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LEAST-CHANGE SPARSE SECANT UPDATE METHODS
WITH INACCURATE SECANT CONDITIONS*

J. E. DENNIS, JR." AND HOMER F. WALKER:

Abstract. We investigate the role of the secant or quasi-Newton condition in the sparse Broyden or
Schubert update method for solving systems of nonlinear equations whose Jacobians are either sparse, or
can be approximated acceptably by conveniently sparse matrices. We develop a theory on perturbations to
the secant equation that will still allow a proof of local q-linear convergence. To illustrate the theory, we
show how to generalize the standard secant condition to the case when the function difference is contaminated
by noise.

Key Words. quasi-Newton methods, local convergence, sparse nonlinear equations, bounded
deterioration, least-change secant methods, Schubert’s method, Broyden’s method

1. Introduction. In earlier work (Dennis and Walker (1983)), we addressed the
effects of inaccuracy on the performance of quasi-Newton methods for solving non-
linear algebraic equations. There, the emphasis was on generality" The methods con-
sidered were general bounded-deterioration quasi-Newton methods, and we took into
account inaccuracy from all sources, including not only finite-precision computer
arithmetic but also the differences between an ideal problem, its mathematical model,
and the computer implementation of the model. The objective was to determine ratea
of improvement and limiting accuracies that can be obtained near solutions in the
presence of such general inaccuracy.

Here, our interest is again in inaccuracy in quasi-Newton methods; however, the
focus is more specific than before. The methods considered are least-change secant
update methods (see Dennis and Schnabel (1979)), in particular, methods employing
the sparse secant updates of Broyden (1971) and Schubert (1970), which include of
course the usual Broyden (1965) update.. The inaccuracy with which we are concerned
is that which residues in the secant conditions by which updates are determined, and
we explicitly exclude inaccuracy arising from other sources from consideration here.
Our objective is a local convergence analysis which extends that of Dennis and Walker
(1981) in the sparse secant update case by relaxing the requirements on secant condi-
tions in the theorems of that paper. The extension we obtain gives an interesting "box"
of secant conditions that all lead to locally q-linearly convergent methods. Our analysis
cannot distinguish any difference between the radii of local convergence of these
methods. However, it does indicate differences in convergence speed, and we will
argue for a generalization of the usual secant condition on that basis.

The problem we study is the following:
Problem. Given F:II

_
R -> R, find x, fl satisfying

(1.1) F(x,) O.
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By a quasi-Newton method for approximating a solution of 1.1 ), we mean any iterative
method of the general form

(1.2) Xk+l Xk B F(Xk),

in which Bk is regarded as an approximation of the Jacobian matrix F’(Xk). Since our
concern here is with local behavior, we consider only iterations in which the full step
-B-F(Xk) is appropriate. Each Bk is assumed to have the form

(1.3) Bk Ak + C xk ),

in which C(Xk) is a "computed part" of F’(Xk) determined by a function C:_
R"" and Ak is an "approximated part" of F’(Xk) maintained by updating.

Since the methods with which we are concerned here are modeled after Newton’s
method, we assume the following throughout the sequel:

The standard hypothesis on F and C. Let F be differentiable in an open convex
neighborhood of a point x, R for which F(x,) 0 and F’(x,) is nonsingular. Let
y >_-0, Yc >--0, and p (0, l] be such that for x e ,

F’(x)- F’(x,)l  lx- x,I
and

IF(x)- C(x,)l <- vclx x,I
where I" denotes a norm on R" and its subordinate operator norm on R

The part of this standard hypothesis which applies to F is sufficient to insure that
sequences of iterates produced by Newton’s method converge locally to x., with
q-order + p). See, for example, Dennis and Schnabel (1983) or Ortega and Rheinboldt
(1970).

A very successful way of maintaining the A’s in (1.3) is through least-change
secant updates (see Dennis and Schnabel (1979) and Dennis and Walker (1981)). An
extensive review of these updates is not in order here; but let us recall that if one is
given an inner-product norm I1" on R and an affine subspace A_ R"" which
reflects the structure of [F’(x)-C(x)], then Ak/ is uniquely determined as a least-
change secant update of Ak in A by a choice of vectors Sk 0 and Yk in R". Furthermore,
one has that

(1.4) Ak+lSk y,

if it is at all possible for this equation to be satisfied by a matrix in A. The purpose
of updating Ak is to incorporate in Ak+ currently available information about
[F’(Xk+)--C(Xk+I)], and so one usually chooses Sk=Xk+--Xk and Yk
[f’(Xk+l)--C(Xk+l)]Sk. In fact, in most classical applications, C(x)=-0 and one takes
Sk Xk+--Xk and Yk F(Xk+l)--F(Xk). In this case, (1.4) is satisfied if F’(x)e A for
all x e R".

in view of the usual choice of Sk and Yk, we call (1.4) a secant condition on Ak+ 1.

In the literature it is also at times called the quasi-Newton equation. From here on, we
assume that Sk Xk/l- Xk; and so if A and a suitable norm on R"" are given, then a
choice of Yk alone determines Ak+ as a least-change secant update of Ak in A. We
shall regard choosing Yk as equivalent to specifying a secant condition (1.4) on Ak+,
even though it may not always be possible for (1.4) to be satisfied by a matrix in A.
For convenience, we shall also occasionally refer to Yk itself as a secant condition.

In Dennis and Walker (1981), we established very general requirements on A and
the secant conditions (1.4) which guarantee that the resulting least-change secant
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updates lead to a quasi-Newton method with local q-linear asymptotic convergence
which is optimal for a sequence (Ak} in A. In classical cases in which [F’(x.) C(x.)]
A, these requirements give the standard local and q-superlinear convergence results.
A major feature of the theorems of Dennis and Walker (1981) is that they allow one
to relax the condition that [F’(x,) C(x.)] A. Our requirements are phrased in terms
of a choice rule for determining allowable yk’S for each k. Such a choice rule is given
by a function x:R x Rn--> 2R", for each k, one chooses any Yk X(Xk, Xk+l), provided
Xk and Xk+I are in Z. The utility of prescribing a choice rule in this way is evident
when one considers applications in which a multiplicity of workable yk’S naturally
present themselves (see the discussion in Dennis and Walker (1981, p. 960)). In
classical cases, the manner of determining an appropriate choice rule is clear, and it
is very easy to verify that our requirements are satisfied, at least ideally.

in this report, our concern is with secant conditions which are inaccurate in the
sense that they cannot be associated with a choice rule that satisfies the requirements
of Dennis and Walker (1981). In the following, we offer an extended local convergence
analysis by relaxing the requirements that secant conditions must satisfy in order to
lead to least-change secant update methods which have desirable local convergence
properties. Our analysis is restricted to the case in which the updates are sparse secant
updates; the investigation of other cases if left to future work. We are motivated by
the fact that in spite of the generality of the published requirements, there are circum-
stances in which secant conditions satisfying them must be regarded as unobservable
in practice. We cite two such circumstances below which we feel are particularly
important.

