
SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 3, pp. 815-825, May 1992

() 1992 Society for Industrial and Applied Mathematics
012

EFFICIENT HIGH ACCURACY SOLUTIONS WITH GMRES(m)*
KATHRYN TURNERt AND HOMER F. WALKERt

Abstract. Consideration of an abstract improvement algorithm leads to the following principle,
which is similar to that underlying iterative refinement: By making judicious use of relatively few high
accuracy computations, high accuracy solutions can be obtained very efficiently by the algorithm.
This principle is applied specifically to GMRES(m) here; it can be similarly applied to a number of
other "restarted" iterative linear methods as well. Results are given for numerical experiments in
solving a discretized linear elliptic boundary value problem and in computing a step of an inexact
Newton method using finite differences for a discretized nonlinear elliptic boundary value problem.

Key words. GMRES(m), "restarted" iterative linear methods, high accuracy solutions, iterative
refinement, large-scale linear and nonlinear systems, elliptic boundary value problems

AMS(MOS) subject classifications. 65F10, 65H10

1. Introduction. Our specific objective is to outline efficient algorithms for ob-
taining high accuracy with GMRES(m), the restarted version of the generalized
minimal residual (GMRES) method of Saad and Schultz [10] for numerically solving
general nonsingular linear systems. These algorithms are based on general observa-
tions which have broader applicability and are of interest in their own right, and we
begin with them.

We consider a very abstract improvement algorithm for a problem in which the
solution x* E Inn is characterized as a zero of a residual function r:IRn -- IRn, i.e.,
r(x*) O. The algorithm centers around an unspecified correction process which,
given a current approximate solution x, computes a correction z such that x + z is,
one hopes, an improved approximation of x*. Our presumption is that the accuracy
in the computed value of z is limited by the accuracy in the computed value of r(x).
Therefore, we explicitly require in the algorithm that r(x) be computed accurately,
by which we mean as accurately as is reasonably possible or affordable, or in some
sense especially accurately. For similar reasons, on which we expand in the following,
we require x + z to be computed accurately in the same sense.

Algorithm GI: General Improvement Algorithm
LET AN INITIAL X BE GIVEN.

UNTIL TERMINATION DO:

COMPUTE r(x) ACCURATELY.

DETERMINE z BY THE CORRECTION PROCESS.

UPDATE x x + z ACCURATELY.
END DO.

The termination criterion may be based on the smallness of lit(x)II, or on some related
but different feature, as in the iterative refinement example below.

Our interest is in the limits of accuracy which can be obtained by Algorithm GI.
Since the actual error in x is unknown, we take "limits of accuracy" to mean limits
of reduction of IIr(x)ll, where I1" is an appropriate norm on IRn. If we assume that

Received by the editors May 29, 1990; accepted for publication (in revised form) February 6,
1991.

Department of Mathematics and Statistics, Utah State University, Logan, Utah 84322-3900.
The work of the second author was supported by United States Department of Energy grant DE-
FG02-86ER25018, National Science Foundation grant DMS-0088995, and United States Air Force
grant AFOSR-91-0294, all with Utah State University.

815

816 KATHRYN TURNER AND HOMER F. WALKER

the accuracy in the computed value of z is limited only by the relative error in the
computed value of r(x), and not by the smallness of IIr(x)ll per se, then it is clear
that accuracy is limited only by the accuracy which can be maintained in computing
r(x) and in updating x --x + z.

A familiar example of Algorithm GI is iterative refinement for improving approx-
imate solutions of a system of linear equations. (See, e.g., Golub and Van Loan [7,
3.5.3] as a general reference.) Consider a linear problem written as follows:

(1) Given A E IRnn and b E IRn, find X*]Rn such that Ax* b.

