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LEAST-CHANGE SECANT UPDATE METHODS
FOR UNDERDETERMINED SYSTEMS*

HOMER F. WALKERt AND LAYNE T. WATSON:

Abstract. Least-change secant updates for nonsquare matrices have been addressed recently
in [6]. Here the use of these updates in iterative procedures for the numerical solution of underde-
retrained systems is considered. The model method is the normal flow algorithm used in homotopy
or continuation methods for determining points on an implicitly defined curve. A Kantorovich-type
local convergence analysis is given which supports the use of least-change secant updates in this al-

gorithm. This analysis also provides a Kantorovich-type local convergence analysis for least-change
secant update methods in the usual case of an equal number of equations and unknowns. This in

turn gives a local convergence analysis for augmented Jacobian algorithms which use least-change
secant updates. In conclusion, the results of some numerical experiments are given.
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motopy methods, curve-tracking algorithms, parameter-dependent systems
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1. Introduction. Our notational conventions, which are not strictly observed
but are intended to serve as helpful guidelines for remembering what is what, are the
following: Unless otherwise indicated, lowercase letters denote vectors and scalars,
and capital letters denote matrices and operators. Boldface uppercase letters denote
vector spaces, subspaces, and affine subspaces. For positive integers p and q, Rp de-
notes p-dimensional real Euclidean space and Rpq denotes the space of real p q
matrices. We refer particularly to Rn and R for 5 _> n, and for convenience, we set

n+m for m _> 0. Vectors with bars are in Rn; without bars, they are in Rn

or Rm unless otherwise indicated. We often partition vectors, e.g., we write 2 E R
as 2 (x, A) for x E Rn and A Rm, and we do not distinguish between (x, A) and

(). We also often partition matrices, e.g., we write B e Rnn as B [B,C] for
B R’n and C Rnxm. The dimensions of vector and matrix partitions are made
clear in each case, usually by the context. We use "Jacobian" to mean "Jacobian
matrix," and we denote the full Jacobian of a function F by F. If F is a function
of 2 (x, A) E R, then we denote partial Jacobians OF/Ox by Fx, OF/OA by F, etc.
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1228 HOMER F. WALKER AND LAYNE T. WATSON

We assume throughout that there are given but unspecified vector norms on l:tn,
Rm, and ttn, together with their associated induced matrix norms, and we denote all
of these norms by I" I. Similarly, we assume there is a given but unspecified matrix

norm on Rnn associated with a matrix inner product, and we denote this norm by

I1" II. A projection onto a subspace or affine subspace which is orthogonal with respect
to I1" II is denoted by P with the subspace or affine subspace appearing as a subscript.
If P denotes a projection, then we set P+/- I- P, where I is the identity operator.

Of interest here is the numerical solution of a zero-finding problem for a (possibly)
underdetermined nonlinear system, which we write in the following form.

PROBLEM 1.1. Given F Rn Rn with >_ n, find . Rn such that
F(2,, =0.

We make the following basic hypothesis throughout the sequel.
HYPOTHESIS 1.2. F is dierentiable and F is of full rank n in an open convex

set f, and the following hold:
(i) There exist / >_ 0 and p E (0, 1] such that IF’(f)- F’(2,)I

.for all 2,, fl e .
(ii) There is a constant # .for which IF’(2,)+I <_ # .for all

In Hypothesis 1.2, the superscript "-t-" indicates pseudo-inverse. That is, for b Rn

and 2, e f, F’(2,)+b e Rn is the solution of F’(2,) b having minimal Euclidean

norm, i.e., the solution which is orthogonal in the Euclidean inner product to the
null-space of F(2,), i.e., the solution which is in the span of the columns of
For the analysis in the following, we also define for r > 0

Problems such as Problem 1.1 arise in a variety of contexts. One is equality-
constrained optimization, in which Problem 1.1 is the problem of finding a point on a

constraint surface. Another is parameter-dependent systems of nonlinear equations,
in which usually 2, (x, ), where x Rn is an independent variable and Rm is a

parameter vector. Of particular interest here is the context of homotopy or continua-
tion methods for determining points on an implicitly defined curve, in which 5 n+ 1
and 2, (x, A) with A R. For a description of these methods, see the extensive

survey of Allgower and Georg [2] and also Georg [15], Morgan [20], [21], Rheinboldt

[24], Watson [25]-[28], Watson, eillups, and Morgan [29], Watson and Fenner [30],
Watson and Scott [31], and Watson and Scott [32]. Here, we consider arbitrary 5 >_ n
since doing so incurs no additional difficulty, offers important advantages in the sequel,
and is useful for the full range of applications.

Problem 1.1 must generally be solved numerically by some iterative method. The
model method here is the normal flow algorithm [16] used in homotopy or continuation

methods; see, e.g., Watson, Billups, and Morgan [29] and the references given there.
We write this model method as follows.

ALGORITHM 1 3 Given 2,0 E Rn determine for k O, 1,

2,k+ 2,k F’(2k)+F(2,k).
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Algorithm 1.3 takes the name "normal flow" from the fi n + 1 case, in which the
iteration steps are asymptotically normal to the Davidenko flow; see [7] and [29]. For
any 5, it is clear that each iteration step -F(2k)+F(2k) is normal to the manifold
F(ffc)

_
F(k). Of course Algorithm 1.3 is just Newton’s method in the 5 n case.

As with Newton’s method in the 5 n case, it may be necessary in practice to
augment Algorithm 1.3 and all other algorithms considered below with procedures for
modifying the iteration step to ensure progress from bad starting points, but we need
not consider such procedures here. Algorithm 1.3 also shares with Newton’s method
the computational expense of evaluating the Jacobian and solving a linear system for
the step at each iteration, and this expense is especially likely to be significant when
the dimension of the system is large.

In the 5 n case, quasi-Newton methods are very widely used as cost-effective
alternatives to Newton’s method. The basic form of a quasi-Newton method for solving
F(x) 0, F" Rn --. R, is

(1.2) Xk+l Xk BIF(xk),

in which Bk .. F(xk) E Rnn, the Jacobian of F at xk. The most generally effective
quasi-Newton methods are those in which each successive Bk+ is determined as a
least-change secant update of its predecessor Bk. As the name suggests, Bk+l is deter-
mined, as a least-change secant update of Bk by making the least possible change in

Bk (as measured by a suitable matrix norm) which incorporates current secant infor-
mation (usually expressed in terms of successive x- and F-values) and other available
information about the structure of F. There are also notable updates which, strictly
speaking, are least-change inverse secant updates obtained in an analogous way by
making the least possible change to B-. When speaking generically of least-change
secant updates, we intend to include these. When distinguishing least-change secant
updates from least-change inverse secant updates, we sometimes refer to the former as
direct least-change secant updates. In [12], Dennis and Schnabel precisely formalize
the notions associated with least-change secant updates and show how the updates
most widely used in quasi-Newton methods can be derived as least-change secant
updates. In [14], Dennis and Walker show that least-change secant update methods,
i.e., quasi-Newton methods using least-change secant updates, can be expected to
have desirable convergence properties in general. See also Dennis and Schnabel [13]
as a general reference on all aspects of quasi-Newton and least-change secant update
methods.

In view of the success of least-change secant update methods in the 5 n case, it
is natural to consider least-change secant update methods for general >_ n which are
obtained from Algorithm 1.3 by replacing F(k) with a matrix maintained by least-
change secant updating. The main purpose of this paper is to study such algorithms.

In 2 below, we consider Algorithm 1.3 and analogous algorithms which use least-
change secant updates. For the record and to set the stage for further analysis, we
first give a local convergence theorem for Algorithm 1.3. Our understanding is that
something like this local convergence result has been assumed in folklore but has
not been previously published [1], although some results for a modified version of
Algorithm 1.3 have been given by Ben-Israel [4]. Next, we formulate and develop
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a local q-linear and q-superlinear convergence analysis for analogues of Algorithm
1.3 which use nonsquare-matrix extensions of least-change secant and inverse-secant

updates given recently by Bourji and Walker [6] and Beattie and Weaver-Smith [3].
We note that these and all other updating algorithms considered in this paper are,
in the terminology of [14], fixed-scale least-change secant update methods. That is,
the norm I1" II on ttnn used to define least-change secant updates remains the same
for all iterations. Thus our analysis does not apply to algorithms which use the
nonsquare-matrix extensions of the Davidon-Fletcher-Powell and Broyden-Fletcher-
Goldfarb-Shanno updates given in [6], for these updates are least-change with respect
to norms which vary from one iteration to the next.

The analysis in 2 proceeds more or less along standard lines in many ways, and
the developments parallel those of [14] and [6] in many particulars. We have followed
the usual approach (cf. [14], [6]) of carrying out most of the difficult technical work
in a very general context and isolating the details in an appendix. However, the
analysis of 2 does have the important, somewhat nontraditional feature of being a

Kantorovich-type analysis; see, e.g., [23]. By this we mean that there is no a priori
assumption of existence of or proximity to a solution of Problem 1.1 which is expected
to be a limit of an iteration sequence. Such an analysis is necessary in the context
of interest here, since solutions of Problem 1.1 cannot be assumed to be isolated and
therefore no particular solution can be singled out a priori as an expected limit of an
iteration sequence. We hasten to note that our analysis does not use the method of
"majorization," which some regard as characteristic of a Kantorovich-type analysis
(cf. Marwil [18]), but accomplishes the same ends through more direct means. We
also note that with fi n, this analysis provides a Kantorovich-type local convergence
analysis for general fixed-scale least-change secant and inverse secant update methods
in the usual case of an equal number of equations and unknowns. Kantorovich-type
local convergence analyses (using "majorization") have previously been given in the

n case for least-change secant update methods which use Broyden or sparse
Broyden updates by Dennis [9], Marwil [18], and Dennis and Li [11] and for more

general quasi-Newton methods of the form (1.2) by Dennis [8], [10].
An iterative method other than Algorithm 1.3 which is often used in homotopy

or continuation methods is the augmented Jacobian algorithm; see, e.g., Billups [5],
Georg [15], aheinboldt [24], and Watson, Billups, and Morgan [29]. We consider this
method in the following basic form.