The first circumstance is that in which the computed values of F or C contain
inaccuracy. In this case, any choice of Yk which is determined by computed function
values will also exhibit inaccuracy, and so it seems essentially certain that any practical
implementation of a choice rule which specifies Yk in this way will fail to satisfy the
conditions of Dennis and Walker (1981), even though the "ideal" choice rule which
uses accurate function values may be completely satisfactory. This case is important
in practice; see Barrera and Dennis (1979) and Mor6, Garbow and Hillstrom (1980).
The analysis given here provides reassurance that in most classical applications, the
traditional secant conditions should usually be usable in practice, even though they
are determined by inaccurate computed function values. This reassurance is in the
form of a simple generalization Yk of the traditional secant condition Yk.

The second circumstance which we cite is that in which it might be advantageous
to impose some sort of special structure on each Ak, even though this structure is not
fully reflected in F’ and C. This is to say that it might be desirable to require that each
Ak lie in some A, despite the fact that [F’(x)-C(x)] fails to belong to A for some
x . For example, A might be a subspace of Rnx" consisting of matrices having a
particularly appealing pattern of sparsity, and it might happen that for each x , the
part of [F’(x) C(x)] which lies outside of this pattern of sparsity is so small that one
is tempted to discard it and require that Ak A for each k. In this case, one should
choose Yk PA[F’(Xk+I) C(Xk+l)]Sk, where PA denotes the orthogonal projection onto
A, and even though there may exist a choice rule for Yk satisfying the conditions of
Dennis and Walker 1981 (p. 964, formula (3.13)), it may be impossible or impractical
to implement it. The analysis given here should help to determine whether natural and
readily available secant conditions can be safely used for updating in this case. If these
secant conditions are not suitable, then it should suggest modifications of them which
are safe to use and can be easily obtained. We are preparing some interesting applica-
tions of this analysis.
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(2.1)

where for any real c,

For prespective, let us recall that the local convergence analysis of least-change
secant update methods in Dennis and Walker (1981) proceeds in the traditional
two-stage form. In the first stage, one shows that the updates of interest exhibit a
phenomenon known as bounded deterioration; it follows that methods employing
these updates enjoy local q-linear convergence. In the second stage, one looks more
closely at q-linearly convergent sequences of iterates produced by these methods and
shows that this convergence is optimal in that it is asymptotically as fast as that of the
ideal stationary iteration of the form (1.2) in which Bk C(x.)+ PA[F’(x.)-C(x.)]
for each k. The properties of the choice rule for determining secant conditions are
fundamental to the analysis at each stage.

The local convergence analysis given in the following is in a similar two-stage
form. The first stage is developed in 2. There it is assumed that a choice rule satisfying
the conditions of Dennis and Walker (1981) is given, and it is first shown that one
can make certain generous enlargements of sets of secant conditions specified by this
choice rule and still retain bounded deterioration and the associated local q-linear
convergence. Then this initial result is used to obtain a corollary in a form more useful
in the applications toward which this work is directed. The second stage is developed
in 3, in which it is shown that q-linearly convergent iteration sequences exhibit
asymptotic speeds of convergence which can be regarded as optimal when one considers
the inaccuracy in secant conditions used to determine updates. Indeed, the results of
3 make visible the extent to which inaccuracy in secant conditions degrades the

asymptotic speed of convergence of an iteration sequence and show that this asymptotic
speed can be made arbitrarily close to (or even equal to) that of the ideal stationary
iteration provided it is feasible to exercise sufficient control over inaccuracy in secant
conditions. In 4, we conclude with an illustration of how one might make use of the
results of 2 and 3.

2. Secant conditions and local linear convergence. For the remainder of this report,
we consider methods of the form (1.2) for solving (1.1) in which the Ak’s in (1.3) are
maintained through secant updates into a sparse matrix subspace Z_ R"". In this
section, our interest is in secant conditions which determine these updates and in the
q-linear convergence properties of the methods which result.

We begin by establishing some notation and reviewing the basic properties of the
sparse second update. Throughout the sequel, I" denotes both the 12 norm on R" and
the induced operator norm on R"", and [[. denotes the Frobenius norm on R". If
A is a subspace or affine subspace of R, then PA denotes the projection onto A
which is orthogonal with respect to the Frobenius norm and P-I-PA denotes the
projection orthogonal to PA. Members of the standard unit basis of R" are denoted
by el,’" ", e,, i.e., for i- 1,. ., n, ei (1i, 2i," , ,), where ,= and ji=0 for
j i. For 1, , n, we use P to denote the 12 projection that sends a row (column)
vector into the nearest row (column) vector having the sparsity of the ith row of an
element of Z, i.e., Piv= efPz(ev) for a row vector v.

With this notation, we can write down the formula for a sparse secant update as
follows" If A e Z and if s, y R with s 0, then the sparse secant update A/ of A in
Z with respect to s and y is given by

A+ A+ (sTps)+ei (y As)e,Pis v,
i-=l

c+ =(c- ifc#O,
(0 ifc=O.
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If A is not in Z, then it is only necessary to alter (2.1) by replacing A with PzA.
Reid (1973), Marwil (1979), and Dennis and Schnabel (1979) have shown that

A/ given by (2.1) is the least-change secant update of A in Z with respect to s, y, and
the Frobenius norm II. This is to say that A/ uniquely solves

min II/-AII,,g, M(Z,Q(y,s))

where Q(y, s)- {M Rnn" Ms- y) is the affine subspace of generalized quotients of
y and s and M(Z, Q(y, s)) is the affine subspace of elements of Z for which the distance
to Q(y, s) in the norm I1" is minimal. Note that one has A/-PMA, where M-
M(Z,Q(y, s)). If Zf’)Q(y, s)#, then M(Z,Q(y, s))-Zf-)Q(y, s) and A/-
PznQ(y,s)A.

