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Abstract. There are algorithms for finding zeros or fixed points of nonlinear systems
of equations that are globally convergent for almost all starting points, i.e., with probability
one. The essence of all such algorithms is the construction of an appropriate homotopy map

and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK is a

mathematical software package implementing globally convergent homotopy algorithms with

three different techniques for tracking a homotopy zero curve, and has separate routines for

dense and sparse Jacobian matrices. The HOMPACK algorithms for sparse Jacobian matrices

use a preconditioned conjugate gradient algorithm for the computation of the kernel of the

homotopy Jacobian matrix, a required linear algebra step for homotopy curve tracking. Here
variants of the conjugate gradient algorithm are implemented in the context of homotopy
curve tracking and compared with Craig’s preconditioned conjugate gradient method used in

HOMPACK. The test problems used include actual large scale, sparse structural mechanics

problems.
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1. Introduction. The fundamental problem motivating this work is to solve a

nonlinear system of equations F(x) 0, where F En - En is a C2 map defined on

real n-dimensional Euclidean space En. The homotopy approach to solving F(x) 0 is

to construct a continuous map H(A, x), the "homotopy," deforming a simple function

s(x) to the given function F(x) as varies from 0 to 1. Starting from the easily
obtained solution to H(0, x) s(x) 0, the essence of a homotopy algorithm is to
track solutions of U(A,x) 0 until a solution of H(1, x) F(x) 0 is obtained.
The theoretical and implementational details of such algorithms are nontrivial, and
significant progress on both aspects has been made recently [37], [52].
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Homotopies are a traditional part of topology, and only recently have begun to
be used for practical numerical computation. The (globally convergent probability-
one) homotopies considered here are sometimes called "artificial-parameter generic
homotopies," in contrast to natural-parameter homotopies, where the homotopy vari-
able is a physically meaningful parameter. In the latter case, which is frequently of
interest, the resulting homotopy zero curves must be dealt with as they are, bifurca-
tions, ill-conditioning, etc. The homotopy zero curves for artificial-parameter generic
homotopies obey strict smoothness conditions, which generally will not hold if the ho-
motopy parameter represents a physically meaningful quantity, but they can always
be obtained via certain generic constructions using an artificial (i.e., nonphysical)
homotopy parameter. Not just any random perturbation will suffice to create a glob-
ally convergent probability-one (generic) homotopy, e.g., the perturbation implied by
discretization is generally not sufficient to produce a probability-one homotopy map.

If the objective is to solve a "parameter-free" system of equations, F(x) 0,
then extra attention can be devoted to constructing the homotopy, and the curve-

tracking algorithm can be limited to a well-behaved class of curves. The goal of
using these globally convergent probability-one homotopies is to solve fixed-point and
zero-finding problems with homotopies whose zero curves do not have bifurcations
and other singular and ill-conditioned behavior. The mathematical software package
HOMPACK, used here for comparative purposes, is designed for globally convergent
probability-one homotopies.

The theory and algorithms for functions F(x) with small dense Jacobian matrices

DF(x) are well developed, which is not the case for large sparse DF(x), the topic of
this paper. Solving large sparse nonlinear systems of equations via homotopy methods
involves sparse rectangular linear systems of equations and iterative methods for the
solution of such sparse systems. Preconditioning techniques are used to make the
iterative methods more efficient.

Section 2 discusses the zero-finding problem and the normal flow homotopy al-
gorithm. Section 3 introduces iterative methods for solving invertible linear systems.
Section 4 discusses the linear algebra details of homotopy curve tracking and vari-

ous algorithmic possibilities for that. Section 5 presents the numerical results of the
implementation of the various algorithms on several test problems. Some general
conclusions from these results are drawn in 6.

2. Globally convergent homotopy algorithms. The philosophy of globally
convergent probability-one homotopy algorithms is to create homotopies whose zero

curves are well behaved with well-conditioned Jacobian matrices and that reach a

solution for almost all choices of a parameter. These homotopies are used to solve
fixed-point and zero-finding problems.

Let B be the closed unit ball in n-dimensional real Euclidean space En, and let

f B -- B be a C2 map. The fixed-point problem is to solve x f(x). Define

Pa :[0, 1) x B En by

(1) p,(), x) A(x- f(x)) + (1 A)(x- a).

The fundamental result [10] is that for almost all a in the interior of B, there is a zero

curve c [0, 1) B of Pa, along which the Jacobian matrix Dpa(,,x) has rank n,
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emanating from (0, a), and reaching a point (1, 2), where 2 is a fixed point of f. Thus
with probability one, picking a starting point a E int B and following 3’ leads to a fixed

point 2 of f. An important distinction between standard continuation and modern
probability-one homotopy algorithms is that for the latter A is not necessarily mono-

tonically increasing along 3’. Indeed, part of the power of probability-one homotopy
algorithms derives from the lack of a monotonicity requirement for A.

The zero-finding problem

F(x) -0,

where F En E is a C2 map, is more complicated. Suppose that there exists

C2 map
p Em x [0, 1) x En En

such that
(a) the n x (rn + 1 + n) Jacobian matrix Dp(a, A, x) has rank n on the set

p-l(0) {(a, A, eTM, o <_ < 1, x G en, p(a, ,X, x) 0},

and for any fixed a e ETM, letting pa(,k,x) p(a,/,x),
(b) pa(O, x) p(a, 0, x) 0 has a unique solution x0,

(c) pa(1, x)-- _F(X),
(d) /921(0) is bounded.

Then for almost all a E there exists a zero curve 3’ of pa along which the Jacobian
matrix Dp has rank n, emanating from (0, x0) and reaching a zero 5: of F at A 1.

3’ does not intersect itself and is disjoint from any other zeros of p. The globally
convergent homotopy algorithm is to pick a ETM (which uniquely determines x0),
and then track the homotopy zero curve starting at (0, x0) until the point (1, ) is

reached.
There are many different algorithms for tracking the zero curve ; the mathemat-

ical software package HOMPACK [52], [53] supports three such algorithms: ordinary
differential equation-based, normal flow, and augmented Jacobian matrix. Small dense
and large sparse Jacobian matrices require substantially different algorithms. Large
nonlinear systems of equations with sparse symmetric Jacobian matrices occur in many
engineering disciplines (the symmetry in the problems of interest here is due to the
fact that the Jacobian matrix is actually the Hessian of a potential energy function).
In this paper, we consider only the zero finding problem F(x) 0, the normal flow
curve tracking algorithm, and large sparse symmetric Jacobian matrices DF(x) stored
in a packed skyline data structure.

Consider the homotopy map

pa(X, /) /F(x) + (1 A)(X a).

The matrix Dxpa (x, A) ADF(x)+(1 A)I is symmetric and sparse with a "skyline"
structure. Such matrices are typically stored in packed skyline format, in which the
upper triangle is stored in a one-dimensional indexed array. An auxiliary array of
diagonal indices is also required. Assuming that F(x) is C2, a is such that the Jacobian
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matrix Dpa(X, A) has full rank along 3‘, and 3‘ is bounded, the zero curve 3’ is C and
can be parameterized by arc length s. Thus x x(s), A A(s) along 3‘, and

identically in s.

