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1. INTRODUCTION

We consider the simulation of fluid flow governed by the steady transport equa-
tions for momentum, heat, and mass transfer. Discretization of these equations
gives rise to a system of nonlinear algebraic equations, the numerical solution of
which can be very challenging. In most nontrivial calculations, the solution process
is computationally intensive and requires sophisticated algorithms to cope with high
nonlinearity, strong PDE coupling, and a large degree of nonsymmetry.

Newton’s method is a potentially attractive nonlinear solution method because
of its ability to address fully the coupling of the variables. In addition, it enjoys
rapid (typically q-quadratic) convergence3 near a solution that is not hindered by
bad scaling of the variables. However, the implementation of Newton’s method in
the context of interest here involves special considerations. Determining steps of
Newton’s method requires the solution of linear systems, and iterative linear algebra
methods are typically preferred for this. Consequently, obtaining exact solutions
of these systems is infeasible, and the appropriate method is an inexact Newton
method [2]. (See Section 2 below for a precise description.)

Our primary interest is in evaluating the effectiveness of a proposed inexact
Newton method on these difficult fluid flow problems. In formulating this method,
we have given particular consideration to implementation issues that affect ro-
bustness and efficiency. The primary mechanism for enhancing robustness is a
backtracking (linesearch, damping) technique that shortens steps as necessary to
ensure adequate decrease in the residual of the nonlinear system. A feature that
is critical to efficiency and which can improve robustness as well, is the use of
nonlinear residual information in determining the accuracy with which the linear
subproblems are solved. That is, the accuracy required in solving the linear sub-
problems varies as the nonlinear algorithm proceeds, and this accuracy requirement
is based on how well the residual of the linear system reflects the behavior of the
nonlinear residual. We demonstrate in this paper that this scheme often drastically
improves computational time and in some cases can help improve robustness. In
addition, we have experimented with several other optimization techniques (e.g.,
trust regions, steepest-descent directions) in conjunction with the inexact Newton
scheme. While these algorithmic enhancements may offer advantages over the basic
inexact Newton scheme in some specific situations, we have not observed a general
improvement of the algorithm over a broad range of problems.

To evaluate the proposed method, a number of different fluid problems are
considered. All of these problems use a particular spatial discretization based on
a pressure stabilized Petrov–Galerkin finite element formulation of the low Mach
number Navier–Stokes equations with heat and mass transport. Computational
results are presented for several challenging CFD benchmark problems as well as
two large scale 3D flow simulations.

A major goal of this work is to study robustness and efficiency issues related to
inexact Newton schemes and to explore the limits of effectiveness of these methods.
There are alternate approaches to solving difficult nonlinear problems starting from

3 For definitions of the various types of convergence referred to in this paper, see [3].
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poor initial guesses, such as false time stepping and continuation schemes, but these
are not considered here.

2. THE INEXACT NEWTON METHOD

We write the system of nonlinear algebraic equations that results from discretiza-
tion of the fluid flow equations as

F(u) 5 0, F : Rn R Rn. (2.1)

We assume throughout that F is continuously differentiable and denote its Jacobian
(matrix) by F9 [ Rn3n. Given an initial approximate solution u0 of (2.1), classical
Newton’s method determines a sequence of approximate solutions by uk11 5 uk 1

sk , where the step sk is characterized by the Newton equation

F9(uk)sk 5 2F(uk). (2.2)

In an inexact Newton method [2], the Newton equation is relaxed to an inexact
Newton condition

iF(uk) 1 F9(uk)ski # hkiF(uk)i (2.3)

for some hk [ [0, 1), where i · i is a norm of choice. This formulation naturally
allows the use of an iterative linear algebra method: One first chooses hk and then
applies the iterative solver to (2.2) until an sk is determined for which the residual
norm satisfies (2.3). In this context, hk is often called a forcing term, since its role
is to force the residual of (2.2) to be suitably small.

Note that F(uk) 1 F9(uk)sk is both the residual of the (2.2) and the local linear
model of F(uk 1 sk) given by the first-order terms of the Taylor series of F at uk .
Thus in reducing the linear residual to satisfy (2.3), one will also make progress in
reducing the nonlinear residual as long as there is sufficiently good agreement
between F and its the local linear model at the step sk .

It is shown in [2] that, near a solution of (2.1) at which F9 is invertible, the local
convergence of an inexact Newton method is controlled by the forcing terms. In
particular, one can obtain local convergence that is as fast as desired, up to the
(typically q-quadratic) convergence of Newton’s method, by choosing the hk’s to
be sufficiently small. For example, if hk R 0, then the convergence is typically
q-superlinear, and if hk 5 O(iF(uk)i), then the convergence is typically q-quad-
ratic [2].

2.1. The Backtracking Globalization

To be practically effective, a Newton-like method requires globalization, i.e.,
augmentation with procedures that enhance the likelihood of convergence when
u0 is not near a solution. Various globalization procedures have been developed,
primarily within the context of optimization (see, e.g., [3]), and some of these are
discussed in Seciton 5. We focus primarily on backtracking, also known as linesearch
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or damping, in which steps are shortened as necessary until satisfactory steps are
found. The specific backtracking algorithm that we consider here is the following
form [4], which has also served as the basis of a general-purpose inexact Newton
solver in [13].

ALGORITHM INB (Inexact Newton backtracking method [4]).

Let u0 , hmax [ [0, 1), t [ (0, 1), and 0 , umin , umax , 1 be given.
For k 5 0, 1, ... (until convergence) do:

Choose initial hk [ [0, hmax] and sk such that
iF (uk) 1 F 9(uk)ski # hkiF (uk)i.

While iF (uk 1 sk)i . [1 2 t(1 2 hk)]iF (uk)i do:
Choose u [ [umin , umax].
Update sk r usk and hk r 1 2 u(1 2 hk).

Set uk11 5 uk 1 sk .