Suppose that we have computed factors of A and have used them to compute an
initial x. In iterative refinement, we take r(x) =_ b- Ax and, at each step, determine
a correction z by solving Az r(x) using the previously computed factors of A.
Iterative refinement is typically applied when we can afford to do most computing
only in single precision, but full single precision accuracy is desired in the computed
solution. Thus A, b, x, r(x), and z are stored in single precision, and the factors of A
are computed and stored in single precision. The accuracy in z depends on the relative
error in the computed value of r(x) and not on the smallness of IIr(x)ll, provided all
computations remain within the floating point range of the machine. However, if
r(x) is small, then special care must be taken to compute it accurately. The usual
prescription is to compute it in double precision in a well-known way. Unless A is very
ill conditioned, this results in sufficient accuracy in r(x) and z to provide improvement
in x until z is so small that x and x + z have the same single precision representation,
i.e., the updating x *--- x / z results in no change, at which point x is the single
.precision representation of the exact solution and the algorithm terminates. Since
only single precision accuracy is desired in x, there is no need to form x + z with more
than single precision accuracy. If higher accuracy were desired in x, then it could be
obtained by maintaining x in double precision and forming x + z with z represented
in double precision; however, this is unlikely to be of practical interest.

This discussion illustrates our guiding principle: By making judicious use of rela-
tively few high accuracy clculations within Algorithm GI, specifically in computing
r(x) and in updating x +--x + z, we can obtain essentially the accuracy that would
be realized by using high accuracy calculations throughout, while maintaining storage
requirements and execution times only modestly above those which would be required
if only low accuracy calculations were used.

We now turn to the case of particular interest, viz., that of problem (1) in which
r(x) =_ b- Ax and the correction process consists of one cycle of GMRES(m). Al-
though we focus exclusively on GMRES(m), we emphasize that Algorithm GI and
the guiding principle drawn from it are more broadly applicable. In particular, there
are a number of other "restarted" iterative linear methods which could be used in
place of GMRES(m) in the algorithms formulated below, e.g., a restarted version of
a method of Axelsson [1], the iterative Arnoldi method of Shad [9, 3.2], and GCR(m)
given by Elman [5] and Eisenstat, Elman, and Schultz [4].

For completeness, we give very brief descriptions of GMRES and GMRES(m)
here; for more detailed descriptions, see Shad and Schultz [10] or Walker [12], [13].
The GMRES method begins with an initial approximate solution x and initial residual
r(x) b- Ax. At the kth iteration, a correction z is characterized as the solution of
the least-squares problem

(2) min llr(x)min lib- A(x + ’)11
E

EFFICIENT HIGH ACCURACY SOLUTIONS WITH GMRES(m) 817

where Ck is the kth Krylov subspace generated by A and r(x), defined by

]Ck =-- span{r(x), Ar(x), Ak-lr(x)}.
The correction z is not actually computed by the method unless a termination criterion
is satisfied. If it is computed, then the least-squares problem (2) is solved by using a
basis of Ck to reduce (2) to a k-dimensional least-squares problem for the coefficients
of the basis elements. The basis used in practice is the orthonormal Arnoldi basis,
generated inductively by

v (x)/ll(x)ll
Vj+l P:Avj/IIPcAv 112 for j 1,..., k 1.

Here, Pv denotes the orthogonal projection of a vector v onto the orthogonal com-
plementf K:y; it can be computed using either the modified Gram-Schmidt process
[10] or Householder transformations [12]. We use the modified Gram-Schmidt process
below since it is used more often in practice. Note that the process (3) fails for some
j < k if and only if Pj Avj O, i.e., Avj E j, in which case it can be shown that
GMRES produces z E Cy such that r(x 4- z) 0, i.e., x 4- z x* (see [10, Prop. 2,
p. 865]). The process (3) is implemented as the GMRES iterations proceed, i.e., vl
is determined and stored initially and at the kth iteration, (only) Vk+l is generated
and added to storage. At the kth iteration, k 4- 1 n-vectors must be stored, and
orthogonalizing Ark against v,..., Vk requires O(kn) arithmetic operations.