The zero curve 3‘ given by (z(s), X(s)) is the trajectory of the initial value problem

(4) -sPa(X(S), ,X(s)) [Dxpa(X(S), /X(s)), DApa(X(S), ,X(s))] \d//ds]
O,

dx dA)ds ds

(6) x(0) a, A(0) 0.

Since the Jacobian matrix has rank n along 3‘, the derivative (dx/ds, dA/ds) is uniquely
determined by (4), (5) and continuity, and the initial value problem (4)-(6) can be
solved for x(s), A(s). From (4) it can be seen that the unit tangent (dx/ds, dA/ds) to

3‘ is in the kernel of Dpa.
The normal flow curve tracking algorithm has four phases: prediction, correction,

step size estimation, and computation of the solution at A 1. For the prediction
phase, assume that two points p(1) (x(81),/(81)) p(2) (x(82),/(82)) on 3‘ with

corresponding tangent vectors (dx/ds(sl), dA/ds(sl)), (dx/ds(s2), dA/ds(s2)) have
been found, and h is an estimate of the optimal step (in arc length) to take along 3‘.
The prediction of the next point on 3‘ is

(7) Z() p(s2 + h),

where p(s) is the Hermite cubic interpolating (x(s), A(s)) at 81 and s2. Precisely,

p’(81) (dx/da(81), dA/ds(sl)),
p’(s2) (dx/ds(s2), dA/ds(s2)),

and each component of p(s) is a polynomial in s of degree less than or equal to 3.

Starting at the predicted point Z(), the corrector iteration is

(8) Z(k+l) Z(k) [Dpa (Z(k))] + pa(Z(k)), k-- 0,1,

where [Dpa(Z(k))]+ is the Moore-Penrose pseudoinverse of the n x (n + 1) Jacobian
matrix Dpa. Small perturbations of a produce small changes in the trajectory 3‘,

and the family of trajectories 3‘ for varying a is known as the "Davidenko flow."
Geometrically, the iterates given by (8) return to the zero curve along the flow normal
to the Davidenko flow, hence the name "normal flow algorithm."
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A corrector step AZ is the unique minimum norm solution of the equation

(9) [Dpa] /kz --Pa.

Fortunately AZ can be calculated at the same time as the kernel of [Dpa], and with
just a little more work. The numerical linear algebra details for solving (9), the optimal
step size estimation, and the endgame to obtain the solution at A 1 are in [52], [53].

The calculation of the implicitly defined derivative (dx/ds, dA/ds) is done by com-

puting the one-dimensional kernel of Dpa, i.e., by solving the n (n + 1) linear system
[Dpa]y O. This can be elegantly and efficiently done for small dense matrices [47],
[51], but the large sparse Jacobian matrix presents special difficulties. The difficulty
now is that the first n columns of the Jacobian matrix Dpa(x, )) involving DF(x)
are definitely special, and any attempt to treat all n / 1 columns uniformly would
be disastrous from the point of view of storage allocation. Hence, what is required
is a good algorithm for solving nonsquare linear systems of equations (9) where the
leading n n submatrix Dxpa of Dp is symmetric and sparse. This paper considers
various iterative methods for solving such linear systems of equations.

3. Iterative methods for invertible linear systems. Nonsquare systems of
the form (9), involved in the tangent vector and normal flow iteration calculations,
are converted to equivalent square linear systems of the form

(10) AY=(B fd)ct y b,

where the n n matrix B is bordered by the vectors f and c to form a larger system
of dimension (n + 1) (n + 1). In the present context B Dxp(x, ) is symmetric
and sparse, but A is not necessarily symmetric.

Iterative methods are used for solving these linear systems. (If B has only a

couple nonpositive eigenvalues, direct methods are a viable alternative; this issue is
addressed later.) Iterative methods compute a sequence of approximate solutions {xi}
which converge to the exact solution x by some algorithm of the form

Xi+l Fi(Xo, Xl, xi),

where x0 is an arbitrary initial guess and Fi may be linear or nonlinear.
Iterative methods require the coefficient matrix A in the algorithm, generally

only to compute matrix-vector products. Since matrix-vector computations are quite
inexpensive for sparse problems, iterative methods have low computational cost per
iteration. Iterative methods are also attractive because they have low storage require-
ments, due to the fact that at each iteration, only a small number of vectors of length
N n+ 1 need to be computed and stored to calculate the next iterate Xi+l, and A it-
self can be generated or stored compactly. Thus iterative methods are sometimes more

attractive than direct methods for solving large sparse linear systems of equations.
Iterative methods such as the successive over-relaxation (SOR) algorithm [43]

and the alternating direction implicit (ADI) algorithm [57] require the estimation of
scalar parameters. The conjugate gradient procedure [24] is an efficient algorithm
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for solving symmetric positive definite systems which requires no such estimates. For
many years, the only iterative methods known to converge for general nonsymmetric
problems were the conjugate gradient method applied to the normal equations [24]
and Lanczos’ biconjugate gradient algorithm [29]. Other early conjugate gradient-like
methods for nonsymmetric problems which avoided the use of the normal equations
were the generalized conjugate gradient method of Concus and Golub [11]-[12] and
Widlund [56], and Orthomin by Vinsome [44]. These methods apply only to matri-

ces with positive definite symmetric part, although with preconditioning they can in

principle be used to solve more general problems [18]. Other conjugate gradient-like
methods for more general problems were proposed by Axelsson [1]-[3]; Eisenstat, El-
man, and Schultz [17]; Jea [251; Saad [391; Young and Jea [58]-[59]; and Saad and
Schultz [41]. Preconditioning techniques that have been effective for symmetric, pos-
itive definite systems include the incomplete LU factorization [30], [31], the modified
incomplete LU factorization [15], [22], and the SSOR preconditioning [57]. Most of
these extend naturally to nonsymmetric problems. A lot of work has also been done
comparing these various iterative methods and the preconditioning techniques [9],
[14], [18], [41]. Unfortunately very little of this existing theory is directly applicable
to the sparse linear systems arising from homotopy curve tracking, because they are

nonsquare, generally indefinite, and lack special structure typical of PDE problems.
The rate of convergence of conjugate gradient-type methods depends on the sym-

metry, inertia, spectrum, and condition number of the coefficient matrix. There are

efficient conjugate gradient algorithms for solving linear systems with symmetric pos-
itive definite coefficient matrices, whereas no comparable theory exists for general
systems with nonsymmetric or indefinite A. This paper compares the relative perfor-
mance of conjugate gradient-type algorithms for solving nonsymmetric or indefinite
linear systems of the form Ax b arising from globally convergent homotopy algo-
rithms, in terms of execution time, storage requirements, and the number of iterations

required to converge.
Let Q be an N N nonsingular matrix. The solution to Ax b can also be

obtained by solving the system

x (Q-1A)x Q-lb- .
The use of such an auxiliary matrix is known as preconditioning. The goal of precon-
ditioning is to decrease the computational effort required to solve linear systems of
equations by increasing the rate of convergence of an iterative method. For precon-
ditioning to be effective, the faster convergence must outweigh the costs of applying
the preconditioning, so that the total cost of solving the linear system is lower. The
preconditioned coefficient matrix A is usually not explicitly computed or stored. The
main reason for this is that although A is sparse, . may not be. The extra work of
preconditioning, then, occurs in the preconditioned matrix-vector products involving
Q-1. The main storage cost for preconditioning is usually for Q, which typically is

stored, so that one extra array is required to handle the preconditioning operation.
As mentioned above, one iterative method known to converge for general nonsym-

metric problems is the conjugate gradient method applied to the normal equations.