ALGORITHM 1.4. Given 2o E l:tn and V l:tmn such that

is nonsingular, determine for k O, 1, ...,

where $k satisfies F’(2k)k --F(2k) and Vk O.
Other forms of this algorithm are considered in the 5 n+ 1 case in [15], [24], and

[29], including forms in [15] and [29] which use a simple least-change secant update
(the (first) Broyden update, see [6] and 4 below) to approximate F’. In [15] and [24],
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V is taken to be the transpose of a well-chosen unit basis vector in Rn; in [29], V is
taken to be the transpose of an approximate tangent vector to the solution curve.

In 3 below, we first use the results of 2 to give a local convergence result for
Algorithm 1.4 and to outline a local q-linear and q-superlinear convergence analysis
for an analogue which uses direct least-change secant updates to approximate F’.
The approach is to embed the system of Problem 1.1 in an augmented system of 5
equations in a natural way and then to apply the results of 2 in the case of an equal
number of equations and unknowns. We then formulate local q-linear and q-superlinear
convergence results for an analogue of Algorithm 1.4 which uses least-change inverse
secant updates, sketching proofs which parallel those of the corresponding results in

2.
For perspective, we note other recent work which is related to the local conver-

gence analyses for updating algorithms given here. In [6], a local convergence analysis
is given for certain paradigm iterations for solving Problem 1.1 which use least-change
secant updates. Although these paradigm iterations are very general in some ways and
more or less include the updating algorithms given in this paper, the local convergence
analysis in [6] does not apply to the algorithms here. Indeed, the local convergence
analysis in [6] is intended to apply to methods for parameter-dependent systems in
which some explicit control is exercised over successive parameter values. In particu-
lar, the local convergence results of [6] are conditioned on the rate of convergence of
the last m components of the iterates to their limits, and nothing can be said about
this rate of convergence for the updating algorithms given here. In work indepen-
dent of that here and in [6], Martinez [17] considers Newton-like iterative methods
for underdetermined systems which use very general procedures for updating approxi-
mate Jacobians, and he develops a general local r-linear and r-superlinear convergence
analysis for these methods. He points out as a special case the possibility of maintain-
ing approximate Jacobians in normal flow algorithms with updates which are, in our
terms, the Frobenius-norm least-change secant updates developed in [6, 2 and 3.1].
No specific update formulas are given in [17], although experiments with (sparse) first
Broyden updating are discussed.

In 4, we outline some numerical experiments. These experiments are not in-
tended to be at all exhaustive or conclusive but rather to indicate some basic properties
of and issues associated with the methods considered here.

2. The normal flow algorithm. We begin with a local convergence theorem
for Algorithm 1.3.

THEOIEM 2.1. Let F satisfy Hypothesis 1.2 and suppose is given by (1.1) for
some > O. Then there is an e > 0 depending only on,l, p, #, and such that if
o E and IF(o)l < e, then the iterates {:k}k--0,1,... determined by Algorithm 1.3
are well defined and converge to a point , such that F(,) O. Furthermore,
there is a constant .for which

Proof. If e and -F’()+F(), then

(2.2)
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If also 2+ 2 4- E 2, then Proposition A.3 in the Appendix with 2+ and
B F’(2) gives

(2.3) IF(+)I- IF(+)- F()- F’()I _<
1 /pllX+P

If g+ =-F’(2+)+F(2+), then (2.2) and (2.3) give

(2.4) I+1 <
1 + p

Suppose e > 0 is so small that

l.4-p.p
(2.5) 7--- < 1 and <

l+p 1--T

It follows from (2.2), (2.4), and (2.5) by an easy induction that if 20 E , and
IF(20)] < e, then the iterates {2k}k=o,1,... determined by Algorithm 1.3 are well defined
and remain in F. Indeed, the steps {gk 2k+1--2k --F’(2k)+F(2k)}k=o,,... satisfy

and so {2k}k=0,1,... is a Cauchy sequence with limit 2, . It follows from (2.3) that
F(2,) =0.

To complete the proof, we note that (2.2), (2.4), and (2.6) yield

--1--7"
i=k+l

< gllx+v

(1 + V)(1 T)
t2A-P<- (1 + p)(1 7")IF()lx+P

for k 0, 1, .... Proposition A.3 with 2 2,, 9 2k, and B F’(2,) gives

IF(k)l < IF’(,)llk ,1 + Ik ,1x+p
l+p

for each k, and so

(2.8) IF()I N/’12k 2,1, k 0, 1,...,

for an appropriate ’. It follows from (2.7) and (2.8) that (2.1) holds for an appropriate
/, and the proof is complete. 1

We now introduce analogues of Algorithm 1.3 which use the nonsquare-matrix
least-change secant updates in [6] and [3]. For completeness, we very briefly review
the general definitions of these updates here before introducing the algorithms which

We thank one of the referees for suggestions which simplified and shortened our original proof.
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use them. For more discussion and, in particular, for specific formulas which extend
the well-known square-matrix updates to the nonsquare case, see [6] and [3].

Throughout the following, we assume an affine subspace A c_ Rnn is given in
which updated matrices are to lie. The elements of A are presumed to reflect the
structure of F which is to be imposed on Jacobian approximations. We denote the
parallel subspace of A by S. For our definitions, we suppose that there are also given
a matrix B E Rnxn to be updated and secant information in the form of vectors
E Rn and y Rn. We set Q(y,) {M Rnxn M y} and note that

Q(y, .) is an affine subspace with parallel subspace N() {M Rnxn M 0}.
We define M(A, Q(y, )) to be the set of elements of A which are closest to Q(y, )
in the norm I1" II if Q(y,) q}; otherwise, we set M(A,Q(y,)) A. Of course,
M(A, Q(y, )) h Q(y, ) if h Q(y, ) q).

We make the following definition.
DEFINITION 2.2. B+ Rnn is the least-change secant update of B in A with

respect to , y, and the norm I1" II if B+ is the unique solution of

Particular least-change secant updates to which the analysis below is relevant are the
following, all obtained with I1" II---I1" IIF, the Frobenius norm:

(i) The (first) Broyden update of [6], obtained with A Rnn.
(ii) The Powell symmetric Broyden update of [6], obtained with A equal

to the set of matrices such that some particular subset of n columns
exhibits symmetry.

(iii) The sparse Broyden update of [6], obtained with A equal to the set of
matrices having a particular pattern of sparsity.

(iv) The sparse symmetric update of [3], obtained with A equal to the set
of matrices having a particular pattern of sparsity and such that some
particular subset of n columns exhibits symmetry.

To define a least-change inverse secant update, we assume that B is of full rank n.
As in [6], we assume in particular that the first n columns of B constitute a nonsingular
matrix, although we stress that any set of n linearly independent columns of B can
be used instead. We write B [B, C] for nonsingular B Rnn and for C Rnxm
and set K [K:,:], where K: B-1 and : -B-I(. We then make the following
definition.

DEFINITION 2.3. K+ Rnn is the least-change inverse secant update of K in
A with respect to , y, and the norm I1" I] if K+ is the unique solution of

/M(A,Q(s,,))

where (s, t) for s Rn and t Rm and (y, t).
From K+ [K:+,Z:+], we can obtain B+ [B+,C+] by taking B+ K:Y and

C+ -/C+-:+; we also refer to this B+ as the least-change inverse secant update
of B. Particular least-change inverse secant updates to which the analysis below is
relevant are the following, all obtained with I1" II I1" IIF:
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(i) The second Broyden update of [6], obtained with A Rnn.
(ii) The Greenstadt update of [6], obtained with A equal to the set of ma-

trices such that some particular subset of n columns is nonsingular and
exhibits symmetry.

We note that whether B+ is obtained as a direct or inverse least-change secant
update of B, B+ satisfies the secant equation B+ y if at all possible, i.e., if A N
Q(y, ) q) in the direct update case or if A N Q(s, 7) q} in the inverse update case.
In any event, B+ is as close as possible to a matrix satisfying the secant equation
among the set of allowable Jacobian approximants. We also note for the analysis in
the sequel that if B+ is a direct least-change secant update of B in A, then for any
G e M(A, Q(y, )),

(2.9) B+ PSinN()G + PSnN()B

and for any M

(2.10) liB+ MII II +/-

see [14] and [6]. Analogous expressions hold for least-change inverse secant updates.
It might be thought natural to consider, in addition to the updates of Definitions

2.2 and 2.3, a least-change pseudo-inverse secant update obtained by making a minimal
norm change in the pseudo-inverse to obtain a matrix with a pseudo-inverse as close
as possible to that of a matrix satisfying the secant equation. It is straightforward
to define such an update, and it has the appeal of offering an extension of the usual
square-matrix least-change inverse secant update which, in contrast to the update of
Definition 2.3, does not depend on a particular set of linearly independent columns of
the matrix being updated. However, we do not think such an update is likely to be
successful. At least it is clear that the local convergence analysis given below cannot
be extended to apply to an algorithm which uses such an update. Crucial to such
an extension would be a bounded deterioration property analogous to Hypotheses A.2
and A.8 in the Appendix, which would ensure local linear convergence, and a pseudo-
inverse update counterpart of the inequality (2.20) below, which would allow us to
show superlinear or optimal linear convergence. Consideration of the pseudo-inverse
analogue of the Broyden update suggests that these properties cannot be expected
to hold for least-change pseudo-inverse secant updates. Indeed, for B E Rnn and
K B+ Rnn, the update of K which is the pseudo-inverse analogue of the
nroyden update is obtained by taking I1" II I1" lie and A Rnn, which gives

yT (_ Ky)y7’
K+ PN(u)K + K +yTy yTy

where N(y)= {M e Rnn My 0}.
F(2+) F(2) for some 2, 2+, and we have

In the usual case, $ 2+- 2 and y

K+ F’(2+)+ K+ F’(2)+ IF’(2+)+ F’(2)+]

PN(u) [g- F’(2)+] + [I- F’(2)+F’(2)] yT
yTy

F’(2)+ [y F’(2)] yT
yTy f’(2+)+ F’(2)+]
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The last term on the right-hand side is O(IIP), and the next-to-last term is also
O(IIP for in the range of K and K near F’(2)+. However, the second term,
which is in N(y)+/-, can only be bounded by a constant times IlK- F’(2)+ll. Thus
there appears to be no hope of realizing a bounded deterioration inequality or an
appropriate counterpart of (2.20) for this update.

