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1. INTRODUCTION

For each real number p, 1 < p << o0, let L, (R"; C*) denote the usual
Banach space of equivalence classes of C*-valued functions on R™ whose
absolute values raised to the power p are Lebesgue integrable over R”. For
each positive integer m, let H,, ,(R"; C*) denote the Banach space consisting
of those elements of L (R”; C¥) which have (strong) partial derivatives or
order m in L (R"; C*). Denote the usual norm on L,(R"*; C*) by || ||, , and
take
PP

o

to be the norm on H,, ,(R"; C¥), the notation being standard multiindex
notation. In the following, each linear partial differential operator,

.
ox™

z

Ja) gm

=}

o
Au(x) = Y a,(x) PPy u(x),
la]<m
of order m is assumed to have domain H,, ,(R"; C¥) in L,(R"; C¥) and to have
k x k coefficient matrices continuous in ¥ on R™. The partial differential
operators of particular interest are those which are elliptic in the sense that

det #0

Y ax) &

lal=m

for all ¥ in R” and all nonzero ¢ in R*.
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For a given integer m, consider a linear elliptic partial differential operator

o
Au(x) = Y a, Py u(x)

o l=m

of order m which has constant coefficients and no terms of order less than m.
It is shown in [11], a paper generalizing results in [7] and [10], that if there is
given a second elliptic operator A of order m, whose coefficients converge at
infinity uniformly to those of 4, with a certain swiftness, then the dimension
of the null space Ny(A4) of A in H,, ,(R"; C¥) is finite. Furthermore, it is
shown that the dimension of N,(4) depends upper-semicontinuously on
such an operator 4 in the sense that the dimension of the null-space of the
operator does not increase if the coefficients of the operator are perturbed
slightly inside a ball of finite radius about the origin in R™. In this paper, the
Fourier-transform technique of [11] is abandoned in favor of an approach
based on fundamental solutions. The principal results of [11] mentioned
here are extended in the following not only to include a broader class of
elliptic operators which are allowed to be perturbed in a less restricted
manner but also to allow the domains of these operators to be any of the spaces
H, (R% C¥), 1 <<p < 0o. In order to demonstrate that the theorems
obtained are very nearly the best possible, an example is presented of an
elliptic operator with an infinite-dimensional null space. This example is
sharper than the one given in [11].

The following conventions are used throughout the sequel “large” and
“small” constants whose only important property is their size are denoted
generically by C and ¢, respectively. Constants which are otherwise distin-
guished are subscripted. The numbers p, p’ always satisfy

I<p<oo;  (Ilp+1p)=1

L, (R"; C') and H,, (R"; C) are denoted by L ,(R") and H,, ,(R"), respect-

ively.

2. PREPARATORY RESULTS FOR OPERATORS WITH CONSTANT COEFFICIENTS

In this and the next section we establish two theorems which are used in
the sequel to study the null spaces of the elliptic operators of interest. The
L -estimates described in these theorems have well-known analogs in similar
investigations concerning elliptic operators on a compact set or manifold.
The first theorem relies on the two lemmas below, which are of interest in
themselves.
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LemMA 2.1. For real numbers a and b whose sum is positive, consider the
kernel
1

lxl"lx—yl"“""’ly["’

K(x,y) = for x = yin R,

The integral operator

Ku(x) = | K(s,y)u(y) dy

R

ts a bounded operator on L (R™) if and only if a <nfp and b <nfp’.

Proof. 'To show that the conditions @ < n/p and b < nfp’ are necessary,
suppose that X is a bounded operator on L,(R"). Then the functions

v(x) = [ - K(x,y)dy and w(y)= f

lyl zl<

K(x,y) dx
1

are in L(R") and L ,-(R"), respectively. For large | x [ and | y | , 2(x) behaves
like a constant multiple of | x |~"*? and w( y) behaves like a constant multiple
of | y |~"t4, Then v(x) belongs to L,(R*) and w(y) belongs to L,(R") only
if p(n — b) > n and p'(n — a) > n, i.e., only if b < n/p’ and a < n/p.

To show that the conditions a << n/p and b < nfp’ are sufficient, note first
that it may be assumed without loss of generality that both a and b are non-
negative. (If, say, a is negative, then b is positive, and from the inequality

| x| |yl
x—y] S T TRy
it is seen that

C I C
x¥—y "0y T |x —ynaty e

K(x,y) < |

The boundedness of K in this case then follows immediately from the result
in the case in which both a and b are nonnegative.) Now for nonnegative a and
b satisfying a << n/p and b << nfp’, a comparison of arithmetic and geometric
means yields the inequality

lx|">H|xi|»
i=1

and it follows that

1
K(x,y) < H | x; [o/7 | x; — i [t—ta+b)/n |y jo/m

i=1
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In the light of this last inequality, it is apparent that the desired result
follows from the corresponding one-dimensional statement: If @ and b are
nonnegative numbers with positive sum satisfying @ << 1/p and b < 1/p’, then
the integral operator

Ku(x) = J K(x5) u(y) dy

with kernel

1
lxjtlx—y ety

K('x’ y) =

defined on R! X R, is a bounded operator on L, (R!). This one-dimensional
result is, in turn, an easy consequence of the following well-known lemma (see
[4], Theorem 3.9).

Lemma.  Suppose that K(x,y) is nonnegative and homogeneous of degree
(— 1) for x > 0 and y = 0, and that the (necessarily identical) quantities

[ K navwdy  and | K(1,3)y 7 dy

0 0

are equal to some number C < o0. Then the integral operator
Ku(x) = [ K(x,9) u(y) dy

is bounded on L ((0, c0)) with norm no greater than C.
This completes the proof of Lemma 2.1.
Lemma 2.2. Let $Xx) be an infinitely differentiable function defined on

R* — {0} which does not vanish identically, which is homogeneous of degree zero,
and which satisfies

f Q(x) dw = 0,
|zl=1

where dw is the element of volume on the unit sphere in R™. For a real number a,
consider the function

- Q= — )
Ko = e 5P
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The integral operator

mm:f

Wwaww@

is a bounded operator on L (R") if and only if — nfp’ < a < n/p.

The necessity of the condition — n/p’ <. @ < nfp is easily proved by an
argument similar to that in Lemma 2.1; the assertion that this condition is
sufficient is a special case of the theorem in [9].