Note that, for a given initial hk , a satisfactory initial sk exists if the Newton
equation (2.2) is consistent, in particular if F 9(uk) is invertible. If a satisfactory
initial sk can be found, then we have from remarks in [4, Section 6] that Algorithm
INB does not break down in the while-loop; i.e., an acceptable sk is determined
after at most a finite number of step reductions. Furthermore, it is easy to see that
an inexact Newton condition (2.3) holds for each sk and hk determined in the while-
loop and, in particular, for the final sk and hk . Thus each final step sk determined
by the algorithm satisfies both (2.3) and

iF (uk 1 sk)i # [1 2 t(1 2 hk)]iF (uk)i, (2.4)

which can be viewed as a sufficient decrease condition on iF i. To shed light on
this condition, we denote the actual reduction in iF i by aredk ; iF (uk)i 2

iF (uk 1 sk)i and define the predicted reduction given by the local linear model
to the predk ; iF (uk)i 2 iF (uk) 1 F 9(uk)ski. Then (2.3) and (2.4) are equivalent,
respectively, to predk $ (1 2 hk)iF (uk)i and aredk $ t(1 2 hk)iF (uk)i. In particular,
if the inexact Newton condition (3) requires the predicted reduction to be at least
(1 2 hk)iF (uk)i, then the sufficient decrease condition (2.4) requires the actual
reduction to be at least the fraction t of that amount.

Algorithm INB offers strong global convergence properties combined with poten-
tially fast local convergence. We have the following theoretical result from [4].

THEOREM 2.1 [4]. Assume that F is continuously differentiable. If hukj produced
by Algorithm INB has a limit point up such that F 9(up) is invertible, then F (up) 5 0
and uk R up . Furthermore, the initial sk and hk are accepted without modification
in the while-loop for all sufficiently large k.

Note in particular that if the iteration sequence has any limit point at which F 9

is invertible, then that point must be a solution of (2.1) and the iterates must
converge to it. Furthermore, the asymptotic convergence is governed by the initial
hk’s as in the local convergence analysis of [2], and desirably fast convergence can
be obtained by taking them to be suitably small.
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2.2. The Forcing Terms

The forcing terms hk not only determine the asymptotic speed of convergence
to a solution of (2.1) but also affect the efficiency and robustness of the algorithm
away from a solution. Indeed, away from a solution, choosing a very small hk and
solving (2.2) with corresponding accuracy may result in a step sk so long that
F (uk 1 sk) disagrees significantly with the local linear model F (uk) 1 F 9(uk)sk ,
an outcome termed oversolving in [5]. Oversolving may result in little or no decrease
in iF i and, consequently, may necessitate backtracking to obtain an acceptable
step; see Section 4.3.2 for an illustration. Even if an acceptable decrease in iF i is
obtained, it may be undesirably small relative to the expense of obtaining such an
accurate solution of (2.2). A less accurate solution of (2.2), in addition to costing
less, might give more reduction in iF i and place less burden on the backtracking.

We have implemented two forcing term choices from [5] that tend to minimize
oversolving while giving desirably fast asymptotic convergence to a solution of (1).
These are as follows:

Choice 1. Select any h0 [ [0, 1) and choose

hk 5
F (uk)i 2 iF (uk21) 1 F 9(uk21)sk21i u

iF (uk21)i
, k 5 1, 2, ... . (2.5)

Choice 2. Given c [ [0, 1] and a [ (1, 2], select any h0 [ [0, 1) and choose

hk 5 c S iF (uk)i
iF (uk21)iDa

, k 5 1, 2, ... . (2.6)

In our implementation, we use the initial value h0 5 1022 with the above choices.
Also, to ensure that hk # hmax in Algorithm INB, we follow (2.5) and (2.6) with
the safeguard

hk r minhhk , hmaxj. (2.7)

It is observed in [13] that local convergence results in [5, Theorems 2.2, 2.3] can be
combined with Theorem 2.1 above to obtain the following convergence theorems for
Algorithm INB when the initial hk’s are determined by (2.5) or (2.6) subject to (2.7).

THEOREM 2.2 [13]. Assume that F is continuously differentiable and that each
hk in Algorithm INB is given by (2.5) followed by (2.7). If hukj produced by Algorithm
INB has a limit point up such that F 9(up) is invertible, then F(up) 5 0 and uk R up .
Furthermore, if F 9 is Lipschitz continuous at up , then

iuk11 2 upi # biuk 2 upi iuk21 2 upi, k 5 1, 2, ... , (2.8)

for a constant b independent of k.

Remark. As noted in [5], it follows from (2.8) that the convergence is q-superlin-
ear, two-step q-quadratic, and of r-order (1 1 Ï5)/2.
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THEOREM 2.3 [13]. Assume that F is continuously differentiable and that each hk

in Algorithm INB is given by (2.6) followed by (2.7). If hukj produced by Algorithm
INB has a limit point up such that F 9(up) is invertible, then F (up) 5 0 and uk R up .
Furthermore, if F 9 is Lipschitz continuous at up , then the following hold: If c , 1,
then the convergence is of q-order a; if c 5 1, then the convergence is of r-order a
and of q-order p for every p [ [1, a).

In keeping with [5, 13], we also implement the following safeguards, which are
applied after hk has been determined by (2.5) or (2.6) and before applying (2.7):

Choice 1 safeguard. Modify hk by hk r maxhhk , h
k21

(11Ï5)/2j if h
k21

(11Ï5)/2 . 0.1.
Choice 2 safeguard. Modify hk by hk r maxhhk , cha

k21j if cha
k21 . 0.1.

The purpose of these is to prevent the initial hk’s from becoming too small far away
from a solution. This can happen coincidentally with either (2.5) or (2.6); it can also
happen with (2.5) when backtracking forces a very short step that results in very good
agreement between F and its local linear model. Note that if hukj converges to a solu-
tion of (2.1) at which F 9 is invertible and Lipshitz continuous, then we have hk R 0
with either (2.5) or (2.6). It follows that these safeguards eventually become inactive
and do not affect the asymptotic convergence given in Theorems 2.2 and 2.3.