Now suppose that X: f f 2R is a choice rule for determining secant conditions.
DEFINITION 2.1. The choice rule X and the secant conditions determined by it

are accurate if X has the property with Z that there exists an a >-0 such that for any
x, x/ f and any y X(x, x/), one has

(2.2) Po(o,)(G- A,)ll -< (x, x+)p

for every G M(Z, Q(y, s)), where s x+ x, o-(x, x+) max {Ix x,I, Ix+ x,I}, and

(2.3) A, Pz[F’(x.)- C(x,)].

Dennis and Walker 198 l, Thm. 3. l) show that the sparse secant updates associated
with an accurate choice rule exhibit bounded deterioration and therefore yield methods
with desirable local q-linear convergence properties. We want to extend that theorem
in the sparse secant update case by enlarging the sets of secant conditions given by
an accurate X without losing bounded deterioration of the updates determined by
them. Toward this end, let us define for v, w R

(2.4) B(v,w)={Tv+(I-T)w’T=diag(t,...,t,),t,[-1,1],i=l,...,n}.

One sees that B(v, w) is just a "box" centered at w which has v as a vertex and sides
parallel to the coordinate axes. For a set S

_
R, we also define

(2.5) (v, s) t_J (v, w).
wS

Our extension of Dennis and Walker (1981, Thm. 3.1) in the sparse secant update case
is the theorem below.

THEOREM 2.2. Let the standard hypothesis hold and let Z have the properties that
A, given by (2.3) and B, A, + C(x,) are such that B, is invertible and there exists a

r, for which

II- B1F’(x,)l-< r, < 1.

Also assume that the choice rule X is accurate in the sense ofDefinition 2.1. Under these
hypotheses, if r r,, 1), then there are positive constants e, such that for Xo f and
Ao Z satisfying IXo- x,I < e and IAo- A,I < , the sequence {Xk} is well defined by
Bo Ao+ C Xo) and

Xk+ Xk B-F(x),

(2.6) Sk Xk+l Xk, Yk Bt3(AkSk, X(X,k, Xk+l)),

B+, {(A)+ + C(Xk+,), (Ak)+ + C(x)},
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and satisfies IXk+l- x.[ _--< rlx-x.I for k =0, 1, 2, , where (Ak)+ is the sparse secant
update ofAk with respect to Sk and Yk given by (2.1). Furthermore, {11 II} and B  II}
are uniformly bounded.

Proof. We will only outline the proof because it is a straightforward application
of Dennis and Walker (1981, Thm. A2.1). In order to satisfy the hypothesis of that
theorem, we define the update function U in a neighborhood N Nl N2 of (x., B.).
From the above hypotheses, one sees that there exist neighborhoods N of x. and N2
of B. such that N1

_
f, N2 contains only nonsingular matrices, and x/ x B- F(x)

f for any (x, B) N N x N. Now we make our formal definition.
DEFINITION 2.3. For (x, B) N and x+ , set s x+- x, A Pz[B C(x)] and

(2.7) U(x, B) {A+ + C(x+), A+ + C(x)" y B(As, X(X, x+))},

where A+ is the sparse secant update of A with respect to s and y given by (2.1). Any
y B(As, X(x, x+)) will be called admissible (with respect to X, Z, and I1" II).

Lemma 2.4 below shows that U so defined has the bounded deterioration propey
required by Dennis and Walker (1981, Thm. A2.1), and so the theorem follows from
that result.

LEMMA 2.4. Let the standard hypothesis hold, and suppose that the choice rule X is
accurate in the sense of Definition 2.1. Let U be defined on N by Definition 2.3. en
the bounded deterioration inequality

(2.8) liB+- n, liB- n, + 2( +2)(x, x+)

holds for (x, B) N and B+ U(x, B), where a is the constant of inequality (2.2) and
is a constant, e.g. n, for which It" t" I.

Proo We only prove that (2.8) holds for B+ A+ + C(x+), since the proof in the
other case is slightly simpler. For convenience, set C(x)= C, C(x+)= C+, C(x.)= C.,
and Q(0, s) N.

The choice of y eBu(As, X(x, x+)) which determines B+ can be written as y=
TAs+(I- T)yx for yX X(x, x+) and T= diag (t,. ., t,) with [t,[ for i= 1,. ., n.
Let GXM(Z,Q(yX, s)) and set G=TA+(I-T)Gx. We first need to show that
G M(Z, Q(y, s)). Our device for doing this is to show that G+ G, where G+ PG
is the sparse secant update of G into M= M(Z, Q(y, s)). Since GX M(Z, Q(yX, s)),

0= (srp,s)+e[(yX-GXs)e,(P,s)r;
i=l

and multiplying both sides by the diagonal matrix (I-T) gives

0= (sTpis)+e(I T)(yx GXs)e,(P,s)r
i=l

(srPs)+e[TAs TAs+(I- T)(yX-GXs)]e(Ps) r

i=l

i=l

Now we use (2.23) of Dennis and Walker (198 l) with Z to get

Pzn(G+C+-B,)B+- B, A+ + C+ B, Pz(A+ C+ B,) +

Pz(A+ C+- B,)+ Pn[T(A+ C+- B,)+(I- T)(Gx + C+- B,)]
Pzn(A+ C+ B,) + TPn(A+ C+ B,)
+( T) GPz( +C+-B,).
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The last equality is implied by the following" left-multiplication by the diagonal matrix
T commutes with the projections onto Z and N, and PZON limj_ (PzPNY; con-

PZnN- It is this commuta-sequently, left-multiplication by T commutes with PZnN and
tivity which makes the "box" the enlargement of X appropriate to Z and the Frobenius
norm.