As in the introduction, let A, denote a given linear elliptic partial differen-
tial operator with constant coefficients which is homogeneous of order m.
The theorem below describes an estimate involving this operator which
plays a fundamental role in the investigations that follow.

Turorem 2.1. Let v be the smallest nonnegative integer greater than
(m — nfp"), and let p be a number satisfying the following conditions

*l<p<r——m+£'
4 ? Q.1

pm-— ? 1s not a nonnegative integer.

Then there exists a constant C,, for which the estimate

Yy H [ a flol+e E‘i:“ u H <Gyl x|me Aoull, 2.2)

?

jaj<m !

holds for all win H,,, (R™; C*) such that | x \"+e Au is in L,(RY; C¥). Further-
more, if p does not satisfy the condition (2.1), then no inequality having the form
of (2.2) can hold.

Note that, in particular, inequality (2.2) holds with p =0 if and only if
(m — n/p") is not a nonnegative integer.

Proof. (a) It will first be shown that if p does not satisfy the conditions
(2.1), then no inequality having the form of (2.2) can hold. The case in which
p << — nfp can be dispensed with immediately: If p < — n/p and if « is any
function in H,, ,(R"; C*¥) which has compact support and which is equal to
some nonzero constant in a neighborhood of the origin, then, for this function
u, the quantity on the right side of (2.2) is finite while the quantity on the
left side is infinite. In treating the remaining cases, use will be made of the
fundamental solution of A of the form

T(x) = Iyx) + log | x | Iy(#), 23)
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where I'y and I'; are homogeneous of degree (m — ) (see [5), [6], and others
for information concerning the existence and properties of fundamental
solutions of elliptic operators).

To treat the case in which p 7 — m + n/p’, let ¢ be an infinitely
differentiable real-valued function on R” satisfying 0 Co(x) <1 for all x
in R, o(x) =0 for | x| «Z 1, and o(x) = 1 for | &, 2> 2. If one defines

u(x) = a(x) F(a)

for x in R", then there exists a constant C such that

’ e u(x) | < Clarielog|xi  forlx|>2la] <m.

Since m — n ~— r < — nfp, it is evident that u is in H, ,(R"; C*). Further-
more, Au(x) = 0 for | x| > 2, and so the quantity on the right side of (2.2)
is finite for this function ». But for an appropriate constant C, the inequality

| 2 [ u@)] = C | oo

holds for | x) == 2 and x in some open cone with vertex at the origin. Con-
sequently, if p >> 7 — m 4 n/p’, the quantity on the left side of (2.2) is
infinite for this function u.

To treat the final case in which — n/p <p <7r—m -+ nfp’ and
p+ m — nfp’ =5, a nonnegative integer, let {op}3<r<o be a collection of
infinitely differentiable real-valued functions satisfying the following con-
ditions:

(i) For each R =3, 0 < og(x) <1 for all ¥ in R?, og(x) =0 for
[o| <1, op(x) =1 for 2 < | x| <R, and ogx(x) =0 for | x| = 2R;

(if} 'There exists a constant C, independent of R, such that the inequal-
ities

| s oa®) | SCR™,  R< x| <2R
and

‘a—":;aR(x)lgc, 1<)l <2

hold for |« | < mand R > 3.
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{Such a collection of functions is easily constructed.) For small positive e,
define

A8

ua(s) = on®) | ¥ [~ 75 T()

for each R > 3. Suppose first that (0%/0x,°) I'|(x) does not vanish identi-
cally. Then it is easily seen that there exists a constant C, independent of R
and e, for which the following inequalities hold

Vix e Aoug(x) < C forl <'al L2
[V me deug(x) < Cefx o —sogia| = Celx "< "Plog| x|
for2 < |x| <R,
Vet doug(x)) < Ce | x Mot log | x| + CRm+»-"—%]og R
= Ce|x|~?log|xi + CR<™Plog R
for R<<|x| < 2R

Hence, for a different constant C, independent of R and ¢, one has the estimate

> 2R
[ 1a1me dug@)irdx < C 4 Cer [ trY(log 2)7 dt + CR-*(log RY".
I J,

On the other hand, the inequality

~ R
J. ! ‘l x lp HR(.T)}‘) dx 2 CJ z(p+m—n—<45)p+u—1(10g t)p dt
" 2

R
= C f t~<7-(log t)? dt

holds for an appropriate constant C independent of R and e. Suppose that an
estimate having the form of (2.2) exists. By applying this estimate and the
inequality just derived to the functions ug(x) and taking limits as R approaches
infinity, it follows that there exists a constant C, independent of e, for which
the inequality

2

f t<rYlog t)r dt < C -+ Cel’f t—<Y(log t)? dt
2

holds for every small positive e. But no such inequality can hold for every
positive ¢, since the integral that appears grows without bound as € approaches
zero. Hence, no estimate having the form (2.2) can exist if (9%/6x,*) I'; is not
identically zero. Now if (8%/0x,°) I'; is identically zero and if it is assumed
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that an estimate having the form of (2.2) exists, then one obtains by the same
argument a constant C, independent of ¢, for which the inequality

J‘w t-r-1dt < C - Ceb ]w ter-1 gt
s J

2

holds for every smail positive e. As before, no such inequality can hold for
arbitrarily small positive ¢, and it must be the case that no estimate having the
form of (2.2) can existif —nfp <p <r—m -+ nfp’andp +m — nfp’ = s,
a nonnegative integer.

(b) To prove (2.2) for p satisfying conditions (2.1) we shall first establish
an apparently weaker estimate: There exists a constant C for which the esti-
mate

[Malpull, <Cll|x["* Agull, 24)

holds for all # in H, ,(R"; C¥} such that |x|"+e A u is in L,(R"; C*).
Inequality (2.2) will be derived from (2.4) in part (c).

To prove (2.4), let u be an element of H,, ,(R”; C*) and denote A« by f.
Assume that u is such that | x |™+* f is in L (R?; C*). Let {ép}g<r<x be 2
collection of infinitely differentiable real-valued functions satisfying the
following conditions:

(i) For each positive R, 0 < £x(x) << 1 for all x in R™, £g(x) =1 for
| x| <R, and £x(x) =0 for | x| 2= 2R.

