMRS). The former generates from given iterates a sequence of auxiliary iter-
ates with monotone dec-reasing residual norms that are no greater than those of the original
sequence. The latter generates auxiliary iterates with residual norms that typically decrease
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fairly smoothly, if not necessarily monotonically. It also provides insight into the workings
of QMR-type methods and, in particular, indicates how they are related to and smooth the
residual norms of underlying methods such as BCG and CGS.

These residual smoothing techniques provide important practical tools. Their perfor-
mance is illustrated in a number of numerical experiments in 4; these indicate that both
MRS and QMRS are reliable and very effective in smoothing the residuals of the underly-
ing method when applied as in Algorithms 2.2 and 3.2.2, respectively. The performance of
MRS and QMRS was roughly similar in our experiments. However, the MRS residual norms
were monotone decreasing while those of QMRS, although typically trending fairly smoothly
downward, were not; also, the MRS residual norms were often, although not always, slightly
smaller than the QMRS residual norms and, in some cases, tended to remain a little more
stable in the final iterations. On the basis of work to date, we have some preference for MRS
over QMRS for general use.

Having smoothly decreasing or monotone decreasing residual norms may be of real im-
portance or just a nicety, depending on the application. In fact, this can always be achieved
trivially just by saving the best iterate obtained so far; in some of our experiments, MRS and
QMRS did not produce significantly smaller residual norms than this simple technique. Thus
the good behavior of the MRS and QMRS residual norms alone may not always be enough
to justify their use. However, a strongly compelling reason for using MRS or QMRS with
methods such as BCG and CGS is their effectiveness in stabilizing the iterates and residuals
once the limits of residual reduction have been reached. This is perhaps most clearly seen in
Figs. 5 and 7, in which the recursive residuals generated by the underlying method continue to
decrease long after they have lost accuracy, while the MRS and QMRS residuals become stable
and remain fairly accurate. In addition to helping to avoid misleading results, this stabilizing
effect could be useful in obtaining further accuracy from the method. Indeed, one might be
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able to detect the onset of stability and restart the method with a fresh, more accurate residual,
thereby making further accurate residual reduction possible. We have successfully carried out
this strategy in experiments.

We conclude by noting.recent related work. In [9] it is shown that iterates produced by
certain pairs of "orthogonal error" methods can be related through (1.1), extending Theorem
4.2 of [18, p. 78]. In [1], it is assumed that two sequences {x} and {x’} are given, and an
auxiliary sequence is generated by

yk (1 O)x +
where 0k is chosen to minimize the residual at Yk. If a single sequence {xk} is given, then the

Ifchoice xk yk-1, xk xk gives MRS as a special case. Many other possibilities are explored
(m)in [1], and the possibility is raised of combining given {x(1) /xk to produce {Yk} by

(1) (1) O(km)X(km) 0
(i) 1(5.1) Yk--0k xk +" + k

i=1

In [1] it is suggested that the o(i)’s be chosen to minimize the residual at yk, but more generalk
choices may be useful. For example, the QMR squared method of [8] can be obtained from
the CGS iterates and certain auxiliary quantities through a relation of the form (5.1) in which

(1)
xk Yk-; see(4.11) of[8, p. 9].
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