In formulating our analogues of Algorithm 1.3, we use a choice rule as in [14]
and [6] for determining admissible right-hand sides of secant equations. Such a rule is
given as a function X which for each pair 2, 2+ E t determines a set X(2, 2+) C_ Rn

in which admissible right-hand sides lie. In most cases of practical interest, there
is no reason for making anything other than the traditional choice, corresponding to
X(2, 2+) {F(2+)-F(2)}. However, in some important contexts this may not be the
preferred choice, and in some instances it may not be admissible in the analysis which
follows. There is an extensive discussion in [14, 3] of choice rules and the conditions
they must satisfy in the case of an equal number of equations and unknowns. That
discussion is valid here with only minor appropriate changes, and we refer the reader
to it.

Our first analogue of Algorithm 1.3 uses direct least-change secant updates.
ALGOIITHM 2.4. Given 2o Rn and Bo R’n, determine for k O, 1, ...,

2k+1 2k BF(2k),
Yk e X(2k,2k+l),

B+ (B)+,

if zk z,, k _> some k0,
ifzkz,, k >_ some ko,
otherwise.

where (B})+ is the least-change secant update of B} in A with respect to k 2k+l-
2, Yk, and the norm I1"

In Algorithm 2.4 and in the other algorithms below, we have not allowed the
options of not updating at an iteration or of taking B C(2) / Ak, where
is a "computed part" of F’(2k) and Ak is an "approximated" part maintained by
updating. Although these options are often a very important part of practically ef-
fective algorithms, we have omitted them here to simplify the exposition. It would be
trivial to modify the analysis below to allow the option of not updating; it would be
straightforward and not difficult to modify it to allow a "computed part" of F (2k) in
each Bk. Under such modifications, the results below would still be valid with only
minor appropriate changes.

Our local convergence analysis for Algorithm 2.4 is given in Theorems 2.5 and 2.6
below. Theorem 2.5 addresses the local q-linear convergence of the algorithm; Theorem
2.6 draws more refined conclusions about the asymptotic speed of convergence and, in
particular, gives conditions under which the convergence is q-superlinear. We comment
further on these theorems and the conditions in them following the proofs.

Our notation and terminology used in association with q-linear and q-superlinear
convergence is that of Ortega and Rheinboldt [23, p. 281]" If {zk }k=O,,... is a sequence
converging to z, in a vector space with norm I" I, then Q{z }, the linear q-factor of
{z}=o,,..., is defined as
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We say that {zk}k=o,1,... converges q-linearly to z, in the norm if and only
if Ql{zk} < 1 and that {zk}=0,,... converges q-superlinearly to z, if and only if
Q{zk } O. Note that in a finite-dimensional vector space q-superlinear convergence
holds in one norm if and only if it holds in every other norm.

THEOREM 2.5. Let F satisfy Hypothesis 1.2 and suppose is given by (1.1) for
some 1 > O. Assume that X has the property with A that there exists an c >_ 0 such

that.for any 2, 2+ E , and any y X(2,2+), we have

(2.11)

for every G M(A, Q(y, )), where 2+ 2. Then for any r (0, 1) and #’ > #,

there are e > 0 and > 0 such that if 2o and Bo A satisfy IF(2o)l < e and

IBo F’(2o)l < , then the iterates (2k}k=o,,... determined by Algorithm 2.4 are well

defined and converge q-linearly to a point 2. such that F(2.) 0 with

and with {IB+kl}k=O,,... uniformly bounded by #’. Also, {IBk- F’(2k)l}k=O,,... is

uniformly small.

Proof. We define an update function U on F F A (see the Appendix) by

U(,+,B) {B+ .U e X(,+)},

where B+ is the least-change secant update of B in A with respect to 2+ -2,
y X(2, 2+), and the norm I1" I[. We show below that Hypothesis A.2 of the Appendix
holds for this update function. The theorem then follows from Theorem A.4 of the
Appendix.

Since liB+- F’(2+)ll <_ liB+- F’(2)ll + 0(11p) by Hypothesis 1.2, it suffices
to show that there are nonnegative constants a and a2 such that for (2,2+,B)

x F x A, every B+ U(2,2+, B) satisfies

From (2.10) and (2.11), we have

where G M(A, Q(y, )). Since B, B+ E A, it follows that

liB+ F’()II u
liB+ P,F’()II + IJP.-.F’(2)II 2

< lib P,F’()II / 2 liB PF’()II. 11

(liB F’(z)II + ll)
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Then (2.13) holds with 1 0 and c2 , and the proof is complete.
Remark. Since F(o) need not be in A in the general context of Theorem 2.5,

it may not always be possible to find B0 E A such that IB0- F(50)l is small enough
for (2.12) and the other conclusions of the theorem to follow. Theorem 2.5 has coun-
terparts in Theorem 3.1 of Dennis and Walker [14] and Bourji and Walker [6], and in
each of those theorems a condition on A and F is given which, if satisfied, guarantees
that there exist elements of A which are sufficiently close to F at the initial point to
imply the conclusions of the theorem. It would not be impossible to formulate such
a condition here, but because in the present context there is no a priori assumption
about a particular solution to which iterates might converge, such a condition would
be ungainly and unnecessarily restrictive while providing little insight. Similarly, the
dependence of e and i is too ungainly to state in Theorem 2.5, but for the record and
for the analysis in 3, we note that it follows from the proof of Theorem 2.5 and from
the remark after Theorem A.4 in the Appendix that e and i depend only on r, #,
p, /, in (2.11), and a bound on IF()I for E n12 (as well as on the norms

THEOREM 2.6. Suppose that the hypotheses o] Theorem 2.5 hold and that {k}k
O, 1,... is a sequence generated by Algorithm 2.4 which converges q-linearly to
with (2.12) satisfied for some r (0, 1) and with k k+ k 0 .for all k. Then
.for B, PAF(Yc,), we have

(2.14) lim lIB* F’(,)] (k ,) B,(k+x Yc,)l O,
--.oo I -,1

which implies

(2.15)

It follows that if { IBl}=0,,...
then

is uniformly bounded by #’ and if r < (1 + ’IB, I)-
g’lB, + (*)]1< ]B, [B.-F’- v( + g’lB, I)

In particular, if F’(.) A as well, then {k}k=o,,...,.
Proof. It suffices to show that

converges q-superlinearly to

lim
I(B B,).s:l

0.(2 7)
’--’ I,1

With (2.17), the theorem follows from Theorem A.5 and Proposition A.6 of the Ap-
pendix. It can be shown as in Lemma 3.4 of [14] that (2.17) is equivalent to

(2.18)
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and so we establish (2.18).
We note that (2.10) gives

(2.19)

for Gk E M(A, Q(yk,’Jk)). We set ak max{[Yk --Y,[, lYk+l- ,1} and note that

1’Ski < 2ak. From (2.19), (2.11), Hypothesis 1.2, and the fact that PSnN(k)
PsnN(k) PN(), we obtain

for a 2P A- 2-y. This is analogous to inequality (3.15) in the proof of Theorem
3.3 [14, pp. 965-966]. We can then proceed in the manner of that proof to establish

(2.18). ]
The main import of Theorems 2.5 and 2.6 is the following: If the various hypothe-

ses are satisfied, then the iterates generated by Algorithm 2.4 converge q-superlinearly
to a solution , of Problem 1.1 provided IF(o)l and IBo-F’(YCo)l are sufficiently small
for Y0 E and B0 A and provided F’(,) A. If F’(Y,) A, then (2.16) pro-
vides a statement of asymptotic q-linear convergence analogous to that of Theorem
3.3 of [14]. This statement is not as satisfying as that of [14]" For one thing, the factor
(t’lB, I)/[1-r(1 + g’lB, I)] precludes this statement from reducing to that of Theorem
3.3 of [14] when fi n; however, if fi n, then (2.15) becomes the statement of The-
orem 3.3 of [14]. For another, it might not be possible to satisfy r < (1 + #’IB, I) -1 if
F(Y,) A. However, we note that if Y, q is any point such that F(,) 0 and
F(,) A, then Y, E for some r/> 0, and there exist 0 and B0 A for
which IF(o)l and IBo F(o)l are arbitrarily small. In this case then, Theorems 2.5
and 2.6 imply that there are o and Bo A for which the iterates produced by
Algorithm 2.4 exhibit at least arbitrarily fast q-linear convergence to a zero of F, not
necessarily Y,.

If F’(Y,) E A at every , g for which F(,) 0, then we can draw stronger
conclusions from Theorems 2.5 and 2.6, which we summarize in Corollary 2.7 below.
Under the hypotheses of this corollary, if Problem 1.1 has a solution in , then there
exist Y0 and B0 q A for which the iterates generated by Algorithm 2.4 converge
q-superlinearly to some solution in 9t.