228 IRANI KAMAT RIBBENS WALKER AND WATSON

Given any nonsingular matrix A, the system of linear equations Ay b can be solved

by considering the linear system (normal equations)

A Ay A b,

or the similar system

AA z b, y A z.

Since the coefficient matrix for the latter system is both symmetric and positive defi-

nite, the system can be solved by the conjugate gradient algorithm. Once a solution

vector z is obtained, the vector y from the original system can be computed as y Atz.
The drawback of this technique is that, while the coefficient matrix is symmetric and

positive definite, the convergence rate depends on cond(AAt) (cond(A))2 rather

than on cond(A); see [18] for a precise statement.

An implementation of the conjugate gradient algorithm in which y is computed
directly, without reference to z, any approximations of z, or AA is due to Craig [13]
and is described in [19] and [23]. (Of course, the convergence rate still depends on

cond(AAT) -(cond(A))2 in general.) Craig’s preconditioned algorithm is:

choose Y0, Q;

set r0 b Ay0;

set r0 Q-lro;
set po AtQ-tZo;
for 0 step 1 until convergence do

begin

ai (pi,pi),

Yi+l Yi nt- aiPi;

+ r5 aiQ-1Api;

bi
(i+1, ?i+1)

Pi+l At(-ti+l + biPi;

end

Here (x, y) denotes the inner product of x and y. For this algorithm, a minimum of

5(n + 1) storage locations is required (in addition to that for A). The vectors y, ,
and p all require their own locations; (-t can share with Ap; (-lAp can share with

AtQ-t. The computational cost per iteration of this algorithm is:

(a) two preconditioning solves (Q-iv and Q-tv);
(b) two matrix-vector products (Av and Atv);
(c) 5(n / 1) multiplications (the inner products (p,p) and (, ), ap, bp, and

aQ-1Ap).
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3.1. Alternatives for solving (10). There are three main approaches to

solving (10):
(1) In the block factorization approach to the problem, a block elimination algo-

rithm is used instead of working with the whole matrix A directly. Such an algorithm
would take advantage of the special properties of the submatrix B.

(2) The general approach works directly with the whole matrix A without taking
any special advantage of the fact that the submatrix B contained in A is symmetric.

(3) The splitting approaches lie somewhere between (1) and (2). Here A is split

into the sum of a symmetric matrix M and a low rank correction L. These methods

also take advantage of the fact that the leading submatrix B is symmetric and can

use conjugate gradient algorithms requiring a symmetric coefficient matrix.

APPROACH 1 (block factorization methods). The linear system (10) can also be

written as

B y b

A block-elimination algorithm [5] would be:

factor B;
solve By f;

solve Bw b;
compute y" (b" ctw)/(d ctv);
compute y w- y’v.

With such block factorization methods, the work consists mainly of one factorization

of B (assuming that is possible) and two backsolves with the factors of B. Observe
that block elimination will frequently fail in the homotopy context, because even

though rank A n + 1 and rank (B f) rank Dp n, it may very well happen
that B D:p is singular (rank B n- 1). Singular B can be handled by deflation

techniques [5]-[8], resulting in a direct algorithm very similar to other direct algorithms
discussed below under matrix splittings. If the deflated systems were solved iteratively,
this would constitute yet another iterative algorithm with no apparent advantage over

the other iterative algorithms considered here. Deflation and block elimination will

not be considered further.

APPROACH 2 (general methods). These algorithms work on the nonsymmetric A
directly. If Y0 is an initial approximation of y, and r0 the corresponding residual vector

ro b- Ayo, then the Krylov subspace methods consist of finding an approximate

solution belonging to the affine subspace Y0+Kj, where Kj is the Krylov subspace gen-

erated by r0, Aro,... AY-lro There are several such methods besides Craig’s method

known as Orthomin(k) [44], Orthodir and Orthores [59], the Incomplete Orthogonal-
ization Method [40], the GCR method [18], and the GMRES method [42]. Typical of
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these methods is the preconditioned Orthomin(k) algorithm, given by:

choose Y0;

set ro b- Ayo;
set r0 Q-it0;
set p0 r0;

for i- 0 step 1 until convergence do

begin

(Zi, Q-1Api)
ai (Q-Api, Q-Api)
yi+ yi + aipi;

i+1 i aiQ-Api;

(i) (Q-1Ai+i, Q-1Apj)
bj (Q_IApj,Q_iApj)

j max{O,/- k 4- 1},...i;

pi+l iq-1 4- E bjpj;
j--(i-k+l)+

end

where (i- k + 1)+ max(O, i- k + 1}. As for the storage costs, Apj is overwrit-

ten by Q-1Api and A by Q-1A. Thus storage is required for y, , {Pi}ii-a+l)+,
and Q-IA.{Q lApj}(i_k+l)+,

However, Orthomin(k) is guaranteed to converge only for positive definite coeffi-
cient matrices A (equivalently, A with positive definite symmetric part (A 4- At)/2).
(Some authors define positive definite only for symmetric matrices, while others say
A is positive definite if xtAx > 0 for all x 0 in En, whether A is symmetric or

not. This latter meaning is used here.) More general systems Ax b, where A is

not positive definite, can be solved by applying Orthomin(k) to the transformed sys-
tem ZAx Zb, where Z is nonsingular and ZA is positive definite. The matrix Z
must be known and used explicitly in the iteration, a major obstacle to the general
applicability of Orthomin(k).

The GCR method may also break down if the coefficient matrix is not positive
definite. Although Orthodir does not break down in this case, it is observed to have
stability problems [40]. GMRES, on the other hand, although equivalent to GCR
for positive definite coefficient matrices, can be used to solve systems for which the
coefficient matrix is not positive definite, and requires half as much storage as GCR.
However, GMRES requires storage of the order of the number of iterations performed
for convergence. Hence, the algorithm is used iteratively, i.e., it is restarted every k
steps, where k is a fixed parameter, leading to the following GMRES(k) algorithm

choose yo, tol;

set ro b- Ayo;
while IIr011 > tol do
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begin

for j- 1 step 1 until k do

begin

for i-- 1 step 1 until j do hi,j (Avj, vi);
J

)j+l Avj E hi,jvi;
i-1

Vj+ )j+ / hj+1,j

end

Solve min [I I]roll el kxll for xk where /k is described in [42];

set Yo Yo / Vkxk; set ro b- Ayo
end

In practice the algorithm calculates ]]rj[ (llrj]] can be calculated without forming yj
or rj b- Ayj explicitly) at each iteration of the j loop, and breaks the j loop if

Ilrj]] < tol [42], [45]. Also, it is important in practice that the classical Gram-Schmidt
process in the inner j loop be replaced by the modified Gram-Schmidt process to
ensure stability. GMRES(k), like Orthomin(k), is guaranteed to converge when the
coefficient matrix is positive definite. However, for an indefinite coefficient matrix,
GMRES(k), while it does not break down, may fail because the residual norms at
each step, although nonincreasing, do not converge to zero.