(i) 'There exists a constant C, independent of R, such that the inequal-
ity |(8%/8x%) €g(x)] << CR-1*! holds for all x in R” and all o with |a| < m.

If I' is the fundamental solution of 4, , one has for | x | < R:

u(x) = f

. Flx — p) [Ao(am)] (3) dy

- fm I'(x — ) é=(¥) f () dy

& %
P T3 B G t0) g dy

|| +[B]=m a-ya
la| >0

- fm I(x —y) () f () dy
o8

<lul<2R oyP

DG LI [P~ 3) o £ W)

lai+18]=m
[a] >0
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for suitable constants C,g. Since u is in L,(R"; C"), one verifies easily that
the last term on the right tends to zero as R approaches infinity, and hence,

ux) = [ Te=nf0)d. (2.

The estimate (2.4) is easily established if (p -+ m — n/p’) is negative. In
this case it follows from (2.1) that 7 is less than »; consequently the term
I'y in (2.3) vanishes (see [6, pp. 65-72]). It follows from (2.5) that

e < Cf ——lﬁzlf(y)l dy
1 s
gcflm"lx*yl"“m[_y\mﬂ,Iyl o f(y) dy

or

e u) <€ [ ey |1 100 &

for some constant C independent of #. The estimate (2.4) is an immediate
consequence of this inequality and Lemma 2.1, taking ¢ = — p and
b=m+p.

To establish the estimate (2.4) for the case in which (p + m — n/p’) is
positive, note that, in this case, it follows from the conditions (2.1) that r
is positive; consequently r = m — n - [n/p] + 1, where [n/p] denotes the
largest integer no greater than nfp. Then, since p is greater than 1, it is seen
that (n — 1 — [n/p]) = (m — r) is nonnegative. Now the conditions (2.1)
imply that there is a positive integer s such that

s—1<p+m—nlp <s. (2.6)

Therefore, it must be the case that s is less than or equal to 7. (Otherwise,
(s — 1) would be greater than or equal to 7, in which case (2.6) would imply
that 7 is less than (p -+ m — n/p’), contradicting the conditions (2.1).) Again
appealing to the conditions (2,1), one sees that

m—n<ptm—afp <s<r<m (2.6)

Now expansion of I'(x — y) in a finite Taylor series and substitution in (2.5)
yields

W= ¥ 2 rw [Leriod+] Renime,

Jo| <s—1
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where

Rx,y)=I(x—y)— ) = I(x) (=)

l’a
Jal<s1 % X

— M(ﬁ ty) (1 — 1)~ dt.

{af=s

Observe that the integrals [ga (— )°f(¥) dy, for | | < s — 1, that appear
in this expansion are convergent since | x "+ f(x) is in L,(R"; C*). Set

ix) = [ R(x,5)f(5)d,

R"

and suppose for the moment that |x [?#@ is in L,(R"; C*) and that there
exists a constant C, independent of «, for which the estimate

Mxfeall, <Ol x|t fl, (2.4

holds. Now if p is nonnegative and | x | & is in L (R"; C*), then # is an L,
function near infinity. Hence

N 1 & -

) ()= Y ST | (= f(y)dy
lal'<s-1 % OF g

isan L, function near infinity. But one verifies using (2.3) and (2.6’) that this

can happen only if

)~ = T T T [ (=P i)y =0

Jo| <81
Similarly, if p is negative, it follows that

wlu) —lxpam = § Sxp

lof<s—1

f(y)dy

is an L, function near infinity. Again, it is seen from (2.3) and (2.6) that this
is possible only if
N 1
u(x) — i) = Y. waHWW(—Wﬂﬂ@=0

la| <51

The outcome of this is that | x |# % is in L,(R*; C*) only if « = #, in which
case the estimate (2.4)" becomes the desired estimate (2.4). Consequently,
to establish the estimate (2.4), it is sufficient to show that |x |4 is in
L ,(R"; C*) and satisfies an estimate having the form of (2.4').
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One sees from (2.6") that (m — s) is nonnegative. Consider first the case
in which (m — s) is positive. Note that, for | a | = s, (2#/0x%) I'(x) is homo-
geneous of degree (m — n — s) since, by (2.6'), s is greater than (m — n),
(see [6]). Then

- Loy 1 . [
W) < C | ] g SO b di

or

. t ]
[xbae) <C [ S

x4 L Ly 1™ | F(3l8) dy) dt

- l x l——o l x —y ‘n—m-i—s ly lm-i—a—s

for appropriate constants C independent of #. In virtue of (2.1) and (2.6) and
the assumption that (m — s) is positive, one may apply Lemma 2.1 with
a= —pand b =m+ p — s to obtain

iapal,<c | Ly e f (i, de

1 ym+totn/p

SCUP I Ol [ e

0

for some constant C independent of u. Since m 4~ p 4-nfp —n —s > — 1
by (2.6), the integral on the right side of this inequality is finite. Hence,
| % |°d is in L(R"; C¥) and the estimate (2.4) is established for the case in
which (m — s) is positive.

The remaining case is that in which s equals m. Again, (8%/0x*) I'(x) is

homogeneous of degree -—n whenever | « | = m = 5. Then
- s (1 —p
xpa =% o -
af=8 7
S 'Qu('x —y) |
X — )y P f(y/e) dy! dt,
Vo Sy Iy i d
where
Qx) = | x| a(:a I(x)  for|a|—s.

It is well known and easily verified, that the functions Q,, for |a| =3,
satisfy the hypotheses of Lemma 2.2. Furthermore, it follows from (2.6")
that 7 = m in the present circumstances, and so the conditions (2.1) imply
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that p << n/p’. Consequently, Lemma 2.2 may be applied with a = — p
to obtain the estimate

Heleal, <C [ gl (v 1 fil, di

1 gm+otn/p

<Cly e fOly [ - dt
0

for an appropriate constant C' independent of u. As before, the integral on
the right side of this inequality is finite, and so | & |# & is in L (R"»; C*) and
the estimate (2.4) is established.