To obtain (2.8) from this equation, first note that (2.2) gives

I](I- T)PaN(Gx + C+-B,)II <= 2IIPaN(GX A, + C+- C,)II
< 2IllPN(G A,)II + 133,cr(x, x+y]

-<-2( +t3V)(x, x+Y.
To bound the other two terms, use the Pythagorean theorem and the form of T to obtain

PZN(A+ C+- B,)+ TPcN(A+ C+- B,)II 2

-< PZaN(A + C+- B,)II 2 + TPaN(A + C+- B,)II

Consequently,

< PZfqN(A + C+- B,)I] 2 + PCN(A+ C+- B,)II 2

=IIA+C+-B, 2.

liB+- B, A + c+- B, +/- cll + 2(a +/3vc)O-(X, x+)

<= liB- B,I + 2(ce + 2/33,c)r(x, x+)P;

and the lemma is proved.
The secant conditions admitted in iteration (2.6) are determined explicitly by sets

of accurate secant conditions specified by an accurate choice rule. This report is directed
principally toward applications in which accurate secant conditions are unobservable,
at least in practice; and it may not be clear how to apply Theorem 2.2 in such
applications. Consequently, we now give a local q-linear convergence result in which
the role of accurate choice in determining admissible secant conditions is more implicit.
This result is more directly useful than Theorem 2.2 in many applications of the sort
which we have in mind.

We work from the premise that often when accurate secant conditions cannot
actually be observed, one can at least determine sets which contain them. Indeed, one
might often be able to observe inaccurate secant conditions together with bounds on
the inaccuracy in them and through these bounds determine sets in which accurate
secant conditions lie. As an illustration, consider the classical case with C(x)=0 in
which y F(Xk/l)--F(Xk) is an accurate secant condition for each k, and suppose
that these accurate secant conditions y are not observable in practice because of
inaccuracy in the computed values of F. If one can bound the inaccuracy in computed
F-values in some way, then one should be able to specify sets about the inaccurate
observed y-values which contain the true y-values. To be more specific, let F(x)=
F(x)+ N(x) be the computed value of F(x) for each x f. Then for each k, the
observed value of y is

.k Y + N(Xk+l)- N(Xk).

If one assumes, as in Barrera and Dennis (1979), that IN(Xk+)--N(x)l-< and,
hence, ly- 371--< r for each k, then each set

(2.9) Yk {Y R"" lY -AI <- q}

contains an accurate secant condition
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Sets such as Yk above are central to our local convergence result below, for they
allow the determination of secant conditions which are admissible in iteration (2.6).
As a device for determining admissible secant conditions from such sets, let us define
for v R and compact S R a vector 33 )3(v, S) as follows" For i= 1,..., n, set
li inf {e s" s S} and ui sup {e s" s S}; then define 33 by

li if e TV _<-- l,
(2.10) e93= ev if l, <= e v <= u,,

ui if ui <= e v,

for i= 1,..., n. The vector )3 has the geometrically appealing property that in the 12
norm, it is the vector closest to v in the smallest box containing S and having sides
parallel to the coordinate axes. (See Fig. 2.1 below.) It is reasonable to believe that )3
can be easily determined for most sets S and in particular when S is a set such as Yk
in (2.9) which is naturally prescribed as one containing accurate secant conditions. In
our local convergence result, it turns out that admissible secant conditions are found
in sets of the form B(v, 33) given by (2.4) with w =)3. We shall say more about the role
ofvectors such as 33 in determining admissible secant conditions following the statement

FIG. 2.1

of our local convergence result.

As an aid in showing that sets of the form B(v, 93) contain admissible secant
conditions, let us also define for v R" and S

_
R"

(2.11) Bn(v, S)= f’) B(v, w),
wS

where B(v, w) is given by (2.4). We need the following lemma.
LEMMA 2.5. For any v R" and compact 5;

_
R", one has

(2.12) B(v,.)= Bn(v, S)

where = (v, S) is given by (2.10), B(v, )3) is given by (2.4) with w= , and B(v, S)
is given by (2.1 1).

Proof To show that B(v,)3)_Bn(v,S), let y=Tv+(1-T) for T=
diag(t,. , t,) with -1 -<_ t-<_ for i= 1,. , n. Let w S and note that one can write

Tv + (I ’) w for diag (’, , ’,) with 0-< ’i =< for 1,. , n. Indeed, for
1, , n, one has that l -<_ ew -<_ u, and so the appropriate ’ is given by

e(w-v) if e/T)3 /i’

t] if e33= e.T,v
U eTW
e(v-w) if e/; ui"
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Now one has

y= Tv+(I- T)[Tv+(I- T)w]= Tv+(I- T)w,

where T+ (I T) ; and it is easily seen that ’ diag (?,. ., ?n) with _-< ? _-<
for 1, , n. Thus y e B(v, w), and one concludes that B(v, 33) c_ Bn(v, S).

To show that Bc(v, S)c__ B(v,)3), let w eBc(v, S). It must be shown that for
i= 1, , n, one has

(2.13) efw= t,efv+(1- t,)efS,

where -1 <ti <1 Let yl,.. y,,yl., ,..., y be such that li e.r,yi and ui e Tiy for
1, , n. For some i, suppose that er)3 li. Since w e B(v, yi), one can write erw

Tteriv+(1 t)eyi, where -1 <_- t <- 1. since ei y= l eryi, (2.13) holds with this t.
Since w also belongs to B(v, y), (2.13) holds similarly for an appropriate t if er)3 u.
The remaining case is that in which l <_- efv e r)3 <- u. In this case, one has for some
ti, el-l, 1] that both e’w= ter v+(l- ti)er y= tier v+(1 t)l <- er v and, similarly,
e[w= tier v+(1-t)u >- ely. consequently, er w er v and (2.13) holds with t= 1.
This completes the proof.

With this lemma, we can easily obtain from Theorem 2.2 a local convergence
result suitable for application in any circumstances in which one can determine for
each k some set Yk containing an accurate secant condition.

COROLLARY 2.6. Let the hypotheses of Theorem 2.2 hold. If r (r,, 1), then there
are positive constants er, 6 such that for Xo f and Ao Z satisfying IXo- x,] < e and
IAo-A,I < r, the sequence {Xk} is well defined by Bo Ao+ C(xo) and

xk+ xk- B-1F(xk),

(2.14)
a choice OfYk c__ R" which satisfies Yk f-1X(Xk, Xk+) # ,
Sk Xk+ 1--Xk, Yk B(AkSk, ilk),

Bk+, {(Ak)+ + C(Xk+l), (Ak)+ + C(xk)},

and satisfies IXk+ x.I _--< r[xk x.I for k O, 1, 2,..., where fik ;(AkSk, Yk) is deter-
mined as in (2.10) with v Aksk and S Yk and (Ak)+ is the sparse secant update of
Ak with respect to Sk and Yk given by (2.1). Furthermore, {llnll} and {lln’ll} are uniformly
bounded.