APPROACH 3 (coefficient matrix splittings). There are several ways of splitting
the coefficient matrix A in (10) as the sum of a symmetric matrix M and a low rank
matrix L. The choice (ct, d) as the last row of M gives the splitting

(11) M ct d 0

where en+l is a vector with 1 in the (n + 1)st component and zeros elsewhere. There
are many reasonable choices for (ct, d), discussed later (recall that (ct, d) can be almost
any, in the sense of Lebesgue measure, vector for which (10) produces a solution to the
true problem (9) or [Dpa]y 0). The linear system Ay b is then solved by applying
iterative techniques to two linear systems with coefficient matrix M followed by the
Sherman-Morrison formula; the algorithmic details of this are in the next section.
Another possibility would be to compute a symmetric indefinite factorization of M,
and not use iterative methods at all. However, this destroys the skyline data structure
containing M, and a tacit assumption here is that the skyline data structures must
be preserved. If it were acceptable to destroy the skyline data structure, this direct
approach would likely be the most efficient of all for skyline sparsity patterns, but
would not generalize to arbitrary sparsity patterns (which the iterative methods will).

Another way of splitting up the coeificient matrix A is

(12) A D- AL Au,
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where D is the diagonal of A, AL is the strict lower triangle of-A, and Au is the strict
upper triangle of-A. The symmetric successive over-relaxation (SSOR) iterative
method [57] is the following two stage algorithm:

(D wAn)x,+1 [(1 w)D + wAv]x, + wb,

(D wAv)xi+l [(1 w)D + wAL]Xi+ll2 + wb,

where w is a real scalar parameter between 0 and 2. With

1
Q (D -wAL)D-I(D --wAG),

this method can be formulated as a one step algorithm

QXi+l (Q A)xi + b.

In the homotopy context, D-1 frequently does not exist, and a diagonal matrix E
such that [diag (A + E)] -1

does exist may not be of low rank (meaning that the
solution for A cannot be easily recovered from the solution for A + E). Consequently,
SSOR and methods based on similar splittings are of limited utility in the homotopy
context; in fact, SSOR failed for all the test problems in 5. A few experiments were

also tried with SSOR (w 1) as a preconditioner, but it was not competitive, and is
not considered further here.

3.2. Some preconditioning techniques. This section considers some pre-
conditioning techniques to be used in conjunction with the algorithms just described.
Preconditioning matrices constructed from approximate factorizations of the coeffi-
cient matrix are considered first. A lower triangular matrix L and an upper triangular
matrix U that are in some sense approximations of the factors in the LU factorization
of A, but that are also sparse, are constructed. The preconditioning matrix is the
product Q LU. The heuristic used to insure that the preconditioning is inexpensive
to implement is to force the factors to be sparse by allowing nonzeros only within a

specified set of locations.

(i) The incomplete LU factorization (ILU). Let Z be a set of indices contained in

{(i,J) 1 _< i,j <_ N, j}, typically where A is known to be zero. The incomplete
LU factorization is given by Q LU, where L and U are lower triangular and unit
upper triangular matrices, respectively, that satisfy

Lj Uj O,
Qij Aij,

The incomplete LU factorization algorithm is:

for 1 step 1 until N do

for j 1 step 1 until N do

if ((i, j) Z) then

begin

end

min{i,j}--i

8ij Aj E LitUtj
t=l

if (i >_ j) then Lij 8ij else Uij 8ij/Lii;
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It can happen that Lii is zero in this algorithm. In this case Li is set to a small

positive number, so that Q Ai.
(ii) The modified incomplete LU factorization (MILU). Let Z be the set of indices

that determine the zero structure, and assume that (i,i) Z, 1 <_ _< N. The

modified incomplete LU factorization is given by Q LU, where L and U are lower

triangular and unit upper triangular matrices, respectively, that satisfy

Lj Uj 0,
Qij Aij,

E-I (QiJ Aj)

(i, j) E Z,
(i, j) Z, # j,

l<_i<_N,

where a is a scalar. The modified incomplete LU factorization algorithm is:

for i- 1 step 1 until N do

begin

Lii a;

for j- 1 step 1 until N do

begin

min{i,j}--i

sij Aij E
t--1

if ((i,j) Z) then

begin

end

Lit Utj

if (i > j) then Lij 8ij

if (i j) then L Li + s
if (i < j) then Uj sj

end

else Lii L + sj;

end

forj-i+l step 1 untilndo

U ij/L;

Since LU factorizations preserve a skyline sparsity structure, the MILU factorization

is the same as the ILU factorization for c 0. The motivation for the MILU fac-

torization is to control the elements of Q where it does not match A, at least in an

average sense. In the homotopy context here with skyline A and a > 0, Q can be

construed as an approximation to A that is closer to (or more) positive definite than

A.
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4. Algorithms for computing ker[Dpa]. As discussed in 2 for the normal flow

algorithm, a corrector step AZ is the unique minimum norm solution of (9), which

uses the solution of the rectangular linear system [Dpa]y 0. This section describes

various algorithms for the solution of such linear systems.
Let (2, ) be a point on the zero curve -y, and the unit tangent vector to "y at

(2, ) in the direction of increasing arc length s. Then the matrix

A DxPa(X,,k) Dipa(X, ,k)(13) c d J

where (c d) is any vector outside a set of measure zero (a hyperplane), is invertible

at (2, ) and in a neighborhood of (2, ). Thus the kernel of Dpa can be found by
solving the linear system of equations

(14) Ay- Oen+l b,

where (c d)l c.

The coefficient matrix A in the linear system of equations (14) has a very special
structure which can be exploited in several ways. Note that the leading n n submatrix

of A is Dxpa, which is symmetric and sparse, but possibly indefinite. Since symmetry
is advantageous for some algorithms, A can be made symmetric and invertible by
choosing c Dpa. If rank Dxp n- 1, then Dpa is not a linear combination of
the columns of DxPa, because rank [DxPa Dpa] n by the homotopy theory. Thus

c (Dixpa) is not a linear combination of the rows of the symmetric matrix Dxp,
and the

(15) row rank (Dpa)t n.

Finally,

is not a linear combination of the first n columns of A, so the column rank A n + 1

for any choice of d. Now suppose that rank Dxpa n. Then

(16) rank (D)pa)t-n,
and it suffices to choose d to make the last column of A independent from the first

n columns. Dp is a unique linear combination of the columns of Dp, and any

choice of d other than this combination of the components of (Dpa) will make the

(n / 1)st column independent. Let A denote A at (g,,/k). Since dim[ker(A)] < 1,
y 0 implies y ag, and thus with t (gt,gn+l) (DApa(2,))tl _+_ dln+l O.

Choosing any 0 and solving (Dpa(2,))t9 + dgn+l for d (gn+l - 0 since

rank Dpa(2, ,k) n) gives a d such that rank(A) n + 1 for (x, A) near (2,
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Observe also that if Dxpa is positive definite, choosing d > 0 sufficiently large
guarantees that

is also positive definite.