(c) Inequality (2.2) follows easily from the estimate (2.4) and the
following general inequality: For any real number p, there exists a constant C
for which the estimate

)

“R” Ja|<m

o ?
Py u(x) | dx

I x i]ui-)—o

2.7)
<Cf [ixime AP + x| u()o] ds
Rﬂ

holds for all # in H,, (R"; CF) for which the right side is finite. To establish
the inequality (2.7), note that there exists a constant C, independent of R,
for which the wellknown interior elliptic estimate

Rpmf
Rzl 2R

holds for all  in H,, ,(R"; C*) and all « with |« | < m

(That a single constant C suflices for all positive R is seen by stretching the
independent variables.) From this inequality, it immediately follows that,
for some constant C,

) | dx <€ [Rm? | Au(x)|? + | u(x)|?] dx

ax« Riz<lzl <3R (2.8)

u(x)

f l | x l]ot[-H)
R<]ac|<2R jal<m

<C (1 1& ™t Agu(x)l® + [ | 2 |° u(x)|?] dx

R/2< Izl <3R

for all w in H, ,(R*; C*¥)and all a with [« | < m

Letting R take on the values 27, j = -+ 1, & 2,..., in this last inequality
and summing over j, one obtains the desired estimate (2.7). This completes
the proof of the theorem.
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3. A PRELIMINARY RESULT FOR OPERATORS WITH VARIABLE COEFFICIENTS

In this section we shall derive the analog of inequality (2.7) for elliptic
operators whose coefficients approach those of the operator 4 at infinity with a
certain swiftness. With some effort, it can be shown that the inequality (2.7)
is valid as it stands for such elliptic operators. However, since we will be
interested primarily in the behavior of functions near infinity, we replace | % |
by

o(x) = (1 + | = 2}

and prove a similar estimate with less difficulty.

TreOREM 3.1. Let p be any real number, and consider an elliptic partial
differential operator
Au(x) = Au(x) + Y bx) o u(x)
ol ox
whose coefficients satisfy the following conditions:
(i) Whenever | o| = m,
li{n[ sup | b(x)] < 8
for some positive §;
(i) Whenever | a| <m,

sup | x [™1=l | b (x)] < co.
xeR"

If 8 1s sufficiently small, then there is a constant C for which the estimate

| glato 2
Z ),a D@x“

la) <m

holds for all u in H,, (R"™, C¥) such that c™+*Au and oPu are in L (R”; CF),

u]‘ < Clomedul, + || ooull,} (3.1)

It is seen in the proof of Theorem 3.1 that the necessary smallness of § is
determined by the size and smoothness of the coefficients of A4 inside a ball
of finite radius about the origin in R".

Proof. First note that the operator A may be written as a sum
oy O
Au(x) = Agu(x) + Y b,/ (%) o u(x), 3.2)
ot 2m Ox

where 4, is an elliptic operator such that 4, = A, for | x | sufficiently large,
the b,'(x) satisfy condition (ii) of the theorem for | « | < m, and

sup | b,'(x)] < & forja|=m
xeR®

409/42[2-2
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Then there exists a constant C for which the estimate

S e Zoul < Cliamedpi, Hlenl) G
Jaf<m b
holds for all # in H,, ,(R*; C*) such that o""+*du and o*u are in L (R*; C¥).
‘This follows easily from (2.7) and the interior estimates (on a bounded region)
for a uniformly elliptic operator analogous to (2.8) (see [2]).

Let {{g};<r<x be a collection of infinitely differentiable functions satis-
fying the following conditions

(1) For each R=1, 0 < {g(x) < 1 for all x in R*, {g(a) =1 for
| x| < R, and {g(x) =0for | x| > 2R.

(it) There exists a constant C, independent of R, such that the inequal-
ity
I &L g(x)/ear | < Co(w)™' (33)

holds for all x in R” and all « with | & | << m.
It follows from (3.3) that, for some constant C independent of R, there is an
inequality

| &g (x)fexn | < Cofx) 12l La(y=! (.39

for all x in R* and all « with | « | <{ . In the following, the subscript R
on each function {p is suppressed v&henever there is no danger of misunder-
standing.

Let u be an element of H,, ,(R*; C*) such that ¢™+*Au and ofu are in
L (R#; C*). Applying (3.1') to the function {™u, we find

2

la| <m

U(aHn P

S ()] < Clemedytral, + Cllotul,.

Using (3.3'), one easily infers that

'n

] "
loteltegm <y |
)} ol S

la] <m »

C” ancm Ou“l’ ! C Z “OIBH»DCWI /xB |‘

8] <m
oo 1"
< CilomtotmAufl, + C Z {mam+ob (%) — u“
lal<m ox »
+Cy !0\3|+D§IB| 7 . “

18] <m
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for appropriate constants C independent of # and R. It follows from the
properties of the coeflicients b," that, if § is sufficiently small, then the
following inequality holds with some constant § < 1:

<

A
Z '“H’"Z"l C H oMo Ay Hl' + g Z o'm+o§nz ,0 _ u H
Jo| < ’!’ jaf=mm ox
ob
+ C Z O.\BHDGB\ E'—BuH .
) X
1Bl<m r
Hence,
S [otirgm = H Cllomedull, +C ¥ |omisoge 2 "“
c s o
~ ArB
o ox® 18] <m ox '»

with a constant C independent of # and R. Using Lemma 3.1 below, one
obtains the inequality

2

jaj<im

aa
laj+ofm
ot ox Hp

C” amte dy l

p +

arsegn sl 4 Cllaull,

ja|=m
from which the desired inequality (3.1) follows on letting R — 0.
Lemma 3.1, Let {{p}1<r<= be a collection of Lipschitz continuous real-
valued functions on R™ satisfying the following conditions

(i) For each R>1, 0 < ig(x) <1 for all x in R?, {g(x) =1 for
|2 <R, and {x(x) = 0 for | x| = 2R.

(ii) There exists a constant Cy , independent of R, for which

| Lr(x) — La(p)] < [ x—v
for all x and y in R™.

Let o(x) = (1 + «?)'/2 and let p be any real number. Then, for any positive e,
there exists a constant C(c) independent of R for which the inequality

Z L aaa u “
la|=& N (3.4)
<e H gy gm u H + C(e) | o®u|),, , 0k <m,
lal=m »

holds for all u in H,, (R").
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Proof. Again suppressing the subscript R on each function {z we note
that it suffices to show that for any € > 0 there exists a constant C(e) inde-
pendent of R for which the following inequality holds:

au

Z gktegk u
lal=k ox ) (34/)
o o
<e ghitokil Ty ” + C(e) gh-togi-1 <y J
|a[§c+l dx= 1, 1a1§i-—1 O 1

forallue H,, ,(R")and 0 < & << m. The desired inequality (3.4) then follows
easily.