Proof Since we assume that X(Xk, Xk/)f’l Yk for each k, one sees that
B(Aksk, Yk) Bu(Aksk, X(Xk, Xk+l)) provided xk, Xk+l 1). Since B(AkSk, 2Pk)
Bc(Aksk, Yk) by Lemma 2.5, the corollary now follows immediately from Theorem 2.2.

This local convergence result merits some discussion. We begin by considering
the properties of the vectors 33k (Aksk, Yk) as secant conditions. We are not recom-
mending the use of these vectors in (2.14); indeed, we will argue at the end of 3 that
the vectors 37k B(Aksk, k) described there and pictured below in Fig. 2.2 should lead
to faster convergence. Nevertheless, the 33k have certain very appealing properties that
explain the usefulness of the sets B(Aksk, k) in choosing secant conditions.

Let us first note that if A e Z and if s, y e R" with s 0, then A/ given by (2.1)
satisfies

(2.15) IIA+-AII= (IP,sl+ler, (y- As)l).
i=1

Suppose that y is allowed to range over a subset S c__ R". One sees that [IA+-AII is
minimized over S by any y e S for which the weighted 12-norm on the right-hand side
of (2.15) is minimal. In the case of the full Broyden update in which Z= R"" and
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for i= 1,..., n, (2.15) becomes

(2.16) IIA+- All =-- lY- AslZ/Isl.
Thus in this case, IIA+-AII is minimized by any y S for which ly-Asl is minimal.
For general Z, it may not be so clear which vectors in S minimize [[A/- A[[. However,
this norm will certainly be minimized ifa y S can be found for which each Ief(Y-As)l
is minimal for i= 1,. ., n. Such a y may not exist for some sets S, but suppose that
S is a box with sides parallel to the coordinate axes. In this case, there is a unique
yeS for which each lef(y-As)l is minimal for i=l,...,n, namely =.(As, S)
determined as in (2.10); and this )3 is also the unique minimizer of ly-As] over S.

Returning to the context of iteration (2.14), we denote by Sk the smallest box
containing Yk and having sides parallel to the coordinate axes. One sees from the
above discussion that Yk is the unique vector which minimizes (Ak)+ Ak over Sk.
In this sense, it represents the most conservative secant condition among all those
determined by vectors in a set, namely Sk, which is known to contain a vector associated
with an accurate secant condition. We find it attractive that k and therefore any
Yk B(AkSk, fk) conservatively impose on their (Ak)/ the presumably useful but less
than totally trustworthy secant information in vectors in Sk. In one form or another,
the principle of making conservative use of current secant information has consistently
led to successful updates in the past. Our procedure for specifying secant conditions
in (2.14) can be viewed as a filter on the secant information that produces a "box" of
secant conditions. All of them seem to lead to the same radius of local.convergence,
although not the same speed of convergence, as we will see in the next section.

There is another way in which one can regard any Yk B(AkSk, k) as making
conservative yet effective use of current secant information. Specifically, consider an
"accurate" y ,(Xk, Xk+l) (’ Yk and observe that lei(Yk --YZ)I <----[ef(AkSk --Y)I and
hence,

(2.17) le,[(A)+s-yZ]l<=lef(As-y’)l for i= 1,..., n,

where (Ak)+ is the sparse secant update of Ak in Z determined by Yk. In other words,
if (Ak)+ is determined by yk, then each component of (Ak)+Sk is at least as close as
its counterpart in AkSk to the corresponding component of an "accurate" y.

Since Yk is the subset of Sk in which vectors specifying accurate secant conditions
are known to lie, one might wonder if a better condition might be obtained by
minimizing (Ak)+- Ak over Yk. We think not. To support our position, we note that
if (Ak)+ is determined by a vector in Yk such that II(A)+-A[I is minimal, then (2.17)
may not hold; whether or not (2.17) does hold in this case depends on the geometry
of Yk. To illustrate this and to lend some perspective to this discussion, let us recall
that Barrera and Dennis (1979) consider full Broyden updating with C(x) 0 when
the accurate secant condition determined by y F(Xk+I)--F(Xk) is hot observable
because of inaccuracy in computed values of F. As we indicated previously, they
assume that the inaccuracy in computed F-values is bounded so that y is contained
in Yk given by (2.9). In Barrera and Dennis (1979), the secant condition studied is
that determined by the vector in Yk which is closest to AkSk in the I2-norm, and which
we denote here by yO. One sees from (2.16) that y19 is the unique minimizer for full
Broyden updating of [l(A)+-Allin Yk. In Fig. 2.2 below, we have shown a circum-
stance in which (2.17) does not hold for (Ak)/ determined by yO, while, of course,
it does hold for (Ak)+ determined by Yk B(AkSk, Y"k). In Fig. 2.2, )Tk denotes the
observed (inaccurate)value of y as before.
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FIG. 2.2

Barrera and Dennis (1979) report on numerical experiments which suggest that
the vectors yO are useful in practice, although they give no supporting convergence
analysis. We feel that the analysis given above reinforces their encouraging computa-
tional results, even though their methods do not actually fall within its scope. Indeed,
the circumstance illustrated in Fig. 2.2 not withstanding, it seems very unlikely that a
vector yO will fail to lie within the box B(AkSk, k) unless one is very near the solution.
Thus, updates determined by these vectors seem very likely to exhibit bounded deteri-
oration in practice, at least until some stopping criterion is met, and thus to lead to
methods with satisfactory local q-linear convergence properties. Similarly, the analysis
here strongly suggests that in most traditional applications, the usual secant conditions
determined through the use of inaccurate computed function values should be com-
pletely adequate.

3. Speed of convergence. In the preceding section, it was shown that under the
hypotheses of Theorem 2.2 sequences of iterates produced by iteration (2.6) exhibit
local q-linear convergence. In this section, we analyze the behavior of these iteration
sequences in greater depth. Specifically, we consider q-linearly convergent sequences
produced by (2.6) with the objective of estimating their asymptotic speeds of conver-
gence.