2.3. Other Details of the Implementation

Various remaining details of our implementation of Algorithm INB are as follows:
We use hmax 5 0.9; this fairly large value allows the hk’s to become correspondingly
large if necessary to reduce oversolving. We use t 5 1024; this very small value
results in accepting almost any step that gives a reduction in iF i. The use of umin

and umax in Algorithm INB to determine minimal and maximal steplength reduction
is known as safeguarded backtracking in the optimization community. In keeping
with common practice, we use umax 5 As and umin 5 a;A and determine u [ [umin , umax]
to minimize a quadratic p(t) that satisfies p(0) 5 AsiF (uk)i2, p(1) 5 AsiF (uk 1 sk)i2,
and p9(0) 5 (d/dt)AsiF (uk 1 tsk)i2ut50 . The norm is a weighted Euclidean norm with
weights that reflect problem scaling.

Successful termination is declared if iF (uk)i # «FiF (u0)i, where «F 5 1022 in the
experiments in Section 4 below, and the steplength criterion,

1
n

iWski2 , 1,

is also satisfied, where n is the total number of unknowns and W is a diagonal
weighting matrix with entries

Wii 5
1

«ruu(i)
k u 1 «a

,

in which u(i)
k is the ith component of uk and «r 5 1023 and «a 5 1028 in the experiments

in Section 4. In our experience, this second criterion is typically more stringent and
is necessary to ensure that finer physical details of the flow and transport are
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adequately resolved. Essentially, it requires that each variable of the Newton correc-
tion be small relative to its current value. This assures that all variables (even
variables with small magnitude) are considered appropriately in determining when
to halt the Newton iteration. This weight matrix definition is similar to a criterion
used to dynamically control time step sizes and is standard in general purpose ODE
packages such as LSODE [9].

3. THE DISCRETIZED EQUATIONS

The governing PDEs used in our experiments are given below. In these equations
the unknown quantities are u, P, T, and Yk ; these are, respectively, the fluid velocity
vector, the hydrodynamic pressure, the temperature, and the mass fraction for
species k:

Momentum transport:

ru · =u 2 = · T 2 rg 5 0. (3.1)

Total mass observation:

= · u 5 0. (3.2)

Energy transport:

rCpu · =T 1 = · q 5 0. (3.3)

Species mass transport:

ru · =Yk 1 = · jk 5 0. (3.4)

In these equations, r, g, and Cp are, respectively, the density, the gravity vector,
and the specific heat at constant pressure. The necessary constitutive equations for
T, q, and jk are given by (3.5)–(3.7) below:

Stress tensor:

T 5 2PI 1 eh=u 1 =uTj. (3.5)

Heat flux:

q 5 2k=T. (3.6)

Species mass flux:

jk 5 2rDk =Yk , k 5 1, ..., N 2 1. (3.7)

Here e, k, and Dk are, respectively, the dynamic viscosity, the thermal conductivity,
and the diffusion coefficient of species k in the mixture.

The above equations are derived by assuming a constant property, multicompo-
nent dilute Newtonian fluid mixture with no chemical reactions. Additionally, the
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Mach number is assumed low so that effects of viscous dissipation can be neglected
in the energy transport equation (3.3). More information on this system of equations
can be found in [19].

Finally, to complete the system, boundary conditions are imposed on (3.1)–(3.4)
by taking combinations of Dirichlet conditions on u, P, T, and Yk and specified
flux conditions on T, q, and jk . In Section 4.2, we discuss the specific boundary
conditions for each test problem in more detail.

To obtain an algebraic system of equations (2.1), a Petrov–Galerkin weighted
residual formulation of (3.1)–(3.4) is used. This scheme utilizes a pressure stabilized
Petrov–Galerkin (PSPG) formulation to allow equal-order interpolation of velocity
and pressure, along with streamline upwinding (SUPG) to limit oscillations due to
high grid Reynolds and Peclet numbers. This formulation follows the work of
Hughes et al. [10] and Tezduyar [21]. Specifically, the discrete equations are obtained
from the following equations:

Momentum:

Fu 5 E
V

[ru · =u 2 = · T 2 rg]FdV

1 E
Ve t (u)

supg (u · =F)[ru · =u 2 = · T 2 rg] dV. (3.8)

Total mass:

FP 5 E
V

[= · u]FdV 1 E
Ve tpspg =F · [u · =u 2 = · T 2 rg] dV. (3.9)

Energy:

FT 5 E
V

[rCpu · =T 1 = · q]FdV 1 E
Ve t (T)

supg (u · =F)[rCpu · =T 1 = · q] dV. (3.10)

Species mass:

FYk
5 E

V
[ru · =Yk 1 = · jk]FdV 1 E

Ve t(Yk)
supg (u · =F)[ru · =Yk 1 = · jk] dV.

(3.11)

In these, the stability parameters (the t’s) are functions of the fluid velocity, u, and
are given in [10, 21, 19].

To form the Jacobian F 9 of the system (3.1), we first linearize all terms of
(3.8)–(3.11), except those containing the stability parameters. The discrete form of
these linearized terms is determined by expanding the unknowns u, P, T, and Yk and
the weighting function F in terms of a linear finite element basis. The contribution to
F 9 resulting from these terms is then computed by analytic evaluation. Finally, the
contribution to F 9 of the terms containing the stability parameters is computed by
numerical differentiation and added to the analytically evaluated terms. The re-
sulting Newton equation (2.2) is a fully coupled nonsymmetric linear system.
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4. NUMERICAL EXPERIMENTS

4.1. The Testing Environment

The inexact Newton method outlined in Section 2 was tested by incorporating
it in a parallel finite element reacting flow code called MPSalsa [15]. This code
implements the Petrov–Galerkin formulation described in Section 3 in a distributed
data setting through a process outlined briefly as follows: The underlying finite
element grid is subdivided over processors using the graph partitioning package
CHACO [8], so that the number of finite element nodes in each subdomain is
balanced and the communication cost (essentially proportional to the surface area
or perimeter of each subdomain) is minimized. Using this decomposition, MPSalsa
sets up the finite element discretization, with each processor producing a subset
of the discretized equations and Jacobian entries corresponding to its assigned
subdomain. At each inexact Newton iteration, the Newton equation (2.2) is approxi-
mately solved using the parallel iterative solver package Aztec [11], which provides
a number of solver and preconditioner options.