Our derivation of (3.4') is based on the following well-known result, in
which we set

ELIE)

& »
ek ox®

There is a constant C” such that for any cube £2 with sides of length s parallel
to the coordinate axes, and for any « in H,, (£2) and any €' > 0,

f | D P dx < e'f | DRy |p dx + C (EL + s—p) [ | D=1y |» dy,
2 2 QR
0<k<m (3-5)

(This result follows from the corresponding result for the unit cube by a
stretching.)

Let 2 be any such closed cube in which { does not vanish. From (3.5) one
has

f | go+kgk [P | DFy |P dx
Q
< max | gPtF{E [P . ’ | D¥u |? dx
7 Jg

i 1
+hpk (D ) E+1 . ’ - k—1y D
gn}?x|a" §\PteJQ|D u\de+C(€, +s”)L|D u |? dx

’

maxg I ao+k§k |11 s €
= ming | ***{* |P iming, | of |?

f | goHRHILEHL [P | Dy (P dy
2
+C (L +577) [min | of 7] fg | go+k-1gh=1 |7 | DE-ly lpdxﬁ . (3.6)

We shall make use of the following (essentially special) case of Whitney’s
Lemma. For completeness, the proof is given at the end of this section.
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Lemma 3.2. Let f(x) be a bounded nonnegative continuous function in R™
satisfying for some K >0

[f@) —f()I <K|x—y| forx,yeR"

There is a covering of the subset of R on which f is positive by closed cubes with
faces parallel to the coordinate hyperplanes and with nonoverlapping interiors,
{0}, 1 = 1,2,..., such that

s; = side length of O; << némf(r) < nglgaxf(x) < 25/(1 + Knl/2),

We shall apply Lemma 3.2 to the function f = of which satisfies the con-
ditions of the lemma with K = 1 4 2C; . In the resulting covering by cubes
Q;,7=1,2,.., we see from the Lipschitz condition of { that

I%E:XC < néijni - %nl/%j < ng)ljn L (1 + %—lnl/z IIbZ:XO') .
Since each Q; is contained in the ball | x | <{ 2R we see that
Pt s

where C is a constant independent of R and j. Furthermore, we have
max ¢ < min o 4 #'/% s; < min o(1 + n'/2).
Q; Q; o,
Consequently, we may assert that for a constant C independent of R and of j,
max | gotkgE ]p/néin | gotElE [P <L C,
If we use this inequality in (3.6) with £2 = Q; we may infer that
f | go+kLk |7 | Dhy [P d
H

<c s(e’/min | ot |p)f | gk HIZEHL P | DRy |2 dy
{ ] 0,

_{_ Cl (_61’_ + S;p) [n,éijn l UC lp] f0i ] 0,o+k-—1ck—1 ]p | Dk—lu [1) dx% .
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Setting ¢’ = ¢/C ming | of |?, and using the last inequality of Lemma 3.2
for f=0f and K =1 + 2C,, we find on summing that, for any e > 0,

Z Jﬂo- [ oo tklE |2 | Dhy |P dx

<eY J' | grHkHIZEHL [P | DEHy (P dy
i Y0

+CC (o 2201+ Kntp) Y [ oot a3 | Dt p
iv0,
This is equivalent to (3.4'), and Lemma 3.1 is proved.

Proof of Lemma 3.2. Let M = sup f, and let z,,* be the set of points in
R* with coordinates which are integral multiples of M. Let L be the collection
of closed cubes with side M centered at the points of 2,," and with edges
parallel to the axes. Denote by K| the set of those cubes in L on which
min f(x) > M. Subdivide each of the remaining cubes into 2* cubes of side
length M/2 and denote by K| the set of the latter with the property:

min f= M.
Continuing this process we obtain a collection Q of cubes all of which have
the property

min of f on the cube > side length of the cube.

We show first that the set where f is positive is covered by cubes of Q. For
example suppose x does not belong to any of the cubes of Q. There is, then,
a sequence of cubes %, i = 1, 2,..., containing x, and with

min f < M 2~ = side length of Q.
Q'

Because of the Lipschitz conditions of f it follows that
Fx) < M 2741 + n*2K)

and hence f(x) = 0.
Now order the cubes in Q into a sequence Q; with side lengths s;,
j = 1,2,.... From our construction we see that if x €Q;, then

f(x) < 255 4 20235, K

and the lemma is proved.
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4. NurrL Spaces oF ErLLipric OPERATORS IN R”

As before let 4,, denote a given linear elliptic partial differential operator
with constant coefficients which is homogeneous of order m and which acts
on CF-valued functions of n independent variables. We wish to investigate
the nullspaces of linear elliptic partial differential operators of order m
whose coeflicients approach those of A, at infinity at a certain rate. Of
specific concern is the dimension of the null space N ,(4) of such an operator
A in each Banach space H,, ,(R"; C¥), 1 < p <C oo, and the behavior of this
dimension when the operator is perturbed slightly in a prescribed manner.
The situation depends slightly on whether or not (m — n/p’) is a nonnegative
integer.

THEOREM 4.1. Let p and p’ satisfy | <p << oo and 1jp +1/p' = 1.
Consider an elliptic partial differential operator

Au(x) = Aou(x) + o‘(x) u(x)

laj<m

whose coefficients satisfy the following conditions: There exists a positive number
8 such that

lim sup | & "7t ] by(x)] < 8

Jor each o with | o | < m; if 8 is sufficiently small, then the dimension of N (A)
is finite.

Proof. Consider first the case in which m — n/p’ is not a nonnegative
integer. N ,(A) is a closed subspace of L,(R"; C*) and is finite-dimensional
if and only if the set S = {u e N (4): || u||, = 1} is compact. Therefore, to
prove the theorem, it suffices to show that, for sufficiently small 3, every
sequence in the closed subset S of L,(R"; C¥) contains a subsequence which
is Cauchy in L (R"; C¥).