When accurate secant conditions are used in all iterations of (2.6), the resulting
asymptotic speed of convergence has been determined by Dennis and Walker (1981).
To recall those results, suppose that the hypotheses of Theorem 2.2 hold and that {xk}
is an iteration sequence produced by (2.6) which converges q-linearly to x,. One can
easily modify Theorem 3.3 of Dennis and Walker (1981) to include the case Bk+
(Ak)+ + C(xk). From this modification, one sees that if the secant condition is deter-
mined by y X(x, x+l) at each iteration of (2.6), then

,x,,-x,,[I B’F’(x,)]
ixk x,[

In particular,

(3.2) lim [x,+!- x,l<_ I1 B7’ F’(x,)[ <= r,.x,I
This is to say that if an accurate secant condition is used at each iteration, then the
asymptotic q-linear convergence rate constant is the same as that of the ideal stationary
iteration of the form (1.2) which takes each Bk as close as possible to F’(x.).
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We offer two results below concerning the extent to which inaccuracy in secant
conditions affects asymptotic speeds of convergence. These results are given as Corol-
laries 3.2 and 3.3 of Theorem 3.1, which can be regarded as the central technical result
of this section. One can certainly obtain other asymptotic convergence results as
corollaries of Theorem 3.1, but we feel that the two given here are particularly appealing
and useful. Corollary 3.2 can be interpreted as saying that if at least some minimal
positive proportion of accurate secant information is imposed on the update at each
iteration, then the optimal asymptotic speed of convergence given by (3.1) and (3.2)
will result. Corollary 3.3 shows precisely how much given amounts of inaccuracy in
secant conditions can cause the asymptotic speed of convergence to deteriorate from
this optimal asymptotic speed. It is in the tradition of previous results in Dennis and
Mor6 (1974) and Dennis and Walker (1981) in that it relates the asymptotic speed of
convergence to the extent to which the successive Bk’S approximate the action of B,
in the directions of the sk’s. From it, one sees that the asymptotic speed of convergence
can still be regarded as optimal, given the inaccuracy in the secant conditions used to
update the B’s.

Throughout this section, we assume that X" RnRn" 2a" is a choice rule which
is accurate in the sense of Definition 2.1. The statements and proofs of our results rely
heavily on the characteristic property of each Yk B(AkSk, )((Xk, Xk+l)) in (2.6) that it
can be written as

(3.3) yk TkAkSk +(I-- Tk)y, forsome y X(Xk, Xk+)

(3.4) and Tk=diag(tlk,’’’,tnk). t,k[--1,1] fori=l,...,n.

We use (3.3) and (3.4) freely below with minimal explanation.
THEOREM 3.1. Let the hypotheses of Theorem 2.1 hold and assume that for some

Xo R and Ao Z, {Xk} is a sequence defined by (2.6) which converges q-linearly to x,
with xk X, for all k. Assume further that {ll B II} is uniformly bounded. For each Tk in

(3.3) and (3.4), set ik tilPisl IP,sl/ for i- 1,..., n. Then

(3.5) lim 41 ?,2k PSkl+e (Bk B,)PSk O,
k-

(3.6) lim -I ,,1)1 P,,l+ (Bk B,)PSk O,
k---

for i= 1,. ., n. It follows that

(3.7) lim
(I- 2k)’/2(Bk-- B,)Sk=o,

(3.8) lim
(I-- k)(Bk-- B,)Sk=o

where "’k -= diag (?k,’"", ?,k) and k is the matrix of absolute values of entries of k.
Proof For convenience, set C(Xk) Ck, C(x,) C,, Q(0, Sk) Nk,

max {[Xk X,[, IXk+ X,[}, and Ek Bk B,. Note that

(3.9) Ek Ak + Ck + A, C, PzEk + P(Ck C,)
and, as in the proof of Lemma 2.4,

(3.10)
Ek+, PzhEk + TkP-Ek + O(rv) PzhEk + Tk(I- Pzh)Ek + O(rv)

TkEk +(I-- Tk)PzcEk + 0(o’)= TkPzEk +(I- Tk)PzhEk + O(crPk).
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The ith row of this equation is

We want to bound Vik[, and direct computation gives

iv,l2 -Ip,,El=_

Since (PieEk)PiSk=(eEk)Pisk and IP,[ < ,
Now we use the general inequality

b2

to obtain

2 rlik

It follows from (3.11) that

T]i,k+l 3qik--"[- 0(0"I).
2 rlik

By a standard argument (see, e.g., Dennis and Walker (1981, p. 966)), this implies that

k qik < C and hence, 0= limk_ qk, which is (3.5). To get (3.6), we note that

Finally, we prove (3.8) from (3.6), since (3.7) follows in just the same way from (3.5).
For any <= <= n, (3.9) implies

T(I-- #k)EkSk (1-1FkI)e[PzEkSk+ P(Ck-C,)Sk] (1-1Gl)e, PzGs
e, + 0(o-)

(1 + o(f,).

Since Il => IP,sl, (3.8) follows from (3.6).
COROLLARY 3.2. Let {Xk} be an iteration sequence generated under the hypotheses

of Theorem 3.1. Iffor some r, 0 <-z< 1, Tk in (3.3) and (3.4) satisfies O<=lG[<=zfor
<= i<= n and k=O, 1, , then

(3 12) lim ]I- B-’F’(x,)l < r,.

Proof It is immediate from (3.8) and the existence of the bound r < that

lim
EkSk
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Since {Xk} converges q-linearly to x,,

lim ISkl

and so the result follows from Theorem A.1 of the appendix.
COROLLARY 3.3. Let {Xk} be an iteration sequence generated under the hypotheses

of Theorem 3.1. Then for Yk as in (3.3),

lim [(Bk-- B*)Sk_ ff)k(Yk--Y) ] O(3.13)
-oo Isl Isl

and

(3.14) lim [(B-B*)s_O( Y-Y )] =O,Ix-x,I tx-x,I
where ff)k =diag (dk, d,,k) with d,k l,l+ for i= 1,’’’, n. If

(3.15) lim Ix-x,I
then

(3.16) lim IXk+l- x,I
k- IXk X,I =r,+A.

-1

(3.17) lim IB* Dk(Yk-yZ)l
< 1,

koo ISkl
then

li---- Ixk+’ x*l r, + a,
(3"18)

,-,oo Ix-x,I -1-tx
Proof We first establish (3.13) from (3.8). Since {x} converges q-linearly to x,,

(3.14) then follows from (3.13). For each k, we define E, N, and o- as in the proof
of Theorem 3.1. From (3.8), we have that

Es

Is, l iT i
Since

Ek+Sk TkPzoNEkSk + O(rP)Sk TkEkSk + O(rP)Sk

by (3.10), it follows that

EkSk Ek+lSk]irnLl--[-/3 I,,I j-o.