Proof. Since A is symmetric, by Sylvester’s Theorem A is positive definite if and
only if all its leading principal minors are positive. Since Dxpa is positive definite,
the first n leading principal minors are positive, and it suffices to show det A > 0.
Expanding det A along the last column,

det A d. det Dpa + terms not involving d > 0

for d > 0 sufficiently large. [-]

Another approach is to attack (14) indirectly as follows. Write

(17) A M + L,

where

(18) M I Dxpa(’2’ dC )

Observe that for almost all choices of (c d) the symmetric part M is also invertible.
Then using the Sherman-Morrison formula, the solution y to the original system
Ay b can be obtained from

M-1 ]Uen+ M-lb(19) y- I-
(M_lu)ten+ + 1

which requires the solution of two linear systems Mz u and Mz b with the
sparse, symmetric, invertible matrix M. The scheme (17)-(19) was proposed in [27],
and further investigated by Chan and Saad [9]. First, the HOMPACK approach to
the solution of these linear systems will be discussed.

Let Ikl- maxi Iil define the index k. In HOMPACK, (c d) e, where ek is
a vector with 1 in the kth component and zeros elsewhere. Hence (13) becomes

A (Dp(x") )"
The kernel of Dp can be found by solving the linear system of equations

Ay ken+l b.

Again, splitting the coefficient matrix as

A=M+L
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gives a symmetric

Uen+l, it
0 ek(1 5k,n+l).

(The Kronecker 5k,+1 takes care of the special case k n + 1.) Then the Sherman-
Morrison formula (19) is used for the solution y of the linear system (14). Craig’s
preconditioned algorithm is used for solving the systems Mz u and Mz b. The

preconditioning matrix Q is taken as a positive definite approximation of M (the Gill-

Murray preconditioner, described in detail in [21] and [52]). The details are intricate,
but essentially Q is computed as a Cholesky factorization of M + E, where E is a

positive semidefinite diagonal matrix chosen to guarantee that Q is well conditioned.
This algorithm is not especially well matched to the skyline data structure.

If M had only one or two negative eigenvalues, then after several rank one updates
making M positive definite, a direct Cholesky factorization could be obtained, and
then the solution to (14) recovered after several more applications of (19). This direct

algorithm for solving (14) would be effective for such M, but since only one or two

negative eigenvalues for M cannot be assumed in general (the M for a large shallow
dome problem has many negative eigenvalues along the unloading portions of the

equilibrium curve), a direct rank one update/Cholesky scheme would not be suitable

for HOMPACK.
There are several other schemes which could be used instead of the one in HOM-

PACK for finding the kernel of Dp, for example,

(i) using different last rows for the augmented coefficient matrix A of (13), i.e.,
other vectors (c d) instead of e;

(ii) using other preconditioners on M;

(iii) using other algorithms for the solution of the linear systems Mz u and

Mz b, e.g., Orthomin(k), SSOR, etc., instead of Craig’s algorithm;

(iv) doing (i), (ii), or (iii) on the nonsymmetric A directly instead of on the

symmetric M in the splitting A M + L.

Combining the preconditioning techniques with the algorithms for solving linear

systems with different last rows for A produces a large number of possible methods.
The next section focuses on a subset of these possible methods and compares their

efficiency.

5. Numerical experiments. Of the various algorithmic possibilities mentioned
in the previous section, those considered further are given short names in the list below.
Some possibilities do not make sense or are impractical in the homotopy context, and
thus are not considered. Of the almost all mathematically valid choices for the last
row (c d)of A, only e (the easiest to implement), c- Dp(2, A) (the easiest

symmetrization of A), and the tangent vector t at the previous point on the zero

curve (the optimal choice for conditioning, since it is orthogonal to the top n rows of
A at (2,))) are used.
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SC
SCGM

A M / L splitting, Craig’s method with M, no preconditioning;
A M/L splitting, Craig’s method with M, Gill-Murray preconditioning
from HOMPACK;
A M / L splitting, Craig’s method with M, incomplete LU precondi-
tioning;
A M / L splitting, Craig’s method with M, modified incomplete LU
preconditioning;
no splitting, Craig’s method with A, no preconditioning;

-no splitting, Craig’s method with A, Gill-Murray preconditioning from
HOMPACK;
no splitting, Craig’s method with A, incomplete LU preconditioning;

-no splitting, Craig’s method with A, modified incomplete LU precondi-
tioning.

SR A M / L splitting, GMRES(2) with M, no preconditioning;
SRGM A M / L splitting, GMRES(2) with M, Gill-Murray preconditioning

from HOMPACK;
SRILU A M/L splitting, GMRES(2) with M, incomplete LU preconditioning;
SRMILU- A M / L splitting, GMRES(2) with M, modified incomplete LU pre-

conditioning;
R no splitting, GMRES(2) with A, no preconditioning;
RGM no splitting, GMRES(2) with A, Gill-Murray preconditioning from HOM-

PACK;
RILU no splitting, GMRES(2) with A, incomplete LU preconditioning;
RMILU no splitting, GMRES(2) with A, modified incomplete LU preconditioning.

The test problems are now described in detail, beginning with the shallow arch
structural response problem.

5.1. Shallow arch. The equations of equilibrium of the arch are obtained from
the principle of the stationary value of the total potential energy, according to which,
of all the kinematically admissible displacement fields, the one that makes the total
potential energy of a structure stationary also satisfies its equations of equilibrium.
The total potential energy of a structure is given by the sum of its strain energy
and the potential of external loads.

The shallow arch of Fig. 1 is discretized by an assemblage of straight p-q frame
elements such as those described in [26]. A frame element is a structural compo-
nent that is initially straight and undergoes axial, bending, and torsional deformation
resulting from finite displacements and rotations of its ends (nodes) p and q. The
displacements of the end q relative to the end p are

SCILU

SCMILU

C
CGM

CILU
CMILU

[Tip Yq 0

G- G o
+ [Tip Vq

where L is the initial rigid body length, and Ui, V, Wi (i p or q) denote the
global displacements of the nodes. The matrix [Tip can be shown to be [26] [Tip
IT1 (bx, Cy, Cz)] IT1 (Oxp, Oyp, Ozp)] with

CyCz Cy8z --Sy I--Cx8 / 8xSyCz CxCz / 8xSySz 8xCy
8xSz / CxSyCz --SxCz / CxSySz CxCy



238 IRANI, KAMAT, RIBBENS, WALKER, AND WATSON

ci cos ci and si sin ci for x, y, and z. Angles Cx, by, and Cz are the initial

orientation angles and angles Oxp, Oyp, and Ozp are the rigid body rotations of the end
p. In the equation for IT]p, Euler angle transformations are implied with the order of
the rotations being cz, cy, and c.

FIG. 1. Shallow arch.

Similarly, with the restriction of small relative rotations within the element, the
rotations , , of the end q relative to the end p are

Oq Ozp

With the relative generalized displacements (Su, 5v, 5w) and (, Cy, Cz) known,
the usual deformation patterns of the reference axis of the beam element in the coro-

tational coordinate system are assumed to be

1
v() (32 23)(5v zs) + ((3 2)z,

1
w() (32 23)(5w + ysCx) (3 2),

where x/L and y and z are the coordinates of the shear center of the cross

section of the beam. The strain at any point (y, z) on the cross-section of the frame
element can be shown to be

L r/ (1 2)(v- z) + 2(3- 1)z

[ ]Z(1 2)(6w + y) 2(3- 1)y

with r] y/L and z/L. In these equations it is implicitly assumed that the lateral
displacements and twists are referenced to a longitudinal axis through the shear center,
while the axial displacements and rotations are referenced to the centroidal axis.