For this study, we restricted the iterative solver to the restarted GMRES method
[14] and the preconditioner to a domain decomposition scheme using an incomplete
factorization, ILU(0) [12, 20], within subdomains. For the two 3D problems de-
scribed in Section 4.4, this preconditioner corresponds to extracting a block diagonal
matrix from the original matrix (where each block is associated with the local
unknowns on a particular processor) and producing an ILU(0) factorization of this
matrix. For the three benchmark problems described in Section 4.2, the precondi-
tioner is similar. However, each block or local processor based matrix is augmented
by the set of equations associated with its neighboring unknowns (points updated
by neighboring processors but connected by an edge in the finite element stencil
connectivity graph to an unknown on this processor). Connections to unknowns
outside of the processor’s assigned unknowns or neighboring unknowns are dis-
carded. Thus, equations appearing in one processor’s matrix may also appear in
another processor’s matrix. An ILU(0) factorization is produced on each local
augmented matrix and is essentially applied to each processor’s assigned unknowns.4

This procedure corresponds to overlapping the subdomain preconditioning matri-
ces. Though this preconditioner requires additional storage compared to the unaug-
mented systems, it can significantly improve the overall convergence. More details
on Aztec, GMRES, and these parallel preconditioners can be found in [20].

At each inexact Newton iteration, MPSalsa generates the Jacobian of the discret-
ized system by a combination of analytic evaluation and numerical differentiation
as described in Section 3 above. The Jacobian is then used in Aztec for the matrix–
vector products required by GMRES. In the present context, these products are
very computationally efficient, and this approach is considerably more economical
for the test problems considered here than a ‘‘matrix free’’ approach in which
these products are approximated by finite-differences of F-values. The ILU(0)

4 The ILU preconditioner is applied to both assigned unknowns and neighbor unknowns. However,
values from neighbor unknowns are discarded as different values for these unknowns are computed on
neighboring processors.
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preconditioner factors are computed from the new Jacobian at each inexact Newton
step, and this computation entailed considerable expense in our tests. A strategy
that would allow re-use of preconditioner factors over a number of inexact Newton
steps might reduce this expense considerably, but we have not pursued such strate-
gies in this study.

All tests reported here were run on Intel Paragons operated by Sandia Na-
tional Laboratories.

4.2. Three Standard Benchmark Problems

The three test problems described below are standard benchmark problems used
for verification of fluid flow codes and solution algorithms. In all cases, the GMRES
restart value was 200, which was sufficiently large that GMRES stagnation did not
become an issue for even the most difficult of the linear subproblems generated
by the inexact Newton algorithm. We also allowed a maximum of 600 GMRES
iterations at each inexact Newton step, after which the GMRES iterations were
terminated and a new inexact Newton step started even if the condition (2.3) did
not hold. In all cases, the initial approximate solution was the zero vector.

4.2.1. THE THERMAL CONVECTION PROBLEM. This standard benchmark problem
[1] consists of the thermal convection (or buoyancy driven) flow of a fluid in a
differentially heated square box in the presence of gravity. It requires the solution
of the momentum transport, energy transport, and total mass conservation equations
defined in Section 3 on the unit square in the plane with the following Dirichlet
and Neumann boundary conditions:

T 5 Tcold , u 5 v 5 0 at x 5 0, (4.1)

T 5 Thot , u 5 v 5 0 at x 5 1, (4.2)

T
y

5 0, u 5 v 5 0 at y 5 0, (4.3)

T
y

5 0, u 5 v 5 0 at y 5 1. (4.4)

When Eqs. (3.1)–(3.3) and the boundary conditions (4.1)–(4.4) are suitably nondi-
mensionalized, two parameters appear, the Prandtl number Pr and the Rayleigh
number Ra. In our study we took Pr 5 1 and varied the magnitude of the Rayleigh
number. As the magnitude of Ra is increased the nonlinear effects of the convection
terms increase and the solution becomes more difficult to obtain. A typical solution
for this problem is shown in Fig. 4.1. All solutions for this problem were computed
on a 100 3 100 equally spaced mesh, which resulted in 40,624 unknowns for the
discretized problems. Twenty Paragon processors were used for all runs.

4.2.2. THE LID DRIVEN CAVITY PROBLEM. This is a standard benchmark problem
[7, 17] consisting of a confined flow in a square box driven by a moving boundary
on the upper wall. This problem requires the solution of Eqs. (3.1)–(3.2) defined
in Section 3 on the unit square with the following Dirichlet boundary conditions:
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FIG. 4.1. Thermal convection in a square cavity at Ra 5 1,000,000: Contour plot of temperature
shows a thermal boundary layer along hot and cold walls.

u 5 v 5 0 at x 5 0. (4.5)

u 5 v 5 0 at x 5 1. (4.6)

u 5 v 5 0 at y 5 0. (4.7)

u 5 U0 , v 5 0 at y 5 1. (4.8)

When Eqs. (3.1)–(3.2) and the boundary conditions (4.5)–(4.8) are suitably nondi-
mensionalized, one parameter, the Reynolds number Re, appears. As Re is in-
creased the nonlinear inertial terms in the momentum equation (1) become more
dominant and the solution becomes more difficult to obtain. A typical solution for
this problem is shown in Fig. 4.2. As in Section 4.2.1, all solutions were computed
using a 100 3 100 equally spaced mesh, which resulted in 30,486 unknowns for the
discretized problems. Twenty Paragon processors were used for all runs.