.But E+ (A)+- A, + O(r.), so

F EkSk [(Ak)+ A.]Sk] 0lirn L-]--O Isl
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Let Gk M(Z, Q(Yk, Sk)) and G M(Z, Q(y, Sk)). Note that if PiSk # 0, then efyk
r x rGSk. From this and from Dennis and Walker (1981), p. 959, iteri GkSk and ei Yk= e

follows that

lk[(Ak)+ A,]Sk =/)k[PN(Gk A, + G)]Sk )k[PN(Gk G)]Sk + O(trPk)Sk

Dk(Yk--Y)+ O(rPk)Sk;

and (3.13) follows.
It also follows from continuity that

(3 19) lim Bl-E-’kSk-- B, lk(Yk y)
0

and

(3.20) lim [B- Eksk Bl ff)k(Yk Y) ]Ix -x,I
0.

If (3.15) holds, then (3.16) follows immediately from (3.20) and (A.2) of the appendix.
If (3.17) holds, then (3.19) implies

B EkSklim <_--
k-oo Skl

We see from (A.2) of the appendix that for

r= lim Ixk+l -x,]

we have

r < r, +/x lim ISkl <-- r, + tx( + r)"

and r _<- (r, +/x)/( ) follows if < 1.
Remark. It is clear from (3.15)-(3.18) that we would like Yk B(AkSk, ilk) to be as

near as possible to y in the 12 norm scaled by Blk We are unlikely to be able to
make practical use of this information because of the scaled norm and because
may be anywhere in Yk. It does suggest that an interesting secant condition is k, the
b that solves

min max b y[.(3.21
bN(AkSk,k) y Yk

In many cases, e.g. (2.9), Yk will be derived from an obseation fig of y in such
a way that fik is simply the b that solves

min lb --fig[.(3.22)

In fact, if Yk in (2.9) is obtained from fig by allowing only for small rounding errors,
then Yk is probably so small compared to B(AkSk, fig) that k fig will hold until the
iteration is stopped. This is consistent with the good performance in practice of
Broyden’s method with the traditional secant condition.

4. An application. We conclude with an illustration of how one might make use
of the local convergence analysis given in this repot. Assume the following:

(1) The updates are sparse Broyden updates with C(x) 0 and F’(x) e Z for each
x , and so y F(Xk+)--F(Xk) is an accurate secant conditions for each k.
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(2) For each x II, one computes an inaccurate value/(x) F(x)+ N(x), where
IN(x)l<-_e,lF(x)l.

(3) For each k, the observed secant conditions is )7 y+ N(x/‘+)-N(x), and
so y Y, where Y is given by (2.9) with n e(]F(x,/)[+lF(x,)]).

To emphasize the role of the inaccuracy in secant conditions most clearly, we
maintain our policy of disregarding all other inaccuracy. In particular, it is assumed
that the accurate value F(x/‘) is used explicitly in (1.2) for each k. Although this leaves
us considering a somewhat artificial situation, to do otherwise would cloud the issues
of interest. We leave to future work the analysis of the ettects of all inaccuracy on the
performance of methods emplying sparse Broyden updates.

According to Corollary 2.6, a method (1.2) employing sparse secant updates
determined by the )7 given by (3.21)-(3.22) will enjoy local q-linear convergence. Let
us show how one might apply the results of 3 to determine asymptotic speeds of
convergence which can be obtained by using the )7. Let {x} be a q-linearly convergent
iteration sequence. From our assumption, one has for each k,

-, lx x,I /n)e,lF’(x,)l /1- Ix/’ x,I

Now, B, F’(x,) and r, =0; and so it follows from (3.15) and (3.16) of Corollary
3.3 that

(4.1) li--- ]x+--- x*l <- l- lF’(x*)-’ E(fi y)l ( -)/‘-,oo Ix/, x, -/,-,oo ix/, x*
-< (1 +xf-n)elK, +1-1-" Ix/,+l x*l

.oo Ix-x,I
where__K,=lF’(x,)-llF’(x,)] is the condition number of F’(x,) in the norm I’l. If
(1 +x/)eFK, < 1, then one obtains from this the estimate

(4.2) li-- ]x/,+- x,]< (1 +x/-n)eFK,
/,-oo Ix/, x,I (1 + x/-n)

of the asymptotic speed of convergence.
The estimate (4.2) and the underlying analysis suggest that if one has some control

over the amount of inaccuracy in computed values of F used in determining secant
conditions, then the results of 3 might be used to provide guidelines for exercising
this control in order to achieve a reasonable balance of convergence speed and
computational expense. One sees from (4.2) that a q-linearly convergent iteration
sequence {x/,} will exhibit asymptotic q-linear convergence which is as fast as desired,
provided the relative inaccuracy in computed functions values used to determine secant
conditions is kept sufficiently small. In some applications, it might too costly to maintain
a sufficiently high level of accuracy in computed function values at all iterations. A
natural strategy in such applications is to use relatively inaccurate computed function
values in the early iterations and then to increase function evaluation accuracy in the
later stages as the solution is neared. The analysis leading to (4.2) bears out the validity
of this strategy in the case under consideration. To see that this is so, suppose that for
each k, the relative inaccuracy in the computed value of F(Xk) is bounded by (eF)k.
Then by a derivation similar to that of (4.2), one can show that a q-linearly convergent
iteration sequence {Xk} satisfies

(4.3) lira IXk+--X*I< (l+/-)l-k-,oo(e)kK,
_,oo Ix -x,I l-(1 +n) 1-/,_,oo (eF)/,K,"

Note that (4.3) implies that {x/,} converges q-superlinearly if lim/,_,oo (eF)/, =0.
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Although (4.3) provides a satisfactory guarantee that adequately fast asymptotic
convergence will result whenever limk_,oo (eF)k is sufficiently small, there remains the
question of how one should choose (eF)k which is suggested by Corollary 3.2. Suppose
that an initial (er)o>0 and suitable values ze(0, l) and (eF)min0 are given at the
outset.If one has arrived at the kth iteration for some k> 0, then take (eF)k--(eF)k-l
as a trial value and set k "-(e){IF(x+)l+lF(x)l,}. Even though the matrix Tk
diag (ttk," , tnk) of (3.3) and (3.4) appropriate for Yk Pk cannot be observed, if

(4.4) le.T,BkSk--eTkl(l+)rlk, 1= 1,"" ", n,

then one necessarily has 0=< ]k] -< z for i= 1,.-., n, where k is as in Theorem 3.1
and Corollary 3.2; furthermore, 37k 37k in this case. If (4.4) holds, then accept (eF)k
and 97k =)Tk and proceed. Otherwise, reduce (e)k and redefine r/k until either (4.4)
holds or (e)k=(eF)min. Note that without the restriction (eF)k>=(er)mi,, (4.4) will
holds for sufficiently small (eF)k > 0 except in the unlikely event that BkSk y. The
restriction (e)k (e)mi, guards against this event and also prevents requiring exces-
sive accuracy in function evaluations.