For some R sufficiently large that

sup [ "I [ b(x)] <8

xR

for each o« with | a| << m, let ¢ be an infinitely differentiable real-valued
function on R* with compact support which is such that ¢(x) = 1 whenever
| # | < R. Suppose that an arbitrary sequence {«;} in S is given. If 8 is suffi-
ciently small, or if the coefficients b,(x) are uniformly continuous on R"
whenever | « | = m, then there exists a constant C for which the estimate

1 #llm,» < C{l Aull, + || 2]} (4.1)
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holds for all # in H,, ,(R"; C*) (see [2]). Hence the sequence {«,} is bounded
in H, (R"; CF). In light of the Rellich compactness theorem (see [3, p. 311),
then, it may be assumed that the sequence {¢u,} is Cauchy in LI,([R" C")
Therefore, the theorem will be proved if it can be shown that, for & sufficiently
small, there is a subsequence of {(1 — ¢) #;} which is Cauchy in L, (R?; C*).

Assume that & is so small that an estimate of the form (3.1) holds with

p = 0. It follows from this estimate that
<,

is finite for any u in N, (4). This, in turn, implies that the right side of the
inequality (2.2) with p = O is finite for any u in N (A4), for if u is in N,(4),
then

z H | % \m

|Hx|onou||p=“|xlm(‘4°° —A)ull,,<C z

lal<m

o
]

cx* |,
for an appropriate constant C. From this, it is seen that | x |™ A (1 — ¢} u

is in L (R"; C*¥) whenever u is in N,(4), and so the estimate (2.2) may be
applied with p = 0 to (1 — ¢) u for such ». Then for any u in N (4),

7 “I Hat (1 4Y o .”
lcle<lm “‘ Y ¥ o u”p
< ¥ fivsa =g
|a} <m
aa
+ 3 e 0 = — s (1~¢)u]

la|<m

Col 1% 1" 4o(1 — $) ull,
+ 3 Jlsmifa - gmu—gma =] |

lal<<m
< Golll x| (1 —¢) (A — A) uli,
+ Gl P LAl — ) — (1 =) Al
v 3 a0 —d) gt =] |

lel <m
<Cp Y 1wl —9) pru

|| <m D
+ Coll 1™ [Au(l —fﬁ)u —(1 —¢>)A ulll,

+ 3 e 0 —d) = gm0 =] -

|x| <<m
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Consequently, if it is assumed that 8 is less than 1/C,, then there exists a
constant C for which the estimate

Y i =gz
laj<m
<c 311 x| [Ae(l —$) 1 — (1 — ) eall, (4.2)

b3 w0 g — e —9u] |

jal<<m

holds for all z in N,(4).
Now the sequences

{l 2" [Au(l — ) u; — (1 — ¢) detts]}

and
S .| le] _ _31 L ﬁ —_— . (
1 [(1 =) s — 5 (L= D
for | « | << m, are bounded in H, ,(R"?; C*) and consist of functions whose

supports are contained in the support of ¢. Therefore, it is a consequence of
the Rellich Compactness Theorem that there exists a subsequence {u;} of
{u;} such that the sequences

{lam[Ae(l —¢)u;, — (1 —¢) Aoy [}

and

w1 (=) s, — e (1 — D] {

for | a| < m, are Cauchy in L,(R"; C¥). Substituting # = u;, — #; in the
inequality (4.2), one verifies immediately that the sequence {(1 — ¢) ui’}
is itself Cauchy in L,(R®; C¥). This completes the proof of the theorem in
case m — nfp’ is not a nonnegative integer.

Suppose now that m — n/p’ is a nonnegative integer. To prove the theorem
in this case we show simply that N(4) is contained in N;(A) for any p > p.
Choosing $ larger but close to p, and so that m — n/p’ is not a nonnegative
integer, and taking 8 small enough (appropriate for #) we may conclude that
dim N,(4) < dim N4(4) < oo. To prove N,(4)C N;(A) we make use of
the results of [1, Appendix 5]. Let B;, B,, and B; be concentric balls
of radii 1, 2, and 3. According to those results, if u€ H, , in B; and
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satisfies Au = 0 then u is bounded in B, and its derivatives up to order m
belong to L; in B, for any p > p. In fact

» (“l rd
su u‘P<C‘ u| dx
up luir < C ) Y |za
3 la| <<m
and
» 8:1 p ;o
—u| <C [ u|?dx,
ox™
By |a|m ¢ v By

where the constant C is independent of the center of the balls. If
ue H, ,(R"; CF) we conclude that | # | is bounded in R” by some constant 3,
and from the second inequality we infer that

6}{1
ox>

’ < CM#-» ’ | u |? dx.
s,

u

Y By o <m

Covering R™ by such balls B, with at most finite intersection and summing,
we find

o], 5 < const MP-2{jul|,

and hence u € N(4).

We now take up the question of the variation of the dimension of the null
space [V,(4) under small perturbations of 4. The most extensive results are
obtained when m — »/p’ is not a nonnegative integer.

TrEOREM 4.2. Let p and p' satisfy 1 <p < oo and 1p+ 1jp =1,
and assume that (m — nfp’) is not a nonnegative integer. Consider an elliptic

partial differential operator
’('p.
ox®

Aux) = Au(x) + 3 byx) u(x)

lal<m

whose coefficients are such that

lim sup [ x {"l2l [ by(x) < 8

Jor eack o with | o | < m, where 3 is some positive number sufficiently small that
Theorem 4.1 guarantees the finitedimensionality of N (A). Then there exists a
positive number ¢ such that if

A'u(x) = Aou(x) + Y, b,/(x) ;

lal<im

xaa u(x)
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is an elliptic partial differential operator whose coefficients satisfy

sup(l + ! x [)7=1l | by(x) — b,/(#)] <€
xeR"

for each o with | o | < m, then the dimension of N (A’) is less than or equal to
the dimension of N (A).

Proof. Denote the dimension of N, (4) by g and suppose that the theorem
is false. Then for each positive integer , there exists an elliptic operator

Au(x) = Aou(x) + Y b, (x) u(x)

jal<Cim

having the property that
sup(L - [ [y 1 bu(x) — B, () <47
XE %

for each o with | « | < m, and such that the dimension of N,(4,) is greater
than ¢. Observe that a positive number ¢, may be found such that any
subspace of L,(R"; C¥) with dimension greater than ¢ contains an element of
norm one whose distance from N,(A4) is at least ¢, . In particular, an element
u; of N, (4;) may be chosen for each ¢ such that || #; ]|, = I and such that
the distance of #, from N, (A) is greater than ¢, . Now it must be the case
that the sequence {Au;} converges to zero in L (R®; C¥); therefore, if a
subsequence of {u,} exists which is Cauchy in L (R"; C¥), it follows from the
closedness of 4 that the elements of this subsequence converge to a function
in N,(4). But no subsequence of {#;} can converge to an element of N (4)
since the functions #; all lie at a distance greater than ¢, from N, (A4). To prove
the theorem, then, it suffices to show that there exists a subsequence of
{u;} which is Cauchy in L (R"; C¥).