COROLLARY 2.7. Let F satisfy Hypothesis 1.2, let 2 be given by (1.1) .for some
1 > O, and suppose F’(,) A for all yc, such that F(Y,) O. Assume that X
has the property with A that there exists an > 0 such that .for any , + and
any y X(, +), we have

(2.21)
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.for every G E M(A,Q(y,)), where 2,+ 2,. Then there area > 0 and 5 > 0
such that if 2.0 e v and Bo e A satisfy IF(2,o)l < and ISo- F’(2,o)l < , then
the iterates (2,k}k_._O,1,.." determined by Algorithm 2.4 are well defined and converge
q-superlinearly to a point 2,, t such that F(2,,) O. Also, (IBk
is uniformly small and (ISl}k=o,,... is uniformly bounded with a bound near #.

In the most important case of most general interest, F(2,) A for all
In this case, for any 2,0 E Ft, it is always possible to have IBo- F’(2,o)l arbitrarily
small for B0 A. Then in this case, under the hypotheses of Corollary 2.7, we can

always obtain q-superlinear convergence of the iterates of Algorithm 2.4 to a solution
of Problem 1.1 whenever IF(2,0)l is sufficiently small by ensuring in addition that

[Bo- F(2,o)l is sufficiently small for Bo A. It is important to note that when
F(2,) A for all 2, , the choice rule X(2,,2,+) {F(2,+)- F(2,)} satisfies (2.11)
and (2.21) under Hypothesis 1.2. Indeed, F’(2,) PAR’(2,) in this case, and if

F’ (2,(t) dt1
for 2,+-2, and 2,(t) 2,+t, then G
M(A, Q(y, )) satisfies

f F’(2,(t)) dt E A Q(y, )

IIPsN() [a F’()] II < fo[F’(2(t))-F’(2)ldtl

by Hypothesis 1.2. Since (2.21) holds for this G, it also holds for every element of
M(A, Q(y, )); see [14]. Thus we stress that under Hypothesis 1.2, when F’(2,) A .for
all 2, , the conclusions o.f Corollary 2.7 hold when we make the traditional choice

Yk F(2,k+) F(2,k) in Algorithm 2.4. In particular, under Hypothesis 1.2, the
conclusions of Corollary 2.7 hold with this choice of Yk in the following circumstances:

(i) when the update is the (first) Broyden update of [6];
(ii) when the update is the Powell symmetric Broyden update of [6], provided

the appropriate subset of n columns of F (2,) exhibits symmetry for all

(iii) when the update is the sparse Broyden update of [6], provided F’ (2,) has
the appropriate pattern of sparsity for all 2,

(iv) when the update is the sparse symmetric update of [3], provided
has the appropriate pattern of sparsity and the appropriate subset of n
columns of F(2,) exhibits symmetry for all 2, Ft.

Our second analogue of Algorithm 1.3 is Algorithm 2.8 below which uses inverse

least-change secant updates. The local convergence analysis for this algorithm is given
in Theorems 2.9 and 2.10 and Corollary 2.11 which follow. We omit the proofs of these
results, which are similar to those of Theorems 2.5 and 2.6 and Corollary 2.7 but rely
on the local convergence analysis for Algorithm A.7 of the Appendix instead of that
for Algorithm A.1.
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ALGORITHM 2.8. Given 20 E Rn and Bo E Rnxn, determine for k O, 1, ...,
2k+1 2k
y e x(,+),
gk [B-1, -B;lck] where Bk

Kk+ (Kk)+,
Sk+ []Ck--l, --/(]--lk+l] where gk+l [/Ck+l, k+l],

where (Kk)+ is the least-change inverse secant update of K/c in A with respect to
k 2/c+- 2k, y/C, and the norm I1" II.

THEOREM 2.9. Let F satisfy Hypothesis 1.2, suppose Fx(2) is nonsingular .for
all 2 E , and suppose is given by (1.1) for some rl > O. Assume that X has
the property with A that there exists an a >_ 0 such that .for any 2 (x, A), 2+
(x+, A+) E , and any y E X(2,2+), we have

.for every G M(A,Q(s, 9)), where 2+ 2, s x+ x, and [1 (y,A+ ).
Then for any r (0,1) and # > #, there are e > 0 and 6 > 0 such that if 20 and

Bo [Bo,(o] with [B, -B-Co] e A satisfy [F(2o)[ < e and IBo- f’(2o)l < 6, then
the iterates {2k}k=0,1,.. determined by Algorithm 2.8 are well defined and converge
q-linearly to a point 2, such that F(2,) 0 with

and with {IBl}=o,,... uni$ormly bounded by ’. Also, {IB- F’(2)l}=o,,... is

uniformly small.

THEOREM 2.10. Suppose that the hypotheses of Theorem 2.9 hold and that
(2k (Xk,)ik)}k_O,1,.." i8 a sequence generated by Algorithm 2.8 which converges q-
linearly to 2, with (2.23) satisfied for some r E (0, 1), with /c 2/c+ 2/c 0

.for all k, and with {IBk- F’(2k)l}/c=o,,... uniformly small. Set

K, [K:,, ,1 PA [Fx(2,)-i,-F(2,)-Fx(2,)],

and assume further that IC, is invertible and that {Yk}/c=o,,... satisfies IK,[lk ski g
ckl/cl for each k, where l/c (Yk, Ak+ A/c), S/C X/C+ Xk, and limk-oo c/c

O. Then (2.14) and (2.15) hold with B, [:,-:,]. It follows that if
(IBl}=o,,... is uniIormty bounded by ’ and if r < (1 + ’IB, I)-, then (2.16)
holds with this S,. In particular, if [Fx(,)-, -Fx(,)-F(,)] E A as well, then

(k}k=o,,... converges q-superlinearly to ,.
COROLLARY 2.11. Let F satisfy Hypothesis 1.2, suppose Fx() is nonsin-

gular for all , let , be given by (1.1) for some > O, and suppose

[F(,)-,-F(,)-F(,)] E h for all , such that F(,) O. Assume
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that X has the property with A that there exists an >_ 0 such that for any (x, A),
+ (x+,)+) e and any y e X(ffc,+), we have

<.1 1

.for every G E M(A, Q(s, )), where +-, s x+-x, and (y, +-). Then
there are e > 0 and > 0 such that i.fo e and Bo [B0,C0] with [B
A satisfy IF(5co)l < and ISo- F’(o)l < , then the iterates (k}k=o,,... determined
by Algorithm 2.8 are well defined and converge q-superlinearly to a point , gl such
that F(,) --O. Also, {IBk- F’(k)l}k=O,,... iS uniformly small and

is uniformly bounded with a bound near #.
Remarks similar to those following Theorems 2.5 and 2.6 and Corollary 2.7 are

valid in the context of Algorithm 2.8, Theorems 2.9 and 2.10, and Corollary 2.11.
We note explicitly only that under Hypothesis 1.2 and the assumption that Fx() is

nonsingular for all e g/, if [F()-, -F()-IF()] e A ]or all e , then the
conclusions of Corollary 2.11 hold when we make the traditional choice yk F(k+)-
F(5ck) in Algorithm 2.8. In particular, under Hypothesis 1.2 and the assumption that
F() is nonsingular for all , the conclusions of Corollary 2.11 hold with this
choice of Yk in the following circumstances:

(i) when the update is the second Broyden update of [6];
(ii) when the update is the Greenstadt update of [6], provided F() is

symmetric for all

3. The augmented Jacobian algorithm. We now consider Algorithm 1.4 and
its analogues which use least-change secant and inverse secant updates to approximate
F. Throughout this section we suppose V Rm is given, and instead of Hypothesis
1.2 we use the following hypothesis.

HYPOTHESIS 3.1. F is differentiable and

is nonsingular in an open convex set 2, and the following hold:
(i) There exist / >_ 0 and p e (0, 1] such that IF’()- F’()l

]or all , .
(ii) There is a constant p .for which

.for all .
We note that Hypothesis 3.1 on F and V implies Hypothesis 1.2 on F with some
which depends on p, V, and the norm I" I.

Throughout the following, for given o 2 we define

(3.1)
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for 2 E [2. Of course, F depends on 20, but it is convenient to suppress this dependence
in the notation. From

IF’(2) ](3.2) /’ (2) V

we see that Hypothesis 3.1 on F and V implies the following:
(i) there exists > 0 depending only on 7 such that

(3.3)

for all
(ii) /’() is nonsingular and < for all Y Ft.

Thus Hypothesis 3.1 on F and V implies Hypothesis 1.2 on F with n, 7, and # replaced
by , , and #, respectively.

Our approach to the local convergence analyses of Algorithm 1.4 and its analogue
below which uses least-change secant updates is to observe that these algorithms
are respectively equivalent to Algorithms 1.3 and 2.4 applied to / in the n
case. (Related observations are made for special cases, e.g., in [15] and [29].) The
desired local convergence results are then obtained from the results in 2. An apparent
difficulty with this approach is that/ depends on 20, and so presumably the e’s and
’s of the theorems must also depend on 20, which would be unacceptable. However,
we see below that this difficulty is illusory because/’ is independent of 2o; see (3.2).
We begin with a local convergence theorem for Algorithm 1.4 which is the counterpart
of Theorem 2.1 for Algorithm 1.3.

THEOIEM 3.2. Let F. and V satisfy Hypothesis 3.1 and suppose is given by
(1.1) for some
such that if 2o fn and ]F(2o)] < e, then the iterates {2k}k--0,1,... determined by
Algorithm 1.4 are well defined and converge to a point 2, 2 such that F(2,) O.
Furthermore, there is a constant for which

(3.4) 12k+ 2, _< 12k 2,l+p, k O, 1,....