The total potential energy of such a discretized model of the arch can be expressed
as

m

7r E Ue qtQ,
e=l
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where U is the strain energy of the eth element, e 1, ..-, rn, q is the vector of nodal
displacement degrees of freedom of the entire model and Q is the vector of externally
applied loads. The strain energy U of the eth frame element is given by

e2dA dx- dv -where e is the strain of a point (x, y, z) of the beam, which was derived above. Sub-
stituting for and doing the integration gives

{ 12[ 1 1U Up_q-
E

A(Su)2 + /z (Sv) 2 + L222z LSvCz2L 2
+ + +

where A is the cross-sectional area, and I and I are the cross-sectional moments
of inertia about the and z axes, respectively. It is evident that the potential energy

of the model is a highly nonlinear function of the nodal displacements. The equa-
tions of equilibrium of the model are obtained by setting the variation to ero, or

equivalently by
V=0.

Closed form analytical expressions for V can be obtained with some diculty, but
obtaining the Jacobian matrix of V analytically seems out of the question. Hence
the Jacobian matrix of the equilibrium equations is obtained by finite difference ap-
proximations.

By symmetry only half the arch need be modelled, and the results here are for
the arch parameters used in [28], with a full arch load of a000 lbs. This is just below
the limit point. To go through the limit point and along the unloading portion of the
equilibrium curve apparently requires very accurate Jacobian matrices and numerical
linear algebra, and none of these iterative linear equation solvers used in HOMPACK
were able to go past the limit point without tweaking the HOMPACK step size control
parameters.

g.2. Shallow dome. The shallow dome of ig. 2 is built up from space truss
elements with three global displacement degrees of freedom (,, a) at each of the
two nodes. or an element of original length between its two nodes p and q, the

change in length 5L is given by

where xij uij, p, q; j 1, 2, 3 are the global coordinates and displacements of the
two nodes. This can be simplified to

5L- L 1 + r + r
i=1



240 IRANI, KAMAT, RIBBENS, WALKER, AND WATSON

FIG. 2. Triangulation for 21 degree of freedom shallow dome.

where A is the difference operator for the q and p values. Accordingly, the axial strain

in the eth element is

--= I+E L: + L

1/2

The strain energy of the eth element in a purely linearly elastic response is given by

EJ EALe(ee)2u:-2
v

where E and A are the Young’s modulus and cross-sectional area, respectively, of the
eth element.

The total potential energy of the dome is then given by

71"

e=l

where Ui, 1,.--,6 are the six components Uqk, upk, k 1,2,3, and Q is the
generalized force vector. The equations of equilibrium of the model are then obtained
by setting

Vrr E EAeLVe Q O.
e:l

Both the gradient of r as well as its Hessian can be evaluated explicitly without

resorting to finite differencing operations as in the case of the frame element used to
model the shallow arch.
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The effect of modelling the shallow dome with truss elements in concentric rings
is that changing the number of truss elements changes the model and its behavior.
Thus the dome problems with different degrees of freedom reported in the tables are

qualitatively different, with different buckling loads and bifurcation points. The results
reported here are for shallow domes with base radius 720 and sphere radius 3060, and
a point load at the very top.

5.3. Artificial turning point problem. The turning point problem is derived
from the system of equations

F(x) (FI (x), F:(x),..-, 0

where

XiT1)
Fi(x) tan-1 (sin[xi(i mod 100)]) 2O

i-- 1,-..,N,

and x0 XN+I 0. The zero curve " tracked from A 0 to A 1 corresponds
to pa(x, A) (1 -.SA)(x- a)+ .8AF(x), where a was chosen artificially to produce
turning points in /. HOMPACK had no difficulty going through numerous turning
points using iterative linear equation solvers.

Tables 1-6 show some timing results for these three test problems. An asterisk
indicates either that the iterative linear equation solver stalled, was lost because of
inaccurate tangents from the linear equation solver, or the time was at least an order
of magnitude larger than anything else in the table. The times are for tracking the
entire zero curve and thus represent the solution of many linear systems of varying
degrees of difficulty. The experiments were done in double precision using a single
processor of a Sequent Symmetry $81 multiprocessor. The major headings are the

acronyms for the algorithms, and the subheadings denote the choice (c d) for the
last row of A. The MILU algorithms used a 1. There is asymmetry in the tables
because some possibilities do not make sense. For instance, there is no CGM with ek

because the Gill-Murray preconditioner requires a symmetric matrix, and there are

no S* with D)pa since the choice c (D)pa) makes A symmetric so there is no

need to split off a symmetric matrix M from A.

6. Discussion and conclusions. The convergence rate of conjugate gradient
iterative methods for linear systems depends on the spectrum and the condition num-
ber of the coefficient matrix, and therefore one would predict t should be a better
choice for the last row of A than e. Since is orthogonal to the rows of Dpa(,
a good approximation to the first n rows Dpa(x, ) of A, one expects A with to be
better conditioned than with ca. Tables 1, 3, and 5 show that apparently this better
conditioning does not compensate for the extra work involved in using . Although
is sometimes better than ek, there seems to be no strong evidence that is worth the
trouble.

Figure 3 shows the condition numbers of A and Q-1A along /for the shallow arch
problem with n 29 (CGM). The shallow arch problem is indeed a hard problem, but
Fig. 3 alone would not suggest that--see the discussion of the shallow arch problem’s
spectra later. The Jacobian matrix Dxp becomes indefinite near .88, at which
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TABLE 1
Execution time in seconds for shallow arch problem.

SC

29 1108 947
47 16904 17593

SR
29 * *
47 * *

SCGM

e t
468 818
7322 10105
SRGM

461 *
5314 *

SCILU

599 470
5674 5957
SRILU
559 443

5796 6332

8CMILU

908 975
11538 12390
SRMILU

TABLE 2
Execution time in seconds for shallow arch problem.

n

29
47

29
47

C

e t Dxp

856 884 919
14205 13591 14606

R

CILU

e t Dxpa

533 458 443
5794 5807 6776

RILU
443 431 5O6
5355 5304 5697

CMILU CGM

e t Dxpa Dpa

841 845 900 464
9943 10968 10135 6921

RMILU RGM
* * * 429
* * * 5260

TABLE 3
Execution time in seconds for shallow dome problem.

SC

21 57 86
546 3127 4803
1050 5615 8553

SR
21 * *

546 * *
1050 * *

SCGM

108 57
2710 1787
5107 3177
SRGM

,

SCILU

21 25
492 630
887 1133
SRILU
14 15

299 335
559 625

SCMILU

92 141
4892 6687
8259 11672
SRMILU

TABLE 4
Execution time in seconds for shallow dome problem.

C
n e t DApa

21 46 47 47
546 2495 2545 2573
1050 4504 4691 4690

R
21 * * *

546 * * *
1050 * * *

CILU

e t Dpa
16 16 16

355 369 365
632 665 651

RILU
11 12 11

230 241 232
425 446 430

CMILU CGM

e t Dxpa Dpa

68 79 69 89
3037 3585 3094 2233
5536 6327 5570 4313

RMILU RGM
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TABLE 5
Execution time in seconds for turning point problem.

n

2O
6O
125
25O
50O
1000

20
60
125
250
500
1000

28 36
266 356
1635 2310
3026 3767
6279 7783

141,50 17768
SR

1301 *

SCGM

12 13
41 50
127 170
228 267
448 501
1077 1174
SRGM
13 18
47 *

SCILU

6 6
20 22
54 65
95 109
189 207
434 490
SRILU
4 4
13 14
36 40
60 69
119 131
274 296

SCMILU

39 47
163 213
568 795
1032 1335
2130 2656
4874 6052
SRMILU
120

TABLE 6
Execution time in seconds for turning point problem.