This manner of choosing each (eF)k has the appeal that if {Xk} is assumed to
converge q-linearly to x., then unless or until (e)k (e)min for some k, one can use
the traditional secant conditions and presumably be on the way to enjoying the
q-superlinear convergence guaranteed by Corollary 3.2. Actually, it always happens
that (e)k (eF)min eventually, as we show in Proposition 3.4 below. However, this
should be all fight, because (eF)mi, can be chosen so small in most applications that
the asymptotic speed of convergence given by (4.3) with limk_ (eF)k (eF)rnin will
be adequately fast.

PROI’OSITON 4.1. /f (Xk converges q-linearly to x,, then (eF)k--’(eF)min for
sufficiently large k.

Proof. Suppose the contrary, i.e., that (e)k > (eF)min for all /6. Then (4.4) holds
for all k, and it follows that

(4.5) (1+) 1- /k

kOO kl l’
k-.o

leTBkSk-- eTi
skl

for l,. ., n. It also follows from Corollary 3.2 that {Xk} converges q-superlinearly
to x,, and so

0= lim [Bk--F’(X,)]Sk= lim (BkSk--y).

See Dennis and Mot6 (1974) or Dennis and Walker (1981). Consequently, for
1,. .,n,

(4.6) i----
e n s e r <-- l- B s Y / l-

e Y e A <-- l- --Since {Xk} converges q-linearly to x, and the (e)k’S are bounded away from 0, one
has that

0 < lim ’Yk < 00.
koo

It follows that (4.5) and (4.6) are contradictory, and the proposition is proved.
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Appendix. In this appendix, we establish the result referenced in the proofs of
Corollaries 3.2 and 3.3. This result is an extension of Dennis and Walker (1981, Thm.
A3.1), and we suspect that it might have uses beyond those in this paper. Our interest
here is in a general quasi-Newton iteration (1.2) for solving the problem (1.1) with no
presumption about the form of each Bk or the manner in which it is generated., We
suppose that F satisfies the standard hypothesis given in the introduction, although
we have no particular interest in a computed part C of F’. We use I" to denote both
a vector norm on R" and its subordinate operator norm on R". For an iteration
sequence {Xk}, we denote sk xk+t xk as before. It is also convenient to set ek x x,
for each k.

THEOREM A. 1. Suppose that F satisfies the standard hypothesis and that {Xk} is a

sequence generated by (1.2) which converges to x, with Xk # X, for all k. If B, R is

any invertible matrix then for any norm 1. [, one has

ek+ F’ ek B-(Bk- B,)s
I-1-[z-n’ (x*)] I-1/ levi

(A.1) lim

Setting r, II-BlF’(x,)l, one has in particular that

li----Iek+ll< [i_B_lF,(x,) ek BI(Bk-B,)Sk

-1

(A.2) r, + lim
IB, (B- B,)s[

levi

r, + lim
IB’(B- B,)s[ Isl

Proo From the standard hypothesis on F and (1.2), one has that

Bs -F(x)= -F’(x,)e + O(e+).
It follows from multiplication by B that

s + BF’(x,)e + n’(n- n,)s
With e # 0, one verifies from this equation that

e+_ e B-

levi [I-nf’(x,)]+ * (n-n,)s= O(e)
levi

and (A.1) and (A.2) follow immediately.

5. Acknowledgment. An improvement in the presentation of these results was
facilitated by two conscientious referee repots.

REFERENCES

P. BARRERA AND J. E. DENNIS JR. (1979), When to stop making quasi-Newton updates, presented at the
Tenth International Symposium on Mathematical Programming, Montreal.

C. G. BROYDEN (1965), A class of methods for solving nonlinear simultaneous equations, Math. Comp., 19,
pp. 577-593.

, (1971), The convergence of an algorithm for solving sparse nonlinear systems, Math. Cornp., 25, pp.
285-294.

J. E. DENNIS JR. AND J. J. MORt (1974), A characterization of superlinear convergence and its application
to quasi-Newton methods, Math. Comp., 28, pp. 549-560.



778 J. E. DENNIS, JR. AND HOMER F. WALKER

J. E. DENNIS JR. AND R. B. SCHNABEL (1979), Least change secant updates for quasi-Newton methods,
SIAM Rev., 21, pp. 443-459.
(1983), Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall,
Englewood Cliffs, NJ.

J. E. DENNIS JR. AND H. F. WALKER (1981), Convergence theoremsfor least-change secant update methods,
this Journal, 18, pp. 949-987.
(1984), Inaccuracy in Quasi-Newton methods: local improvement theorems, Rice MASC TR 83-11,
Math. Prog. Stud. 22, 1984, pp. 70-85.

E. S. MARWIL (1979), Convergence results for Schubert’s methodfor solving sparse nonlinear equations, this
Journal, 16, pp. 588-604.

J. J. MORI, B. S. GARBOW AND K. E. HILLSTROM (1980), User guidefor MINPACK-I, Argonne National
Labs Report ANL-80-74.

J. M. ORTEGA AND W. C. RHEINBOLDT (1970), lterative Solution ofNonlinear Equations in Several Variables,
Academic Press, New York:

J. K. REID (1973), Least squares solution of sparse systems of nonlinear equations by a modified Marquardt
algorithm, In Proc. NATO Conf. at Cambridge, July 1972, North-Holland, Amsterdam, pp. 437-445.

L. K. SCHUBERT (1970), Modification ofa quasi-Newton methodfor nonlinear equations with a sparse Jacobian,
Math. Comp., 24, pp. 27-30.

T. J. YPMA (1983), The effect ofrounding errors on Newton-like methods, IMA J. Numer. Anal., 3, pp. 109-118.