4.2.3. THE BACKWARD-FACING STEP PROBLEM. This is a standard benchmark
problem [6] consisting of a rectangular channel with a 1 3 30 aspect ratio in which
a reentrant backward-facing step is simulated by introducing a fully developed
parabolic velocity profile in the upper half of the inlet boundary and imposing zero
velocity on the lower half. As the fluid flows downstream it produces a recirculation
zone on the lower channel wall, and for sufficiently high Re it also produces a
recirculation zone farther downstream on the upper wall. This test problem requires
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FIG. 4.2. Lid driven cavity at Re 5 10,000: Contour plot of the stream function shows a main vortex
and existence of corner vortices.

the solution of the same nondimensional equations as in the lid driven cavity
problem. The boundary conditions are given by

u(y) 5 24y(0.5 2 y), v 5 0 at x 5 0, 0 # y # 0.5, (4.9)

u 5 v 5 0 at x 5 0, 20.5 # y , 0, (4.10)

Txx 5 0, Txy 5 0 at x 5 30, (4.11)

u 5 v 5 0 at y 5 20.5, (4.12)

u 5 v 5 0 at y 5 0.5. (4.13)

As Re is increased the nonlinear inertial terms in the momentum equation (3.1)
become more dominant and the solution becomes more difficult to obtain. A typical
solution for this problem is shown in Fig. 4.3. All solutions for this problem were
computed on a 20 3 400 unequally spaced mesh (not shown), which resulted in

FIG. 4.3. Backward-facing step solution at Re 5 800: Contour plot of the x-velocity shows recircula-
tion on lower and upper walls.
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25,623 unknowns for the discretized problems. Sixteen Paragon processors were
used for all runs.

4.3. Experiments with the Benchmark Problems

In this section we report on experiments aimed at showing the effects of back-
tracking and of various choices of the forcing terms hk in (2.3). We have used the
problems introduced in Section 4.2 for these experiments because they are well-
understood benchmark problems. Illustrative results for these problems are shown
in the tables and figures in this section. The full set of test results for these problems
is given in the Appendix.

4.3.1. An illustration of backtracking. Backtracking or other forms of globaliza-
tion are often omitted in engineering codes. While an unglobalized inexact Newton
method can be effective in special situations, e.g., when the initial guess is close to
the final solution or the problem is almost linear, it will often fail to converge in
more general circumstances. To illustrate the effects of backtracking, we show in
Fig. 4.4 convergence histories with and without backtracking over the first 200
GMRES iterations (spanning a number of inexact Newton steps) for the backward-
facing step problem with Reynolds number 600. In particular, denoting the approxi-
mate solution of the Newton equation at each GMRES iterations by s̃, we plot log
iF(uk 1 s̃)i, where uk is the approximate solution of the nonlinear system at the
current Newton step. The solid curve shows log iF(uk 1 s̃)i when backtracking is

FIG. 4.4. Convergence history, first 200 GMRES iterations.
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enabled while the dashed curve shows these values when backtracking is not used.
The vertical intervals in the solid curve indicate the occurrence of backtracking.
Note that these curves are identical at the first inexact Newton step through the
first 76 GMRES iterations (the apparent plateau is actually a period of very slow
increase in log iF(uk 1 s̃)i); however, they diverge at the end of that step as a
result of backtracking and continue to diverge increasingly thereafter. Safeguarded
Choice 1 forcing terms were used, with h0 5 1022; this fairly small h0 accounts for
the relatively large number of GMRES iterations at the first step. The dotted and
dash-dotted curves in Fig. 4.4 correspond to the linear model norm, i.e.,
log iF(uk) 1 F 9(uk)s̃i, for the nonbacktracking and backtracking cases, respectively.
Note that there is considerable divergence of log iF(uk 1 s̃)i and log iF(uk) 1

F 9(uk)s̃i at each inexact Newton step, both with and without backtracking. Thus
the safeguarded Choice 1 forcing terms failed to maintain good agreement between
the nonlinear residual and the local linear model during the first 200 GMRES
iterations, and backtracking was necessary to ensure a decrease in the nonlinear
residual norm. For perspective, we show in Fig. 4.5 the entire convergence history
for the backtracking case. From this, one sees that, after the first 200 GMRES
iterations, backtracking was necessary during occasional periods of difficulty, but
eventually good agreement was maintained between the nonlinear residual and the
local linear model and convergence was ultimately obtained without further back-
tracking.

FIG. 4.5. Entire convergence history.
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FIG. 4.6. Convergence history, first 1000 GMRES iterations.

4.3.2. An illustration of oversolving. To illustrate the issue of oversolving, we
show in Figs. 4.6 and 4.7 convergence histories for two different forcing term choices,
Choice 1 and hk 5 1024, both with backtracking, for the lid driven cavity problem
at Reynolds number 1000. For each forcing term choice, the plots show the nonlinear
residual norms and linear model norms versus the number of GMRES iterations
as in the previous figures. Oversolving is indicated by the gaps between these curves,
in which GRMES continues to reduce the linear model norm while the nonlinear
residual norm typically stagnates or even increases. Oversolving is associated with
significant disagreement between the linear model and the nonlinear residual; once
it begins, subsequent GMRES iterations are usually wasted effort and may even
be counterproductive. With the Choice 1 forcing terms, modest oversolving is
evident until just beyond 700 GMRES iterations but is subsequently too small to
be visible in the plots. With hk 5 1024, oversolving is much more pronounced and
continues for many more GMRES iterations; convergence is ultimately obtained
but much less efficiently than with the Choice 1 forcing terms.

4.3.3. A robustness study. We conducted a comprehensive study involving the
benchmark problems with the goal of assessing the general robustness of an inexact
Newton method with and without backtracking and with various choices of the
forcing terms. In this study, the parameters that determine the difficulty of the
benchmark problems were varied over wide ranges.

The forcing term choices included in the study were safeguarded Choices 1 and
2 and two constant choices. For Choice 2, we used c 5 0.9 and allowed a 5 1.5,
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FIG. 4.7. Entire convergence history.

which gives asymptotic convergence of q-order 1.5 (about the same as the r-order
(1 1 Ï5)/2 convergence of Choice 1), and a 5 2, which gives asymptotic q-quadratic
convergence. The two constant choices have occasionally been used by others
and represent somewhat different approaches. The first, hk 5 1021, requires only
moderate accuracy in solving the Newton equation (2) at each inexact Newton step
and gives only moderately fast asymptotic q-linear convergence near a solution.
The second, hk 5 1024, requires considerable accuracy and results in a step that
should usually give about the same performance as the exact Newton step, with
very fast asymptotic q-linear convergence near a solution.