Proof. Since Hypothesis 3.1 on F and V implies Hypothesis 1.2 on/ given by
(3.1) with n, 7, and # replaced by , of (3.3), and /2, respectively, and since
depends only on 7, it follows from Theorem 2.1 that there is an > 0 depending only
on 7, P, #, and /such that if 20 e ft, and IF(20)l < , then the iterates {2k}k=O,1,...
determined by Algorithm 1.3 applied to/ are well defined and converge to a point
2, gt such that F(2,) 0, which implies F(2,) 0, with (3.4) holding for some

/3. But for given 2o, it is easy to see that Algorithm 1.3 applied to F is equivalent
to Algorithm 1.4 applied to F. Letting e > 0 be such that IF(0)l < whenever
IF(0)l < e completes the proof. [-I

As in 2, we assume throughout the following that A C_ pnxn is an affine subspace
in which updated matrices are to lie and that X is a choice rule for determining
admissible right-hand sides of secant equations. We formulate the following analogue
of Algorithm 1.4 which uses direct least-change secant updates.
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ALGORITHM 3.3. Given 5:0 E Rn, Bo Rnxn
nonsingular, determine for k O, 1, ...,

and V e Rmn such that [0] is

5:k+1 5:k + gk, where Bkgk --F(5:k) and Vgk O,

Yk e X(5:k,5:k+),

B+ (B)+,

where (Bk)+ is the least-change secant update of Bk in A with respect to k, Yk, and

Theorems 3.4 and 3.5 and Corollary 3.6 below are counterparts for Algorithm 3.3
of Theorems 2.5 and 2.6 and Corollary 2.7 for Algorithm 2.4.

THEOREM 3.4. Let F satisfy Hypothesis 3.1 and suppose tv is given by (1.1) for
some l > O. Assume that X has the property with A that there exists an >_ 0 such
that for any , + , and any y X(2,+), we have

.for every G M(A, Q(y, )), where 5:+ 5:. Then .for any r E (0, 1) and it’ > #,
there are e > 0 and 5 > 0 such that if 5:0 tv and Bo A satisfy IF(5:o)l < e and

IBo- F’(5:o)l < 5, then the iterates {5:k}k=o,t,... determir ed by Algorithm 3.3 are well

defined and converge q-linearly to a point 5:, such tLat F(5:,) 0 with

and with

k--O,1,...

uniformly bounded by it’. Also, {IB- F’()l}=0,,... is uniformly small.

Proof. Given 5:0, B0, and V, we see by an easy induction that with F given by
(3.1), the iteration of Algorithm 3.3 is equivalent to

[ ]-Xk+ xk V

Yk e X(5:k, 5:k+),

B+ (B)+

where (Bk)+ is the least-change secant update of Bk in A with respect to k
5:k+1 5:k, Yk, and the norm I1" II. We define an affine subspace C_ Rnxn by

and an inner-product norm on Rnxn as follows: Letting II" II be any inner-product
norm on Rmxn, we define a norm I1" on Rnxn by

I1#11 IIMII + IINII
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M] Rnxn M Rnxn N . Rmxn Then the iteration (3.7) is equivalent

(3.8)

where ([ y ])+ is the least-change secant update of y in with respect to gk

57k+ 57k, (Yk, 0), and the norm I1" II on Rnn. We note that (3.8) is just an instance
of the iteration of Algorithm 2.4. We also note that it follows from (3.5) that for any
57, 57+ E f, and any y E X(57, 57+), we have

for every G M(A, Q((y, 0), )), where 57+ 57 and S is the parallel subspace of
A.

Since Hypothesis 3.1 on F and V implies Hypothesis 1.2 on/ with n, /, and

# replaced by 5, of (3.3) depending only on % and/2, respectively, it follows from
the above observations and from Theorem 2.5 applied to iteration (3.8) that for any
r (0, 1) and #’ > p, there are g > 0 and i > 0 such that if 57o fv and B0 A
satisfy I/(570)1 < g and

[B] -p’(57)<’V
then the iterates {57k}k=0,1,... determined by Algorithm 3.3 are well defined and con-

verge q-linearly to a point 57, E f such that F(57,) 0, which implies F(57,) 0, with
(3.6) holding, with

k--0,1,...

uniformly bounded by #’, and with

uniformly small, which implies {IB F’(z)l}=o,,... is uniformly small. We see from

the remark after the proof of Theorem 2.5 that and i do not depend on 57o. If e and
i are chosen such that IF(57o)1 < whenever IF(57o)1 < e and

Bo (570)

whenever [Bo F’(57o)1 < ti, then the theorem easily follows.
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THEOREM 3.5. Suppose that the hypotheses of Theorem 3.4 hold and that

(2k}k=o,1,... is a sequence generated by Algorithm 3.3 which converges q-linearly to
2, E with (3.6) satisfied .for some r E (0, 1) and with k 2k+1 --2k 0 .for all k.
Then for B, PAF(2,), we have

It follows that if lB,y is invertible, then

li-- 1(2k+ 2.)1 li--
(3.10)

-1

12k 2,1

F’(2,)
0 ].

In particular, if F’(2,) A as well, then (2k)k=o,,... converges q-superlinearly to
X,.

Proof. It is observed in the proof of Theorem 3.4 that the iteration of Algorithm
3.3 is equivalent to the iteration (3.8) with X, the norm ll" II on Rnn, etc., as
defined there, and that (3.8) is an instance of the iteration of Algorithm 2.4. Since

y ], the theorem follows easily from Theorem 2.6.
Remark. It is easy to see that V(2k+l --2,) 0 for all k; therefore, (3.9) implies

(2.14) and (2.15). If

is uniformly bounded, then so is {]BZl}=o,,,..., and if {IB+l}=0,,,... is uniformly

bounded by some # and r < (1 + #’IS, I) -1 as well, then (2.16) also follows.
COROLLARY 3.6. Let F satisfy Hypothesis 3.1, let 2 be given by (1.1) for some

> O, and suppose F(2,) A for all c, ’l such that F(2,) O. Assume that X
has the property with A that there exists an >_ 0 such that for any 2, 2+ , and
any y X(2, 2+ we have

for every G M(A,Q(y,)), where 2+-2. Then there are e > 0 and5 > 0
such that if 20 e and Bo e A satisfy If(2o)l < e and IBo F’(2o)l < 5, then
the iterates {2k}k._0,1,.." determined by Algorithm 3.3 are well defined and converge
q-superlinearly to a point 2, e such that F(2,) O. Also, {]Bk --F’(2k)]}k=O,1,...
is uniformly small and

k--0,1,...
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is uniformly bounded with a bound near #.
Remarks similar to those following Theorems 2.5 and 2.6 and Corollary 2.7 are

valid in the present context. We mention explicitly that under Hypothesis 3.1, if
F() E A .for all , then the conclusions of Corollary 3.6 hold when we make
the traditional choice Yk F(k+l)- F(k) in Algorithm 3.3. In particular, under
Hypothesis 3.1, the conclusions of Corollary 3.6 hold with this choice of Yk in the
circumstances (i)-(iv) outlined following Corollary 2.7.

Our final algorithm is the following analogue of Algorithm 1.4 which uses least-
change inverse secant updates.

ALGORITHM 3.7. Given o R, Bo e Rnx, and V e Rmx such that [o] is

nonsingular, determine for k O, 1, ...,
5k+1 k + k, where Bkk --F(k) and Vk 0,

gk [B;1,-B;lCk], where Bk-
Kk+l (Kk)+,

-1 Ek+l] where gk+B+I [(k-l,--k+l
and where (Kk)+ is the least-change inverse secant update of Kk in A with respect to

Theorems 3.8 and 3.9 and Corollary 3.10 below are counterparts, for Algorithm
3.7 of Theorems 2.9 and 2.10 and Corollary 2.11 for Algorithm 2.8. Unlike Algorithm
3.3, Algorithm 3.7 cannot be interpreted as a special case of its counterpart algorithm
in 2, and so the results below cannot be obtained from the corresponding results in

2. However, the arguments leading to the results below closely parallel those used to
establish their counterparts in 2, and we sketch these parallels in lieu of giving full
proofs.

THEOREM 3.8. Let F satisfy Hypothesis 3.1, suppose Fx() is nonsingular for
all , and suppose glv is given by (1.1) .for some > O. Assume that X has
the property with A that there exists an a >_ 0 such that for any (x,)), +
(x+, +) , and any y X(,+), we have

(3.11)

for every G M(A,Q(s,)), where + , s x+ x, and 1 (y,A+ ).
Then for any r (0, 1) and # > p, there are > 0 and > 0 such that ifo and

B0 [B0,C0] with [B1, -BlC0] e A satisfy IF(o)l < e and ISo F’(o)l < , then
the iterates (}k=0,1,... determined by Algorithm 3.7 are well defined and converge
q-linearly to a point , such that F(,) 0 with

(3.12) Ik+l ,1 <-- rlk *1, k O, 1,...,

and with

k=0,1,...
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uniformly bounded by #’. Also, {IBk F’(5:k)l}k=0,1,... is uniformly small.

Proof. For given 5:0, B0, and V, we verify as in the proof of Theorem 3.4 that
with F given by (3.1), the iteration of Algorithm 3.7 is equivalent to

(3.13)

[ ]_iB

y e x(,+),

Kk [B; --B;Ck] where Bk
Kk+ (Kk)+

--1 --1Bk+ [Ek+l,--Ek+k+] where Kk+ [Ek+,k+],

and where (Kk)+ is the least-change inverse secant update of Kk in A with respect
to k 5:k+1 -5:, Yk, and the norm I1" II. From (3.11) and arguments analogous to
those in the proof of Theorem 2.5, we see that the update in (3.13) has the bounded
deterioration property of Hypothesis A.8. The theorem follows by applying to (3.13)
a slight modification of the reasoning leading to Theorem A.9. [-]

THEOREM 3.9. Suppose that the hypotheses of Theorem 3.8 hold and that

{5:k (Xk,/k)}k--0,1,... i8 a sequence generated by Algorithm 3.7 which converges q-

linearly to 5:, E [2 with (3.12) satisfied for some r (0, 1), with k 5:k+1 --5:k 0

for all k, and with {[Bk- F’(2k)[}k=O,,... uniformly small. Set

K, -[/C,, L:, PA

and assume further that 1C, is invertible and that {Yk}k=o,,... satisfies IK,Y sl _<
11 for each k, where flk (Yk, Ak+ Ak), sk xk+ xk, and limk--,c czk 0.