C

20 17 19
60 167 176
125 1117 1132
250 2296 1925
500 4741 3899
1000 11577 9335

a
20 * *
60 * *
125 * *
250 * *
500 * *
1000 * *

Dpa

21
186

1384
3873
8352

20375

CILU

1263

e t Dxpa

4 7 4
13 22 13
38 64 42
66 110 74
129 210 148
323 493 353

RILU
3 3 3
9 10 9

26 31 28
45 51 46
88 98 88
199 225 202

24
109
412
765
1573
3605

CMILU
t
26
112
421
699
1381
3031

Dpa

118
446
726
1465
3308

RMILU
43 70 75
* * 2016

CGM
D)pa

5
22
85
134
260
617

RGM
6

point the Gill-Murray preconditioner ceases being nearly perfect. This figure is typical
for the Gill-Murray preconditioner. (During the course of the experiments it was
observed that points far from frequently generate much worse conditioned problems.
This has important implications for curve tracking strategy, because large steps along

7 will be offset by expensive numerical linear algebra to return to /.)
Tables 2, 4, 6 show that there is no clear winner between e, , and Dpa, and

further that there is little correlation between the algorithm and the best choice for c.

One is tempted to pick CGM with c (Dxpa) over SCGM with c e, based on

Tables 5, 6, and the fact that CGM only solves one linear system per tangent vector
computation, as opposed to two linear systems with M for the splitting algorithms.
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condition number

i0

i0

3.
i0

i0

i0

i0

Qo

0.2 0.4 0.6 0.8
lambda

FIG. 3. Condition numbers for A (black dots) and Q-1A (grey
dots) against A along /; shallow arch, n 29, CGM.

However, from Tables 1 and 2, SCGM with ek is substantially better than CGM
with Dpa. This demonstrates that only counting the number of linear system solves
can be dangerously misleading. The results do indicate that for a given choice of ct,
when no preconditioning is used or when MILU preconditioning is used, it is slightly
more efficient to use the no-splitting strategy than the splitting. However, with ILU
preconditioning the differences between corresponding splitting and no-splitting cases

are not at all significant.
Tables 1-6 seem to strongly support an argument for CILU as the best Craig

method, even though the ILU factorization fails to exist at turning points, and is

unstable whenever A is indefinite. What is not indicated in the tables, though, are all
the homotopy curve tracking runs which failed because the ILU preconditioner failed

to exist or generated an overflow, or the difficulty caused HOMPACK by inaccurate

tangents resulting from the ILU. Because of this potential catastrophic failure or

instability, the ILU preconditioner would never be seriously considered for robust
homotopy algorithms. Still, the tables do show why numerical analysts’ paranoia
about unstable algorithms is not shared by engineers.

The algorithms SSOR and Orthomin(k), discussed earlier, are not shown in the
tables because they totally fail at turning points and along unloading portions of
equilibrium curves (for reasons stated in 3). When these methods do work, they

can be very efficient (e.g., Orthomin(1)on A with c (Dpa) took 443 (6092)
seconds for the shallow arch problem with n 29 (47)), but that is no consolation for
homotopy curve tracking.

GMRES(k) has a solid theoretical justification [42], and has been used very suc-

cessfully in a variety of contexts [4], [42], [45], [46]. Nevertheless, GMRES(k) with
k < n performed unacceptably on the test problems here without preconditioning.
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For the shallow arch problem with n 29 and tol 10-12, GMRES(29) on A with

c (Dpa) took 591 seconds, somewhat better than C or SC and comparable to
CGM and SCGM. For k 1, 3, 25, GMRES(k) took over a day of CPU time. Relaxing
the tolerance to 10-6, GMRES(25) took 18,330 seconds. This is especially noteworthy
because the A matrices are symmetric and positive definite up to A .88, and mildly
indefinite from there to A 1. For the turning point problem with n 20, tol 10-12,
c (Dpa) t, the performance degradation from the full GMRES to GMRES(k) was

dramatic. With k 20, 19, 18, 15, 10, 8, GMRES(k) took, respectively, 19, 117, 154,
375, 338, 420 seconds. Thus for these problems, without preconditioning, only the full
GMRES method is competitive.

The tables also show results for GMRES(2), implemented with all the same pre-
conditioners and choices of (c d) as was Craig’s method, k 2 was chosen because
a preconditioned GMRES(2) requires exactly the same amount of storage as the pre-
conditioned Craig’s method, although, of course, the storage penalty for k 5, say, is

not significant. Numerous other runs were made with k 1, 3, 5, or 10, but there was
no substantial difference from k 2 on the larger problems. In virtually all cases the
asterisks in the tables correspond to a stalled residual norm somewhere along . It
was noted, though, that many of the linear systems along /were solved efficiently by
GMRES(2). Perhaps the most disappointing failure was that of RGM on the shallow
dome problem even for n 21, because the Gill-Murray preconditioner was fairly
good there. It is evident from the tables that GMRES(2), without nearly perfect pre-
conditioning (ILU), is unsuitable for use in a general, robust homotopy curve tracking
code like HOMPACK.

There are some theoretical results concerning the convergence of GMRES(k) given
by Saad and Schultz [42]. These results give worst-case bounds on the rate of residual
norm reduction which are determined by the distribution of eigenvalues of A. For
the shallow arch and turning point problems, the eigenvalues of A were determined
numerically along the homotopy curve, and the resulting bounds were often (although
not in every case) found to guarantee only hopelessly slow residual norm reduction,
indeed often to guarantee no residual norm reduction at all even when k n.

Tables 7-12 show the average, maximum, and minimum number of conjugate
gradient iterations per linear system solution along the homotopy zero curve for
the same algorithms as Tables 1-6. Such iteration statistics give an intuitive feel
for how the algorithms behave, and are sometimes very revealing. Tables 7 and 8
show that symmetry does improve the algorithms’ efficiency, and that all other things
being equal, achieving symmetric coefficient matrices is worthwhile. (The S* algo-
rithms based on symmetry are not uniformly better, because all other things are not
equal.) Note that in all cases for Craig’s method the maximum number of conjugate
gradient iterations is less than or equal to eight times the average, which says that
the convergence behavior is fairly consistent. On the other hand the range between
the minimum and maximum (for the C* algorithms) is as great as 3 to 536 (C for
n 1000 in Table 12), showing that there is a wide variation in the difficulty of the
linear systems encountered along ". The convergence behavior of GMRES(2) is not
as consistent as for Craig’s method, with the maximum being as much as 70 times the
average (SRGM for n 47 in Table 7).
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TABLE 7
Average, maximum, and minimum number of conjugate gradient itera-

tions per linear system along homotopy curve for shallow arch problem.