The results of the study are shown in Table I, which shows numbers of failures
for these forcing term choices with and without backtracking. To help show where
failures occurred, we have somewhat arbitrarily divided cases into ‘‘easier’’ and
‘‘harder’’ parameter ranges for each problem. (However, some of the ‘‘easier’’
problems may not be easy in any absolute sense.) For the thermal convection
problem, the ‘‘easier’’ problems are with Ra 5 103, 104, and 105; the ‘‘harder’’
problem is with Ra 5 106. For the lid driven cavity problem, the ‘‘easier’’ problems
are with Re 5 1,000, 2,000, 3,000, 4,000, and 5,000; the ‘‘harder’’ problems are with
Re 5 6,000, 7,000, 8,000, 9,000, and 10,000. For the backward facing step problem,
the ‘‘easier’’ problems are with Re 5 100, 200, 300, 400, and 500; the ‘‘harder’’
problems are with Re 5 600, 700, 750, and 800.

Table I shows that backtracking generally improves robustness for every choice
of the forcing terms considered here. Indeed, in only one case above (hk 5 1021,
backward facing step, ‘‘harder’’ problems) did backtracking result in more failures
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than no backtracking; we have no explanation for this case and regard it as anoma-
lous. Table I also shows that the Choice 1 and 2 forcing terms generally give greater
robustness than the constant choices, with or without backtracking. However, the
table also shows that neither backtracking nor an effective forcing term choice
alone is sufficient; both are necessary for good robustness. The best combination
seen in Table I is Choice 1 with backtracking, followed closely by Choice 2, a 5

2, with backtracking.

4.3.4. An efficiency comparison of Choice 1 and Choice 2 forcing terms. We
follow the robustness study above with a study aimed at assessing the relative
efficiency of the Choice 1 and Choice 2 forcing terms on the benchmark problems
when backtracking is used. The constant forcing term choices used above are not
included here because their high failure rates precluded obtaining a sufficiently
broad set of test problems. However, we note that in cases in which these constant
choices succeeded, they often resulted in much less efficiency than the Choice 1 or
Choice 2 forcing terms; see, in particular, the results in the Appendix for the
backward facing step and lid driven cavity problems, in which the constant choice
hk 5 1024 is notably less efficient than the Choice 1 or Choice 2 forcing terms.

As in Section 4.3.3 above, in Choice 2, we took c 5 0.9 and used a 5 1.5 and
a 5 2 in this study. The test cases considered were those in which all three of these
forcing term choices resulted in success, as follows: Ra 5 103, 104, 105, and 106 for
the thermal convection problem; Re 5 1,000, 3,000, 4,000, 5,000, 7,000, 8,000, 9,000,
and 10,000 for the lid driven cavity problem; and Re 5 100, 200, 300, 400, and 500
for the backward facing step problem.

The results of the study are shown in Table II, which, for the different forcing

TABLE I
Distribution of Failures

Backward-facing
Thermal convection Lid driven cavity step

Forcing term hk Easier Harder Easier Harder Easier Harder

Choice 1 0 0 0 0 0 1
0 1 0 5 0 4

Choice 2 0 0 1 1 0 3
a 5 1.5 0 1 1 4 0 4

Choice 2 0 0 0 0 0 2
a 5 2 0 1 1 5 1 4

1021 0 0 4 5 1 4
0 1 5 5 1 2

1024 0 0 3 4 2 4
0 1 5 5 3 4

Note. For each choice of hk , the upper and lower lines are the number of failures with and without
backtracking, respectively.
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TABLE II
Forcing Term Comparison

Inexact Newton GMRES Time
Forcing term hk steps Backtracks iterations (seconds)

Choice 1 36.5 41.4 4054.1 792.1
Choice 2, a 5 1.5 36.3 49.8 4189.6 824.2
Choice 2, a 5 2 32.8 48.5 3951.6 779.4

Note. ‘‘Backtracks’’ gives arithmetic means; all other columns give geometric means.

term choices, gives mean numbers of inexact Newton steps, backtracks, and GMRES
iterations, and mean run times (in seconds). All are geometric means except in the
case of backtracks, in which they are arithmetic means. (There were no backtracks
in some cases, and so geometric means were not defined for backtracks.)

Overall, Choice 1 and Choice 2, a 5 2, performed slightly better than Choice 2,
a 5 1.5, which finished last in every category except inexact Newton steps, in which
it essentially tied Choice 1. In comparing Choice 1 to Choice 2, a 5 2, it is notable
that the former required fewer backtracks while the latter required fewer inexact
Newton steps. This is not surprising: Choice 1 is aimed directly at maintaining
good agreement between the nonlinear residual and the local linear model and,
consequently, should relieve the backtracking of much of its burden; Choice 2,
a 5 2, is more ‘‘aggressive’’ and gives asymptotic q-quadratic convergence, which
may result in more backtracking away from the solution but reduce the number of
inexact Newton steps in the end.

We also carried out a similar comparison involving only Choice 1 and Choice 2,
a 5 2, on a somewhat larger test set on which both of these choices gave success.
The results are similar to those in Table II, and so they are not included here.

4.4. Experiments with Two 3D Problems

In Sections 4.2 and 4.3, we have shown the effects on method performance of
backtracking and various forcing term choices through illustrative examples and
statistical studies involving three well-known 2D benchmark problems. These stud-
ies show, in particular, that backtracking coupled with an effective forcing term
choice can lead to very significant overall improvement in robustness and efficiency
over a range of problems. However, in our testing, we also observed considerable
variations in the performance of different method options on individual problems;
it was by no means true that a particular set of options always worked best.

In this section, in order to illustrate variations in method behavior as well as to
show performance on particular realistic problems, we outline specific case studies
of two large-scale 3D flow simulations.