Then (3.9) holds with B, [/C- -/C-IE,]. It follows that if [B.Y is invertible, then

(3.10) holds with this B,. In particular, if [F(5:,)-, -F(5:,)-Fx(5:,)] e A as well,
then {5:k}k--O,1,... converges q-superlinearly to 5:,.

Proof. Using inverse-update analogues of the arguments in the proof of Theorem
2.6, we have that

lim
J(Kk g, )3k[

0.

As in the proof of Theorem A.10, this implies

lim
[(B}

I kl

With the arguments used in the proof of Theorem A.5, this in turn gives

Since V(5:k+l 5:,) 0 for all k (cf. the remark after the proof of Theorem 3.5), we
have (3.9), and the theorem follows. [:]

The remark following the proof of Theorem 3.5 is relevant here as well.
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COROLLARY 3.10. Let F satisfy Hypothesis 3.1, suppose Fx(Sc) is nonsin-
gular for all E , let be given by (1.1) .for some rl > O, and suppose

[Fx(2,)-I,-F(,)-IF(2,)] e A for all 2, e t such that F(2,) O. Assume
that X has the property with A that there exists an a >_ 0 such that for any (x, A),
+ (x+, A+) f, and any y X(,+), we have

for everyG M(A, Q(s,)), where,-- +-, s x+-x, and f (y,A+-A). Then
there are e > 0 and > 0 such that ifo tu and Bo [B0,C0] with [B, -B-C0]
A satisfy IF(o)l < e and IBo- F’(o)] < , then the iterates (k}k=o,,... determined

by Algorithm 3.7 are well defined and converge q-superlinearly to a point , such
that F(,) O. Also, (ISk F’(fck)l}k=o,,... is uniformly small and

/ k=O,1,...

is uniformly bounded with a bound near ft.
Remarks similar to those following Theorems 2.5 and 2.6 and Corollary 2.7 are

valid here. We note explicitly that under Hypothesis 3.1 and the assumption that
F() is nonsingular for all e gt, if [F()-, -F()-IF()] e A for all, then the conclusions of Corollary 3.10 hold when we make the traditional choice

Yk F(k+l)- F(k) in Algorithm 3.7. In particular, under Hypothesis 3.1 and the
assumption that Fx() is nonsingular for all f, the conclusions of Corollary 3.10
hold with this choice of Yk in the circumstances (i)-(ii) outlined following Corollary
2.11.

4. Some numerical experiments. In this section we discuss some numerical
experiments involving the methods of interest here. As indicated in the introduction,
our purpose is not to offer a broad computational study but to give some indication
of the performance of these methods in their simplest forms and to outline some basic
issues associated with them. The only updates we consider are the first and second
Broyden updates of [6], given respectively by

(4.1) B+ B + (y- B)T

and

(y- B) (yTB + (0, tT))(4.2) B+ B + yTB + tTt

where (s,t) for s R and t Rm. In writing (4.2), we assume that the first n
columns of B constitute a nonsingular matrix.

In our first set of experiments, we compared the performance of Algorithm 1.3,
Algorithm 2.4 using update (4.1), and Algorithm 2.8 using update (4.2) on instances
of Problem 1.1 involving simple scalar-valued functions of two variables. For each
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TABLE 1

Results for F() x1 2x + 9x 12x2 with 0 (5, 0).

Method

Algorithm 1.3
Algorithm 2.4
Algorithm 2.8
Chord Method

Number of
Iterations

7
10
10
273

Final
Iterate

(4.864,.7997)
(4.929,.8531)

(4.929,.8531)

F R2 - R and 20 E R2, we took B0 F’(0) in Algorithms 2.4 and 2.8. For
perspective, we included in our comparisons a chord method, i.e., an iteration

5ck+1 k B+o F(Sck)
with B0 F’(0). In all trials, we let each algorithm run until IF(k)l <_ 10-12. All
runs were made in double precision on a Digital Equipment Corporation MicroVAX
II running Ultrix and using the f77 Fortran compiler.

We first took F() xl 2x32 + 9x22 12x2, the zero curve of which is a cubic with
turning points at (5, 1), (4, 2). For starting points near this cubic, the performance
of the algorithms was about what might be expected on the basis of experience with
their counterparts for finding a root of a system with an equal number of equations
and unknowns: Algorithm 1.3 found a point on the curve in a reasonably small number
of iterations, Algorithms 2.4 and 2.8 with the above updates required a few more (but
usually the same number), and the chord method often needed many more to meet
the very small residual tolerance. All methods found approximately the same point.
The results given in Table 1 for 20 (5, 0) are typical.

TABLE 2

Results for F() Xl 2x + 9x2 12x2 with 0 (0, 5).

Method

Algorithm 1.3
Algorithm 2.4
Algorithm 2.8
Chord Method

Number of
Iterations

9
30
17
208

Final
Iterate

(1.226,.1112)
(.06936,.005806)
(4.711,1.355)

(.o69 6,.oo 8o6)

For starting points farther away from the cubic, greater differences in the perfor-
mance of the methods became evident. The results given in Table 2 for 20 (0, 5)
are typical. A striking feature of these results is that Algorithm 2.8 with the second
Broyden update (4.2) did considerably better than Algorithm 2.4 with the first Broy-
den update (4.1). As it happens, the iterates (which we do not show here) indicated
that neither update performed very well on this problem in that each gave rise to
occasional steps which led far away from the ultimate limit. However, in all our trials,
Algorithm 2.8 with the update (4.2) always performed at least as well as Algorithm
2.4 with the update (4.1) and often did significantly better, as in the case shown here.
This is in contrast to the 5 n case, in which the second Broyden update is generally
regarded as inferior to the first.
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Another striking feature of the results in Table 2 is that the four methods yielded
three markedly distinct points on the curve. In view of the distance of the starting

point from the curve, the differences in these points is understandable; however, it

might seem surprising that the iterates of Algorithm 2.4 with the update (4.1) and

those of the chord method converged to the same point within numerical limits, an

event also seen in Table 1. In fact, this is no accident, since at the kth iteration of

Algorithm 2.4 with the update (4.1), we have in general that -BF() is in
Tthe range of BT, and so (4.1) implies that the range of Bk+1 is contained in that of

B" and by induction that of B0T. It follows that in general Algorithm 2.4 with the

first Broyden update (4.1) can be viewed as a special case o] Algorithm 3.3 in which V
is any matrix for which the range of VT is the null space of B0. It also follows that

in general the iterates produced by Algorithm 2.4 with the first Broyden update (4.1)
and there]ore their limit (if it exists) must lie in the a]fine subspace o + range {BoT}.
Related observations have been made by Georg [15] in the n + 1 case. Of course

the iterates produced by the chord method and their limit (if it exists) must also lie in

this affine subspace. In the case at hand, this affine subspace is just a line in R2 which

has a unique point of intersection with the cubic, and the iterates of both methods

converge to this point.

It follows from these observations that in general the iterates produced by Algo-
rithm 2.4 with the first Broyden update (4.1) cannot possibly converge to a solution

of Problem 1.1 if the aflfine subspace o + range {B0T) does not intersect the solution

set. It can be seen from (4.2) that Algorithm 2.8 with the second Broyden update
does not share this potential disadvantage. To show that this disadvantage can be

realized in practice, we took F() x- x2, the zero curve of which is a parabola
through the origin, and considered the starting point 0 (1,-1). The affine sub-

space 0 + range {BoT} for B0 F’(0) is the line (1,-1) + t(2,-1), - < t < oc,
which does not intersect the parabola, and so the iterates produced by Algorithm 2.4

with the update (4.1) and with B0 F(0) cannot possibly converge to a solution

from this starting point. The same is true for the chord method. However, Algo-
rithm 1.3 and Algorithm 2.8 with the update (4.2) did yield solutions. The results are

summarized in Table 3.

TABLE 3

ReSults for F(c) x21 x2 with c0 (1,-1).

Method

Algorithm 1.3
Algorithm 2.4
Algorithm 2.8
Chord Method

Number of
Iterations

4

Final
Iterate

(-.01868,.0003489)

(.1985,.03942),
* unable to converge
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The above results and observations seem to indicate that the second Broyden
apdate (4.2) may have advantages over the first Broyden update (4.1). This may be
the case in some circumstances, but the update (4.2) also has possibly unattractive
aspects. For one thing, it distinguishes a particular subset of the columns of the ma-

trices being updated, which may be undesirable for a variety of reasons. For another,
it may be poorly suited for use in many homotopy algorithms. We have in mind
predictor-corrector algorithms in which each predictor step is in a direction approxi-

mately tangent to the homotopy zero curve being traced and is followed by a series of
corrector steps determined by an algorithm of the type considered here. It is usually
desirable to update the current approximate Jacobian following a predictor step as
well as after each corrector step. If we denote the current approximate Jacobian at
a predictor step by B and the step in an approximate tangent direction by , then
B 0 and the denominator of (4.2) is just tTt (-- t2 in the 5 n + 1 case). If
we are near a point at which t is small, then this denominator may be very small
and the update determined by (4.2) may be numerically unstable. This instability
may be compounded in the subsequent corrector iterations: Since the iterates are not
constrained to a manifold, it may be difficult to control them and guarantee forward
progress along the homotopy zero curve. We note that the first Broyden update (4.1)
does not have these potential flaws; indeed, Georg [15] has observed that it may be
particularly well suited for updating after a step in an approximate tangent direc-
tion in that it effectively incorporates current "tangent information" in the updated
approximate Jacobian. However, as we observe above, the update (4.1) cannot incor-

porate current tangent information after a corrector step. It seems that what is needed
is an update which effectively incorporates tangent information on both predictor and
corrector steps, does not distinguish a particular subset of the columns of the matrices

being updated, and yet yields controllable iterates.