n

29
47

29
47

SC

66,109,1
190,313,1

t
66,101,1

194,291,1
SR

SCGM

4,10,1 28,40,1
5,10,1 37,53,1
SRGM

4,92,1 *
2,140,1 *

SCILU

2,3,1 3,3,1
2,3,1 3,3,1
SRILU

1,2,1 1,2,1
1,2,1 1,2,1

SCMILU

39,63,1 39,58,1
64,103,1 65,97,1

SRMILU

TABLE 8

Average, maximum, and minimum number of conjugate gradi-
ent iterations per linear system along homotopy curve for shallow
arch problem.

n etk
29 99,127,51
47 265,360,109

t
91,107,38

239,305,133
CMILU

Dpa

98,120,52
265,355,105

29 56,68,30
47 87,119,48

56,65,35
91,102,53

55,65,30
87,131,48

29 *
47 *

R

RMILU
29 *
47 *

CILU

et f]t Dpa

3,3,2 4,5,2 3,3,2
3,3,2 4,4,2 3,3,2

cGM
6,7,2
6,7,2

RILU
1,1,1 1,2,1 1,1,1
1,1,1 1,2,1 1,1,1

RGM
2,2,1
2,2,1

TABLE 9

Average, maximum, and minimum number of conjugate gradient itera-

tions per linear system along homotopy curve for shallow dome problem.

21 17,31,1 24,36,1
546 38,75,1 54,87,1
1050 38,76,1 53,91,1

SR
21 * *

546 * *
1050 * *

SCGM

16,115,1 7,46,1
15,113,1 9,63,1
16,114,1 8,101,1

SRGM

SCILU

e t
2,3,1 2,3,1
2,3,1 3,2,1
2,3,1 3,3,1
SRILU

1,2,1 1,2,1
1,2,1 1,2,1
1,2,1 1,2,1

SCMILU

14,30,1 21,32,1
24,45,1 37,71,1
24,47,1 36,61,1

SRMILU
,
,
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TABLE 10

Average, maximum, and minimum number of conju-
gate gradient iterations per linear system along homotopy
curve for shallow dome problem.

n

21 26,36,14
546 58,81,17
1050 58,87,18

26,36,14
57,82,17
59,91,18

26,36,14
58,82,18
58,83,18

CMILU
21 19,25,8

546 34,47,12
1050 34,49,12

22,28,8
38,52,12
38,50,12

19,24,8
34,45,11
34,49,13

R
21 *

546 *
1050 *

RMILU
21 *

546 *
1050 *

CILU

2,3,2 2,3,2
2,3,2 2,3,2
2,3,2 2,3,2

CGM

1,1,1
1,1,1
1,1,1

Dpa

2,3,2
2,3,2
2,3,2

23,113,2
22,111,2
23,113,2

RILU
1,1,1
1,1,1
1,1,1
RGM

1,1,1
1,1,1
1,1,1

TABLE 11

Average, maximum, and minimum number of conjugate gradient itera-

tions per linear system along homotopy curve for turning point problem.

n

20
6O
125
250
5OO
1000

20
60
125
250
500
1000

SC

21,28,1
60,100,1

127,261,1
139,302,1
149,314,1
151,312,1

24,29,1
69,87,1

154,264,1
150,246,1
164,281,1
162,289,1

SR
732,4446,1

SCGM

4,6,1 5,7,1
4,8,1 5,8,1
5,9,1 6,11,1

5,11,1 5,10,1
5,11,1 5,10,1
5,11,1 5,11,1

SRGM
6,58,1 8,75,1
6,54,1 *

SCILU

2,2,1 2,2,1
2,3,1 2,3,1
2,3,1 2,3,1
2,2,1 2,3,1
2,2,1 2,3,1
2,2,1 2,3,1
SRILU

1,1,1 1,1,1
1,1,1 1,1,1
1,1,1 1,1,1
1,1,1 1,1,1
1,1,1 1,1,1
1,1,1 1,1,1

SCMILU

17,27,1 19,26,1
21,37,1 25,39,1
26,51,1 31,51,1
27,60,1 30,55,1
28,62,1 31,53,1
28,64,1 31,56,1
SRMILU

49,315,1 *

The Gill-Murray preconditioner is clearly excellent, as shown by the average num-
ber of iterations in Tables 7-12 and Fig. 3. It is more robust than the ILU and MILU
preconditioners in the presence of turning points and indefinite DxPa. However, the
shallow dome problem (Tables 3, 4, 9, and 10) shows that the Gill-Murray precon-
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TABLE 12

Average, maximum, and minimum number of conjugate gradi-
ent iterations per linear system along homotopy curve for turning
point problem.

C

etk 9 Dpa

20 24,29,1
6O 70,86,1
125 159,292,1
250 196,404,1
500 216,427,1
1000 224,446,1

24,28,1
69,84,1

151,232,1
150,246,1
165,337,1
164,323,1
CMILU

26,31,1
74,91,2

179,328,3
231,407,3
268,489,3
285,536,3

20 20,23,1
60 26,36,1
125 33,49,1
250 36,61,1
500 38,74,1
1000 39,75,1

20,23,1
25,34,1
31,48,1
30,45,1
31,53,1
31,50,1

20,26,3
26,36,2
33,53,3
32,48,1
33,53,3
33,54,3

20 *
60 *
125 *
250 *
500 *
1000 *

R
1905,21000,2

,
RMILU

20 47,110,2
60 *
125 *
250 *
500 *
1000 *

61,200,2 79,226,2
568,12486,2

,
,
,

CILU

e t Dpa

2,2,1 4,5,1 2,3,1
2,3,1 4,7,1 2,3,2
2,3,1 4,5,1 2,3,2
2,3,1 4,5,1 2,3,2
2,3,1 4,6,1 2,3,2
2,3,1 4,5,1 3,3,2

CGM
3,9,2

3,12,1
5,15,2
4,15,2
5,16,2
5,16,2.

RILU
1,1,1 1,2,1 1,1,1
1,1,1 1,2,1 1,1,1
1,1,1 1,2,1 1,1,1
1,1,1 1,2,1 1,1,1
1,1,1 1,2,1 1,1,1
1,1,1 1,2,1 1,1,1

RGM
4,92,1

,
,

,

ditioner may do a very poor job indeed on strongly indefinite matrices (which occur

on the unloading parts of the shallow dome equilibrium curve). While reducing the

average number of iterations, the Gill-Murray preconditioner actually increases the

maximum number of iterations compared to the unpreconditioned algorithm.

It would be possible to test separately each aspect of the iterative linear system
solving algorithms, such as convergence rate, sensitivity to starting point, cost of

preconditioning, storage cost, computational complexity per iteration, etc. What

ultimately matters, however, is the combined performance of the total algorithm on a

wide range of typical realistic problems. Measuring the performance along homotopy
zero curves for nontrivial problems is an attempt to measure the overall performance
in situ.
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A succinct, albeit oversimplified summary of the discussion is that ILU precondi-
tioning is the most efficient but it may completely fail for some cases, while the Gill-
Murray preconditioner rarely fails but is somewhat slower, especially for very large
or strongly indefinite problems. With somewhat imperfect preconditioning, Craig’s
method is more robust than GMRES(k) for k << n for homotopy curve tracking.

Acknowledgments. The authors are indebted to the referees for excellent sug-
gestions, and to Tony Chan, Dianne O’Leary, Philippe Toint, and David Young for
comments on this work.
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