4.4.1. A CVD REACTOR TRANSPORT PROBLEM. This example problem involves
computing the 3D solution for fluid flow, heat transfer, and the mass transfer of
three chemical species in a horizontal tilted chemical vapor deposition (CVD)
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FIG. 4.8. Unstructured finite element mesh of CVD reactor.

reactor. The problem has three fluid velocities, the hydrodynamic pressure, tempera-
ture, and three chemical species as unknowns at each finite element node. The
CVD reactor has a rectangular cross section with a tilted lower surface with an
embedded spinning disk which cannot be accurately represented with a structured
mesh (see Fig. 4.8). Fluid enters in the larger cross sectional area inlet and accelerates
up the inclined surface with the inset rotating heated disk. At the elevated disk
temperature, chemical reactions are initiated to deposit gallium arsenide (GaAs).
In this example, we only transport the precursors for this reaction (tri-methylgallium,

FIG. 4.9. Flow streamlines and contour plot of GaMe3 mass fraction in CVD reactor.
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TABLE III
Results for the CVD Reactor Problem with Backtracking

Inexact Newton GMRES Time
Forcing term hk steps Backtracks iterations (seconds)

Choice 1 25 3 1503 924.9
1021 13 1 1315 593.8
1024 5 0 1531 444.5

GaMe3 , arsine, AsH3) and a carrier gas (hydrogen, H2) and do not allow chemical
reactions. In our example calculation, the inlet velocity is 60 cm/s, the inlet tempera-
ture is 600 K, and the disk rotates at 200 rpm and is heated to 900 K. To simulate
the deposition process, we use a Dirichlet condition on the reactants that introduces
significant diffusion gradients and boundary layers that approximate the average
behavior of the full reacting system depositing GaAs on the rotating disk. (Results
for the full reacting CVD system can be found in [18, 16]). In practice CVD reactors
are run at low pressures and fluid velocities, and thus the Reynolds numbers are
small (Re P 1.0). Therefore, SUPG stabilization was not needed. In addition, for
gasses at these temperatures and pressures, the Prandtl number and the Schmidt
number (analogous to the Prandtl number) for mass transport are approximately
one as well. A typical flow solution is shown in Fig. 4.9, where the streamlines show
the effect of the counterclockwise rotation of the disk. Included is a contour plot
of the concentration of tri-methylgallium at the heated surface. This contour plot
is from the full reacting flow solution [16].

For these experiments, the number of unknowns for the discretized problem was
384,200. The number of Paragon processors used was 220. The GMRES restart
value was 100, with a maximum of 600 GMRES iterations allowed at each inexact
Newton step. Since these experiments are intended to be illustrative, we considered
only three representative forcing term choices, viz., Choice 1 and the two constant
choices, hk 5 1021 and hk 5 1024. Results for these forcing term choices, with and
without backtracking, are shown in Tables III and IV. It is notable that, for this
problem, performance was worse with backtracking than without for every forcing
term choice. Furthermore, the best performances (at least in terms of time) were

TABLE IV
Results for the CVD Reactor Problem without Backtracking

Inexact Newton GMRES Time
Forcing term hk steps Backtracks iterations (seconds)

Choice 1 2 0 1052 707.9
1021 12 0 1051 511.5
1024 5 0 1531 445.5
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FIG. 4.10. The duct flow problem (top view) showing a center-plane plot of x-velocity contours.
Isosurfaces show an accelerated flow region on the upper portion of the duct and a lower recircula-
tion region.

from the constant choices without backtracking. In fact, the choice hk 5 1024, which
was the clear winner in terms of time, took far fewer inexact Newton steps than
the other two choices and never invoked backtracking even when it was allowed;
i.e., initial inexact Newton steps were always acceptable.

4.4.2. A 3D DUCT FLOW PROBLEM WITH CONTAMINATION TRANSPORT. This 3D
problem models the steady flow of air through an expanding cross section duct.
On the lower surface of the duct a recirculation region forms as in the backward-
facing step example. The physical problem of interest is to solve for the flow field
and for the downstream transport of ionized air molecules produced from a small
source of nuclear ionizing radiation located on the lower wall behind the step. The
goal of the simulation is to computationally predict the presence of the nuclear
contamination in concentrations high enough to detect experimentally by special
sensors. This information is to be used to aid in the economical decommissioning
of old nuclear facilities.

The numerical computation requires the solution of the momentum transport,
total mass, and contaminant species conservation equations defined in Section 3.
The domain is a duct of width 0.2 m by 8 m long, with an inlet height of 0.1 m and
outlet of 0.2 m. The mesh is finer near the solid walls and the step expansion
location. The Reynolds number based on the outlet height is 400 and the Schmidt
number is 1.0. A typical solution for this problem is shown in Fig. 4.10. This figure
shows a contour plot of the x-velocity on the center-plane of the duct, an isosurface
plot of an accelerated flow region in the upper duct, and a lower 3D recirculation
region with negative velocities located behind the step. For these experiments, the
number of unknowns for the discretized problem was 477,855. The GMRES restart
value was 160, and a maximum of 640 GMRES iterations was allowed at each
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TABLE V
Results for the Duct flow Problem

Inexact Newton GMRES Time
Forcing term hk steps Backtracks iterations (seconds)

Choice 1 28 6 13,450 3554.5
1021 25 7 15,477 3953.9
1024 24 6 15,360 3915.1

inexact Newton step. The number of Paragon processors used was 256. The forcing
terms considered here are Choice 1 and the two constant choices hk 5 1021 and
hk 5 1024.

Backtracking was necessary for success on this problem; the method diverged
without backtracking. Results with backtracking are given in Table V. Notice
that while Choice 1 required the most inexact Newton steps, it also took the
fewest number of GMRES iterations and, consequently, the least amount of
CPU time, despite the time required to create new Jacobians and preconditioners
at the additional inexact Newton steps. We should note that the run-time
advantage of Choice 1 over hk 5 1024 would have been even larger had the
maximum number of GMRES steps been set higher. Indeed, the linear solver
frequently took the maximum number of steps (640) without achieving conver-
gence when hk 5 1024, and thus a larger maximum number of GMRES steps
would have resulted in an even greater difference between the Choice 1 run
times and the hk 5 1024 run times.