In our second set of experiments, we addressed the effectiveness of the algorithms
of interest here in performing the corrector iterations in a highly-developed homotopy
method code applied to a real test problem. The code is the HOMPACK suite [29],
which allows the use of predictor-corrector methods with either the normal flow algo-
rithm or an augmented 2acobian algorithm in the corrector steps. (It also offers an

ordinary differential equation-based algorithm which we do not consider here.) The
normal flow algorithm in HOMPACK is just Algorithm 1.3 with an analytic evaluation
of F at each iteration; we refer to the method using it as NF below. The augmented
Jacobian algorithm is Algorithm 3.3 with the first Broyden update (4.1) and with V
equal to an approximate tangent vector; we refer to the method using it as AJB1 be-
low. In this algorithm, B0 is obtained by an analytic evaluation of F at either the last
point on the curve or (if a corrector failure has occurred) the current predictor point.
For our experiments we also included modifications of the HOMPACK method using
the normal flow algorithm which implement Algorithm 2.4 with the first Broyden up-
date (4.1) and Algorithm 2.8 with the second Broyden update (4.2) in the corrector
steps. We refer to these modified methods respectively as NFB1 and NFB2 below. In
these methods, B0 is obtained as in AJB1; all other procedures and strategies, such as
step-size selection, are as in NF. We did not use a chord method in these experiments;
it is noted in [29] that such methods are rarely cost-effective.



1252 HOMER. F. WALKER. AND LAYNE T. WATSON

TABLE 4

HOMPACK results for the geometric modelling problem.

Method

NF
AJB1
NFB1
NFB2

Function
Evaluations

171
483
462
747

Jacobian
Evaluations

171
71
86
190

Homotopy
Steps

66
52
82
186

The test problem we used is a real geometric modelling problem that arose at
General Motors Research Laboratories and is described in Morgan [22]. While this
problem is not challenging for homotopy methods, it is very difficult for globalized
Newton-like methods such as those found in MINPACK [19], and it is nontrivial. The
goal is to find all zeros of G R2 R2, where for x (xl,x2) E R2, G(x)
(G(x), G2(x)) is given by

G:i(x a:ix + a.i2x + aj32122 "" a.4X + a:isX2 + aj6 0 for j 1, 2,

where
a =-.00098 a14 =-235 a21 =-.01 a24 .00987

a2 978000 a5 88900 a22 -.984 a25 -.124

a13 -9.8 a16 -1.0 a23 =-29.7 a26 =-.25.

For a problem such as this in which each component of the nonlinear function is a
polynomial, HOMPACK provides a special homotopy algorithm which finds all solu-
tions, real and complex. For this system, the solutions (to four significant figures)
are

(x,x2) (.09089,-.09115),
(2342, -.7883),

(.01615 + 1.685i, .0002680 + .004428i),

(.01615- 1.685i, .0002680- .004428i).
We used HOMPACK to solve this test problem, allowing it to construct and track

the (four) zero curves of the homotopy map using NF, AJB1, NFB1, and NFB2. In
the trials involving NFB1 and NFB2, we allowed up to six corrector iterations before
declaring convergence failure, instead of the usual maximum of four in NF, and we used
an "ideal" residual reduction factor for the corrector iterations (see [29]) of .5 instead of
the usual default factor of .01 in NF. This extra leeway seemed more appropriate and
resulted in better performance for the updating methods. The pertinent performance
data for finding the four solutions are given in Table 4. We emphasize that these data
actually reflect a series of corrector iterations from different starting points. Following
corrector convergence failure, the starting points are moved toward the zero curve
until convergence occurs, and the cost of corrector failures is not simply ignored but is
counted. Such testing is more meaningful for homotopy algorithm evaluation than in
vacuo tests involving a single set of corrector iterations, since how a scheme performs
in conjunction with prediction and stepsize correction strategies is ultimately more
important than its performance in isolation.
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These results suggest that AJB1 and NFB1 are roughly comparable in perfor-
mance and may be preferable to NF in many circumstances. The performance of NFB2
is clearly inferior to that of the other methods, which suggests that the unattractive
features of the second Broyden update (4.2) outweighed its potential advantages in
this experiment. A detailed examination of the performance of NFB2 showed that
the number of corrector iterations per homotopy step varied between two and over
twenty. This inconsistent behavior suggests that this update may be too unreliable
for general use in homotopy algorithms, and it would at least make it difficult to use
the iteration behavior to estimate optimal stepsizes.

To further observe the behavior of the methods, we allowed HOMPACK to take
a single step a distance .5 along the tangent from the initial point of each of the four
zero curves of the homotopy map using NF, AJB1, NFB1, and NFB2. Each updating
method was allowed just one initial Jacobian evaluation; NF used one Jacobian eval-
uation per iteration as usual. The methods were allowed to iterate to termination,
rather than being restarted closer to the zero curve if convergence did not occur after
some maximum number of iterations; thus the number of function evaluations is equal
to the number of iterations, which is also the number of Jacobian evaluations for NF.
The resulting numbers of function evaluations are given in Table 5. We believe the
data for NFB2 in the successful cases are not as encouraging as they appear, since the
return to the zero curve for NFB2 may be erratic and may be to an earlier (already
traversed) point on the homotopy curve, which is worthless.

TABLE 5

Function evaluations ]or one HOMPACK step on the geometric modelling problem.

Method Curve 1 Curve 2 Curve 3 Curve 4

NF
AJB1
NFB1
NFB2

5
37
27

5
35
38
3

* produced overflow (divergence)

These limited experiments permit some conclusions and clearly indicate where
more research is needed. (1) Least-change secant update methods based on the nor-
mal flow and augmented Jacobian algorithms are theoretically sound and should be
part of the arsenal for solving underdetermined systems. (2) Some of these updates
are reasonably efficient, reliable, and numerically stable. (3) More research is needed
to understand the tradeoffs between efficiency, reliability, and stability. (4) Extensive
numerical testing of the updates described here and in [6] and [3] remains to be done.
(5) Updates should be sought for predictor-corrector homotopy algorithms which pro-
duce iteration sequences having desirable properties, e.g., by effectively incorporating
tangent information on both the predictor and corrector steps without distinguishing
columns of the matrices being updated.

Appendix. We first outline a local convergence analysis for a very general algo-
rithm formulated as follows.
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ALGORITHM A.1. Given 5Co E t and Bo A, determine for k O, 1, ...,
5Ck+ 5Ck BF(SCk ),

Bk+l e U

In Algorithm A.1, U is an update function, the values of which are subsets of A
and which we assume to be defined on t t A. In the case of an equal number
of equations and unknowns, it is traditional to consider an update function which
exhibits a property known as bounded deterioration from some fixed distinguished
matrix, which is typically some approximation of the Jacobian at a solution of interest.
Bounded deterioration amounts to assuming that while Jacobian approximations may
not get better as the iterations proceed, they at least only get worse sufficiently slowly
to allow local q-linear convergence. In the analysis below, we assume that the update
function in Algorithm A.1 exhibits bounded deterioration from F’ at the current
point in that the following hypothesis is satisfied. Note that in this hypothesis, the
"deterioration" is determined by the length of the step $ 5C+ -5C, rather than by the
traditional distances from 5C and 2+ to a solution as in [14].

HYPOTHESIS A.2. There are nonnegative constants al and 012 such that for each
(5C, 5C+, B) gt t A, every B+ U(SC, 5C+, B) satisfies

liB+ F’(+)ll <_ (1 -4- cllglp) liB F’()II 4- 11p,

where
Proposition A.3 below is an elementary technical result which we have used in

previous sections and which we use in the convergence analysis that follows.
PROPOSITION A.3. Under Hypothesis 1.2, we have

( l+p J

.for any 5C, t, and B Rnxn.
Proof. Setting 5C(t) 5C + t(# 5C), we have

In the following, we assume that l and 2 are positive constants such that

l]M] <_ ]IMII _< 2[MI for all M e Rnxn.
THEOREM A.4. Let F satisfy Hypothesis 1.2, suppose tn is given by (1.1) .for

some > O, and let U satisfy Hypothesis A.2. For any r (0, 1) and # > #, there
exist e > 0 and5 > 0 such that if 5Co gin and Bo A satisfy IF(sco)l < and

determined by Algorithm A.1 are wellIBo-F’(sCo)l < 5 then the iterates {sCk}k=O,1,...
defined and converge q-linearly to a point 5C, such that F(SC,) 0 with

(A.1) lsCk+l --< r12 2,1, k 0, 1,...,
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and with (IBl}=o,,... uniformly bounded by #’. Also, (IBk- F’(2k)l}k=o,1,... is

uniformly small.