Now it is implicit in the assumption concerning the size of 8 not only that
8 is less than the inverse of the constant C, appearing in the estimate (2.2)
but also that there exist estimates involving the given operator 4 which
have the forms of (4.1) and (3.1) with p = 0. It follows from these estimates
and from the “nearness” of the operators 4, to A that, for sufficiently large ¢,
there exist analogous estimates for the operators A4; in which the constants
that appear may be chosen independent of 7. Note for later reference that,
consequently, the sequence {«,;} is bounded in H,, ,(R?; C¥), the sequence
{l x |™ Au;} converges to zero in L ,(R"; C*), and the quantity

2

la| <<m

aat

[ i A Wi

is finite for sufficiently large 1.
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For some R sufficiently large that sup, =z | ¥ |"~1¢l | 8,(x)| is less than &
for each o with |a| < m, let ¢ be an infinitely differentiable real-valued
function on R” with compact support which is such that ¢(x) — | whenever
| x| < R. Since {#;} is bounded in H, ,(R¥; C*), it may be assumed in
light of the Rellich Compactness Theorem that the sequence {¢u;} is Cauchy
in L,(R"; C¥). Then it only remains to find a subsequence of {(I — ¢)u;}
which is Cauchy in L,(R”; C¥). As in the proof of the preceding theorem, it is
easily seen that | x |™ A (1 — ¢) (; — ;) is in L,(R*; C*) for sufficiently
large 7 and j, and one may apply the estimate (2.2) to obtain

Hmw(l—qs)@a(i w)|

lal <<m

< Hlx\‘“‘

lajsm

©% e [0 =) S ) — m (= = )] |
la|<<m

< Coll %1 A1 — ) (s — w)l,

F e [0 =) e — ) = 5w (1= ) (=)
o] <m »

< Coll 1 x ™ (1 — ) (Ao — A) (s — w)ly

+ Coll {2 ™ (1 — ¢) A(u; — uy)lly

+ Coll 1 7 [l — $) (o — ) — (1 = ¢) Aclats = )]l

3 e [0 =) o e — ) — i (1 =) e — )] |

lal<m

w9 @—w)

Since
Colllaim (1 —¢) (Ao — A) (u; — u:‘)”au

S e - g -]

[a1<m

and since C,d is less than one, it follows that there exists a constant C for
which the inequality

)

laf<<m

<Cliaim (1 —4) A — ),
H1 1A =) 0~ ) = (=) A — il
S e [0 -9 2w —w) — gm0 =9 @ —w) | |

e (1 — ) g (= )|

(4.3)

|a|<m
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holds for all sufficiently large ¢ and j. Note that the sequences

{2 [du(l —$)u; — (1 —¢) Aotis]}

and

3‘1\7[10‘1 [(1 _¢)%ul—§%(l _¢)u1]: ’

for | o | < m, are bounded in H,,(R"; C*) and consist of functions whose
supports are contained in the support of . Then it follows from the Rellich
Compactness Theorem that there exists a subsequence {ui’} of {u;} which is
such that the sequence

{x|m[A(l —P)u;, — (1 —¢) Aty ]}
and

61:).
T oax

g‘x“al [(1—¢)—§%ui,. (1‘4’)“"7]2’

for |a| <m, are Cauchy in L,(R"; C*¥). Furthermore, the sequence
{lx|m (1 —¢) Au;} converges to zero in L,(R"; C*), and so a particular
consequence of inequality (4.3) above is that the sequence {(1 —¢)u;} is
itself Cauchy in L,(R"; C*). This completes the proof of the theorem.

If m — n/p’ is a nonnegative integer, then the conclusion of Theorem 4.2
is false. This is demonstrated by the following example, in which m = 1 and

n=p=p =2

ExampLE, Let A, denote the Cauchy—Riemann operator on H,(R? C2),
ie.,

5 8
A.U() = 5= UG) + M5 UG,

where

M=} o)

for U in H,(R?; R2). Let { be an infinitely differentiable real-valued function
on R™ which vanishes in a neighborhood of the origin and which satisfies
{(x) = 1for | x| > 1. For e 22 0, and x in R?, define

1e { 1 X5 i
(1) = 00 = 5 (i + )+ 0 =€ o)
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and set

T — (1 "E‘).

€ —_
Uoe Uy,

Since U/ x) never vanishes we have

T = (el L7 (50 %), and 1w = ().

Upe Uy 0
Thus U, satisfies the system of equations

AL(TU) =0 (4.4)

or

~

7] o
/ — T -1 — ’
AU, = 7w Uet TMIZ 20 U+ BU, =0, (4.4

where B, is the matrix

- o p 7 € pa
B, = T‘(axl T2 4 Mg T )
For € > 0, U, is in H,(R?; C?) and thus the dimension of N,(4,) is positive
for € > 0. (In fact, the dimension of Ny(A4,) equals two for ¢ > 0.)
Now for | x| > 1, the functions u,. , #,, are real. Therefore,

1 1 1 1
e = T Tx Py NC (xl T ix.z) C T T ™ (xl T ix‘) ’
and
_ p o (md — u M)
T = uyd + u, M, T = _————_”i Tue
Since M? = — I we see that

TMT =M for | x| > 1.
Furthermore, for | x| > 1,

b= = (g ) + TT2 (5 7] - 7
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A straightforward calculation yields

B=a= |2; PECR (121|ix 5 (Re (rlim)l_lm (x1—11~ix2) M)
. 2e X — X
B l———i—_v\? (r xl) :

Hence for | £ | > 1 the system (4.4') takes the form

AU+ (B
2

T —
14+ a2 )L 0.

¥

We see also that By(x) vanishes for { x | > | and, for some constant C inde-
pendent of e,

sgng;(l 1% 1) | Bdx) — By(x)! < C

If the conclusion of Theorem 4.2 were valid in this case, it would follow
that dim N,(4,) > 0.