In the true physical problem of interest here, there is also a volumetric ion
reaction source term. Results for these solutions are very similar to those of
Table V. In a later manuscript, we will consider the inclusion of the reaction
terms in the transport equations and study the convergence of the inexact
Newton methods.

5. A COMMENT ON TRUST REGION METHODS

In addition testing not reported here, we also experimented with several variations
of the backtracking algorithm that employed techniques associated with trust region
methods. In a trust region method, steps are constrained to lie within spherical or
ellipsoidal neighborhoods in which the linear model is ‘‘trusted’’ to represent the
nonlinear residual well. Within each such neighborhood, a step is chosen to minimize
approximately the norm of the local linear model; the size of the neighborhood is
then adjusted for the next step to reflect agreement of the local linear model and
the nonlinear residual. A popular trust region implementation is the dogleg method,
in which a step is chosen to minimize the local linear model norm within the trust
region along the dogleg curve, which joins the current point, the steepest descent
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point (the minimizer of the local linear model norm in the steepest descent direc-
tion), and the point determined by the Newton step. We omit further details and
refer the reader to [3].

We carried out a number of experiments with a straightforward extension of the
dogleg schema to the inexact Newton context, in which the inexact Newton step
played the role of the Newton step.5 In these tests, we experimented with several
different norms (to properly capture the different physical scales of the variables)
in defining trust region neighborhoods. For the most part our results indicate that,
in the present context, such a trust-region method can be fairly competitive with
backtracking. However, we noticed no paticular improvement in overall robustness,
although occasionally one method converged when another would not and vice
versa.6 Moreover, the trust region method usually required slightly more CPU time
than the backtracking method: There were fewer function evaluations due to less
backtracking, but this savings was outweighed by the cost of more inexact Newton
steps due to the scaling back of steps.

In addition to this dogleg implementation, we also conducted some experiments
involving the following: (1) imposing a trust region-type steplength constraint on
initial inexact Newton steps used in backtracking; (2) backtracking from initial
inexact Newton steps along the dogleg curve, rather than simply scaling back the
steps as in straightforward backtracking; (3) modifying GMRES so that the first
iterate is the steepest descent step.7 In no case did we observe any overall advantage
over the straightforward backtracking method.

6. SUMMARY DISCUSSION

We have proposed an inexact Newton method with a backtracking globalization
for the solution of the steady transport equations for momentum, heat, and mass
transfer in flowing fluids. The algorithm offers choices of the forcing terms (the
criteria that determine the accuracy of solutions of the linear subproblems) that
are intended to enhance the robustness and efficiency of the method by maintaining
good agreement between the nonlinear residual and its local linear model at each
inexact Newton step. Theoretical support for the algorithm shows that it has strong
global convergence properties together with desirably fast (up to q-quadratic) lo-
cal convergence.

Extensive testing on three standard 2D benchmark problems has shown that both
backtracking and an effective forcing term choice can greatly improve robustness.
However, neither alone is sufficient; both are necessary for the best overall perfor-

5 The MPSalsa testing environment was modified to allow the computation of products of the transpose
of the Jacobian with vectors, which in turn allowed the computation of steepest descent steps.

6 Only with the constant choice hk 5 1021 did we observe that the trust region method was more
robust than backtracking. However, usually the CPU times for this choice were longer than for either
Choice 1 or Choice 2 with backtracking.

7 This simple modification requires an initial product F 9(xk)TF(xk), followed by an additional dot
product and ‘‘saxpy’’ at each iteration.
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mance. In our tests on the benchmark problems, the greatest overall robustness
was obtained with backtracking in combination with the Choice 1 forcing terms,
followed closely by the Choice 2 forcing terms with a 5 2. (See Section 2.2 for
these forcing term formulations). Compared to Choice 1, Choice 2 with a 5 2
tended to require more backtracks but to take fewer inexact Newton steps in
our experiments.

Tests on two 3D problems have shown the effectiveness of the algorithm on
realistic large-scale flow simulations. Results for the second problem, a duct flow
problem, reflect the overall results on the 2D benchmark problems: Backtracking
was necessary for success, and, with backtracking, Choice 1 forcing terms resulted
in considerably greater efficiency than either of two constant choices considered.
In contrast, for the first problem, a CVD reactor problem, all three of these choices
gave better performance without backtracking, and the best performance was ob-
tained with the very small constant choice hk 5 1024. This demonstrates that no
single strategy is best for all problems; the best course is to have a number of
options available.

APPENDIX

On the following pages, we give the full set of test results for the experiments
on the benchmark problems described in Sections 4.2, 4.3. For each problem, the
first column of results gives values of the appropriate parameter, viz., the Rayleigh
number Ra for the backward-facing step and thermal convection problems and the
Reynolds number Re for the lid driven cavity problem. The second column (S/F)
shows a success/failure flag: ‘‘0’’ indicates success; ‘‘21’’ indicates either failure to
succeed within the maximum allowable number of inexact Newton steps (either
100 or 200 steps in each case) or stagnation, as determined by failure to achieve
sufficient reduction in the nonlinear residual norm for fifteen consecutive steps;
‘‘22’’ indicates backtracking failure, i.e., failure to determine a successful step
within the maximum allowable number of backtracks (eight). The third through
eighth columns show, respectively, numbers of inexact Newton steps (Newt), num-
bers of function evaluations (#f( )), numbers of backtracks (Bkt), numbers of
GMRES iterations (GMRES), final residual norms (iri), and total run times in
seconds (time). In some cases, test runs were terminated because of exceeding the
allowable run time, machine failure, or other reasons. In these cases, if ultimate
failure was clear, the runs were not repeated; these runs are indicated by ‘‘termi-
nated but clearly failing’’ in the tables.
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