Proof. Suppose r E (0,1) and /,’ > # are given. Let 5’ > 0 be such that if

IB- F’(2)l < 5’ for B e A and 2 e 2/2, then B is of full rank n and IB+I < #’.
Then for 2 e g/u/2 and B e A such that IB- F’(hc)l < ’, g -B+F(.) is well
defined and

(A.2) ]gl-< #’IF(2)I

If also 2+ 2 / g e ,/2 and JB+ F’(2+) < 5’ for B+ e A, then g+ -BF(5c+)
is well defined, and (A.2) and Proposition A.3 (with 5+) give

(A.3)
< >’{’1- +p’r lalp + IB_ F’(.)I}

Suppose M is such that JF’()l _< M for 2 e /2. We further restrict 5’ if necessary
so that/,’5’ < 1 and

#’25’M <r.
1 #’5’

We now take 5 > 0, e > 0 so small that

(A.4.1) P =- #’ { ’y(#’e)p ++ p
<1,

(A.4.2)
1-p l+p 1-p

(a.4.a)
1 o ’{-=a + ({=a’ + )(’), < a’.(A.4.4)
{1 1(1 pP)

r

Note that since {1 < {2, (A.4.4) implies 5 < ’.
Suppose 2o u and Bo A are such that IF(o)l < e and [Bo F’(o)l < 5.

Then go -Bo+F(.o) is well defined and (A.2) gives [go[ < #’e, which we use often
below. From (A.4.3), we have 5:1 o / go flu/2, and Hypothesis A.2 gives

which with (A.4.4) implies

2
{1(1- pP)
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Then 1 -B+F(YI) and Y2 Y + are well defined, and it follows from (A.3)
and (A.4.1) that

Ixl < #’ {7-l+pIsIV + IB- F’(o)I } Iso[ <plol._

As an inductive hypothesis, assume that for some k > 0 and for j 0, -.., k,
we have Bj satisfying IBj F’(j) < 5’ and rj ’2+1 Yj -B-]-F(Ycj) satisfying

Igjl _< p[gj_[ if j > 0. Then (A.4.3) gives

k

-1-p 2’
j=0

and so Yk+ E t/2. Also, Hypothesis A.2 gives for j 0, ..., k,

F F

<_ IIB F’()II + (at:26’ + a2)(#’e)’p"
which yields

k

IIB+x F’(+)II < IIBo F’(o)ll + (a12’ + c2)(it’e)v pPJ
j=0

and, with (A.4.4),

F’IB+x- (+x)l-< : + (1-pP)

Then gk+l --Bk+l
and (A.4.1) give

+F(k+l) and 2k+2 :k+l + k+l are well defined, and (A.3)

With this induction, we see that the iterates {Yk }k=O,,... are well defined, remain

in Flu/2, and constitute a Cauchy sequence with limit 2. E Ft. Since (A.3) implies

(A.6) IF(2k+l)l <-- { "Y(It’e)pl+p +5’}
we have F(2,) 0. Furthermore, IB- F’(2)I < 5’ for k 0, 1, ..., and so

{IBl}k=o,i,... is uniformly bounded by It’ and {IBk- F’(2,k)l}k=O,,... is uniformly
small.
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To show that (A.1) holds, we note that Proposition A.3 (with k, k+l,
and B Bk) and (A.2) give

(A.7)

Then Proposition A.3 (with 5,, k, and B F’(’,)) gives

(A.8)

Also, (A.2) gives

(A.9)

We have from (A.5) that

and so

(A.10)

It follows from (A.7)-(A.10) that

(A.11) 15k+1 :*1 < P M +
-1-p l+p

and (A.1) follows from (A.11), (A.5), and (A.4.2). []

Remark. As in the remark following Theorem 2.5, we note that since F’(0)
need not be in A in general, it may not always be possible to find B0 E A such that

IBo- F’(0)l is small enough for (A.1) and the other conclusions of Theorem A.4 to
follow. Also, it is apparent from the proof that e and i depend only on r, #’, y, p, /,

al and a2 of Hypothesis A.2, and the bound M on IF’()[ for E v/2 (as well as on

1 and 2 which depend on I" and

THEOREM A.5. Suppose that F satisfies Hypothesis 1.2 and that {:k}k=o,1,... is a

sequence generated by Algorithm A.1 which converges q-linearly to , f with (A.1)
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satisfied .for some r E (0, 1) and with k 2+1 2 0 .for all k. Then .for any
B, Rnn,

(A.12) lim
I(Bk B,)kl

0
k Ikl

if and only if

(A.13)

Proof. We have

(A.14)
(Bk B,)gk [B, F’(2,)] (2k 2,) B,(2k+l 2,)

+ F’(2,)(2k 2,) F(2k).

It follows from Proposition A.3 (with 2 2,, 2k, and B F’(2,)) that

(A.15) F’(2,)(2k 2,) F(2k) o(12k 2,1).

Furthermore,

(A.16) (1 r)]2k 2, < Igkl < (1 + r)12k

It follows immediately from (A.14)-(A.16) that (A.12) holds if and only if (A.13)
holds. [-l

Note that (A.12) and (A.13) are norm-independent in that if either holds in any
pair of norms on Rn and Rn, then it also holds in every pair of norms on Rn and Rn.
In Proposition A.6 below, we summarize some particular consequences of Theorem
A.5. In Proposition A.6, both (A.17) and the property of q-superlinear convergence
are norm-independent; however, the size of r on which q-superlinear convergence is
conditioned is norm-dependent.

PROPOSITION A.6. Suppose that the hypotheses of Theorem A.5 are satisfied and
that (A.12) holds. Then

(A.17)
li-- [B*+B*(2k+l 2,)[ IB,+ [B, F’(2,)] (2k 2,)[

I -,1 I -,1
<_ Iz,+ tz,

It follows that if (]Bl)k=0,x,...
then

is uniformly bounded by #’ and if r < (1 + u’IB, l) -x,

(A.18) lim 12k+l 2.1 #’[B,[ F’< u’IB, ]B*+[B*- (*)]l"1 -r(1 + I)

In particular, if B, F’(2,) as well, then {2k}k=0,1,... converges q-superlinearly to
2,.
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Proof. If (A.12) holds, then (A.13) also holds and implies

=0,

from which (A.17) follows immediately. Suppose {IB-I}k=o,1,...
by #. Then

is uniformly bounded

-5:*)1
15:k 5:’1

(A.19)

[B,+ {B++ + (B, Bk+)k+l B,(5:k+2 5:,)}[

If r < (1 + #’IB, I)-, then (A.19), (A.12), and (A.17) imply (A.18). Fi
We now outline a local convergence analysis for an inverse-update analogue of

Algorithm A.1, which we formulate as follows.
ALGORITHM A.7. Given 5Co E and Bo [Bo,C0] with [BI,-B-lc0] ( A,

determine .for k O, 1, ...,
5:k+ 5:k BF(5:k),
gk [B- --B-lCk] where Bk [Bk,Ck]
Kk+l . U (5:k,5:k+,Kk)

--1Bk+l [/k+l’ -1 [k+l, ].--k+k+], where Kk+ +
As in Algorithm A.1, U is an update function, the values of which are subsets of A
and which is defined on Ft x t x A. The bounded deterioration assumption which is
now appropriate for U is formulated in the following hypothesis.

HYPOTHESIS A.8. F=(5:) is nonsingular .for all 5: t, and there are nonnegative
constants o and2 such that for each (5:, 5:+, K) gtxGxA, every K+ U(5:, 2+, K)
satisfies

IlK+ -[Fx(5:+) -1, -F=(c+)-XFx(+)]II <_
(1 + oxllp) IlK IF= ()-x, -F=(:)-XF,x (5:)] II-I- c2 I.lp,

where 5:+ 5:.

Theorems A.9 and A.10 below are analogues for Algorithm A.7 of Theorems A.4
and A.5 for Algorithm A.1. The proof of Theorem A.9 is similar to that of Theorem
A.4, and we omit it.
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THEOREM A.9. Let F and U satisfy Hypotheses 1.2 and A.8, and suppose n is
given by (1.1) for some ? > O. For any r E (0, ’1) and #’ > it, there exist > 0 and >
0 such that if 20 e ftv and Bo -[B0, C0] with [B-I,-B-lC0] e A satisfy IF(2o)l < e
and ]Bo- F’(2o)l < , then the iterates (2k}k=o,,... determined by Algorithm A.7 are

well defined and converge q-linearly to a point 2, ft such that F(5,) 0 with

(A.20) [2k+ 2,[ _< r[2k 2,[, k 0, 1,...,

and with {IBl}k-0,,... uniformly bounded by ’. Also, {iBk- F’(k)l}k--O,,... is

uniformly small.
THEOREM A.10. Suppose that F satisfies Hypothesis 1.2, that Fx(2) is nonsingu-

lar for all 2 ft, and that {2k (xk, Ak)}k=0,1,... is a sequence generated by Algorithm
A.7 which converges q-linearly to 2, with (A.20) satisfied for some r E (0, 1), with

uniformly small. Letgk 2k+ --2k 0 for all k, and with

K, [/C,,,] Rnn be any matrix such that ]C, is invertible and suppose that
{Yk }k=O,,... satisfies

(A.21) IK,k ski <_ klkl, k O, 1,...,

where k (Yk, Ak+ Ak), sk xk+ xk, and limk_ ak O. Then

lim
I(Kk K,)kl

0(A.22) - Il

if and only if (A.13) holds with B, [Kj,
Remark. If the hypotheses of Theorem A.10 are satisfied and (A.22) holds, then it

is easily verified that all conclusions of Proposition A.6 hold with B,
Proof. We show that under the hypotheses of the theorem, (A.22) is equivalent

to (A.12) with B, [/Cj,-Ej,], from which the equivalence of (A.13) follows.
We have

(A.23) Kk K,)flk -lCk(Bk B,)$k + (I- ICklC:) (sk K, flk),

and (A.21) implies there are positive constants 1 and 2 for which

(A.24) lkl--< Ikl--< 21kl, k 0, 1,....

If {IBk--F’(k)i}k-O,X,... is uniformly sufficiently small that {IBkl}k=O,,... and

{llCkl}k=O,,... are uniformly bounded, then (A.21), (A.23), and (A.24) imply the equiv-
alence of (A.22) and (A.12) with B, [K-, -K-,]. []
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