We claim, however, that dim Ny(4,) =0, i.e., the only solution U in
H (R?%; C?) of A4)U =01is U =0. For if U is a solution then, according to
(4.4),

- ()= o

satisfies
AV =0.

If follows that f = Re v, + i Re v, and ¢ = Im 9, 4 7 Im v, are holomorphic
functions of 2 = x, + #x, . Furthermore, since U = Ty is in H(R?; C?)
and, for | 2| > 1,

__ (Re(l/z2) — Im(1/2)
To= (Im(l/z) Re(l/z)) ’

so that

_(Re(fls) -+ iRe(gl2)
U= (ton(fls) - 1m(els))”

we see that

ff!m'>1(|f(2)|2 + | g(2)1?) | & |72 dx; dxy < cO.

By Liouville’s Theorem, f and g are zero. Hence, U is the trivial solution.
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In fact, if no more is required of the operator

’C‘L\

A=dot ¥ b5

lal<<m

than that lim supj ... | x |12/ | b,(x)| be small for | « | < m, then it appears
that the techniques of the proof of Theorem 4.2 cannot be used to obtain
an upper-semicontinuity theorem at all when m — n/p’ is a nonnegative
integer. The reason is that the estimate (2.2) can only be profitably applied
in this case with p small and positive, and one can easily construct operators -4,
with lim sup|g,,, | ¥ |"~1o1] b,(x)| arbitrarily small for |«| < m, which
contain elements in their null spaces for which the left side of this estimate
is infinite for any positive p. However, if more stringent conditions are placed
on the coefficients of the operator 4, then one obtains the following simplified
theory, which is valid for all positive integers m and # and all p with
1 <p<o0.

Tueorem 4.3. Let p € (0, 1] be such that an estimate of the form (2.2) holds
for all uin H,, (R"; C¥) such that | x |"** A u is in L (R*; C*). Consider an
elliptic partial differential operator

Au(x) = Au(x) + Y by(x) % u(x)

jaj<<m

whose coefficients are such that

sup | x [mlel+e 1 b (x)} << o0, la | < m.
xeR™

Then there exists a constant C for which the estimate

o
Y e su] < clismee dul, + omdul, +ul)
|aj<m r
holds for all u in H,, ,(R"; C*) such that | x |"+* Au is in L, (R"; C¥), where
o(x) = (1 + [ )2

Proof. Note that the operator A satisfies the hypotheses of Theorem 3.1.
Then, for a function u in H,, ,(R"; C*) such that | x [™+* Au is in L,(R"; C*),
one has

aa
i A, < wmeo dull, + | [x e T b, 5
o <m ox

=2
u
X% »

<l Aull, +C ¥

lal<<m

<\ a e dully, + CllomAull, + Cllul,
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for appropriate constants C independent of u. Consequently, | x [ A u
is in L,(R"; CF) for such a function u, and the desired estimate follows from
the inequality (2.2).

CoroLLARY 1. If p and A satisfy the hypotheses of the theorem, then the
dimension of N, (A) is finite.

CoroLLARY 2. If p and A satisfy the hypotheses of the theorem, then there
exists a positive number € such that, if

A'u(x) = Aou(x) + Y. b/(x)

la|<<m

aa
ox*

u(x)

is an elliptic partial differential operator whose coefficients satisfy

sup(l 4 | & [ym—lel+o | b, — b,/ (x)] < € for | ol < m,
xeR"

then the dimension of N, (A') is less than or equal to the dimension of N ,(A).

Corollary 1 follows from Theorem 4.3 with a straightforward application
of the Rellich compactness theorem. The proof of Corollary 2 follows
closely that of Theorem 4.2 in spirit.

5. AN OPERATOR WITH AN INFINITE-DIMENSIONAL NULL SPACE

A method will now be described for constructing an elliptic partial dif-
ferential operator in R® whose nullspace in any of the Banach spaces
H, (R C*), for 1 < p < o, is infinite-dimensional. The operator pro-
duced by the construction very nearly satisfies the hypotheses of Theorem
4.1 in the following sense: If the operator is denoted by

Aufx) -+ | Y by(x) % u(x),

al<<m

where, as before, 4, is an elliptic operator with constant coefficients which is
homogeneous of order m, then the coefficients are such that

li§n‘ sup | x [m=lel | b,(x)|

is finite for each o with | « | <{ m. Therefore, it must be the case that the
operator fails to lie within the scope of Theorem 4.1 because the quantities

lim sup | x ["720 [ by(x)] ,  for [l <m,

409/42[2-3
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are too large. This seems to indicate that, in order to obtain results which
are more extensive than those described in this paper, one must consider
properties of the operators at hand in addition to the size of their coefficients
near infinity.

The construction begins with an elliptic partial differential operator

Agu(x) = Acu(x) + ), (x) u(x)

ta|<<m

which satisfies the following conditions
(i) A, is an elliptic partial differential operator with constant coef-
ficients which is homogeneous of order m;

(i) the coefficients a,(x), for | a| < m, are infinitely differentiable
and have support in the unit ball in R™;
(iii) there exists a (necessarily infinitely differentiable) nonzero function

u#, having support in the unit ball in R* which satisfies Agu, = 0.

An operator satisfying these conditions has been constructed by Plis’ [8].
Choose a vector w in R” of unit length, and define

bo(x) = ¥ 2-90n-1aig (277 — d)
0

for each « with | « | <{ m. The functions b,(x) are well-defined and, in fact,
infinitely differentiable, since at most one term in the sum on the right side
can fail to vanish at any point & in R". Furthermore, since the functions
b,(x) differ from zero only if x is such that there exists a nonnegative integer
7 for which | » — 2/+2w | < 2/, it is easily verified that

[ b)) < S max | a,(+)]

for each x in R" and for each « with | a | << m.

Now define
Au(x) = A ulx) + > ba(v) u(x)

lal <m
and

(%) = 4y(27x — 4w)
for j = 0, 1, 2,.... One immediately sees that

Aoy(x) =0
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for j =0, I,.... Since the functions z; are infinitely differentiable and have
nonoverlapping compact supports in R”, it follows that the null space of 4
in each Banach space H,, ,(R% C*) is infinite-dimensional.
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