Because storage and arithmetic costs increase as the GMRES iterations proceed,
the lgorithm usually implemented in practice is GMRES(m), where m is some max-
imum allowable number of iterations which is prescribed at the outset, typically much
less than n. In one cycle of GMRES(m), beginning with a current approximate so-
lution x, up to m GMRES iterations are performed; the iterations are terminated
when either the residual norm has been reduced sufficiently or the full m iterations
have been taken. The residual norm can be monitored during the iterations without
actually computing the correction or the residual; see below. After the iterations
have been performed, the cycle is concluded with the computation of the correction
z. If IIr(x + z)l]2 is not sufficiently small, then additional cycles may be performed as
needed.

We give below a detailed outline of one cycle of GMRES(m) as used here. In
it, for each i, Ji denotes a Givens rotation which "rotates" components and i 4- 1
of vectors on which it acts; see, e.g., [7, 5.1] for definitions and properties of Givens
rotations. Also, for each k, (JkP)k+l denotes the (k 4- 1)st component of the vector

JkP and Wl,’.., w+ denote the first k 4- 1 components of the vector w.

Algorithm: One Cycle of GMRES(m)
LET r(x) O, m, AND TOL> 0 BE GIVEN.

INITIALIZE:
SET Vl r(x)/llr(x)lla AND w (llr(x)ll., 0,..., 0)T e tm+.

ITERATE:
FOR k 1, 2,...,m, DO:

EVALUATE Vk+l Avk.
FOR 1,...,k, DO:

SET Pi vTi Vk+l"
OVERWRITE Vk+l <--’--- Vk+l pivi.

END DO.

818 KATHRYN TURNER AND HOMER F. WALKER

SET Pk+l llV’/ll"
IF Pk+l ? 0, OVERWRITE Vk+ Vk+1/Pk+1.

SET p-- (Pl,’’’,Pk+I,0,’’’,0)T E]Rm+l.
IF k > 1, OVERWRITE p gk-l"’" JlP.
FIND gk SUCH THAT (JkP)k+l- 0 AND OVERWRITE

P --- gkP AND W +---- Jkw.
SET Rk--[p] IF k--1 AND Rk--[Rk-l,p] IF k > 1.
IF IWk+ll <TOL, THEN GO TO SOLVE.

END DO.

SOLVE"
LET k BE THE FINAL ITERATION NUMBER REACHED LET

[=k]Rkk BE THE UPPER TRIANGULAR MATRIX DETERMINED

BY THE FIRST k ROWS OF Rk, AND SET - (Wl,’’’,Wk)T]ak.
SOLVE Rky- FOR y.
FORM Z [Vl,’’’, vk]y.

The test IWk+ll <TOL at the final step of the iteration is explained by the fact that
if the correction z were formed, then we would have IIr(x + z)l12 IWk+ll, at least
in exact arithmetic; see [10, Prop. 1, p. 862]. Also, we note that Rk is always
nonsingular.

Our general efficient high accuracy algorithm centering around GMRES(m) is
the following adaptation of Algorithm GI.

Algorithm EHA: Efficient High Accuracy Algorithm
LET AN INITIAL x BE GIVEN. UNTIL TERMINATION DO:

COMPUTE r(x) ACCURATELY.

DETERMINE z BY ONE CYCLE OF GMRES(m).
UPDATE x-- x - z ACCURATELY.

END DO.

Algorithm EHA terminates when the residuM norm becomes less than a given tol-
erance TOE> 0. If IIr(x)ll2 <TOE prior to beginning GMRES(m) cycle, then the
algorithm terminates immediately; if this criterion is met during a GMRES(m) cycle,
then the algorithm terminates as soon as the updating x-x + z is done.

In the following, we explore applications of Algorithm EHA. In 2, we show how
the steps in Algorithm EHA can be specified so that essentially all of the accuracy ob-
tainable from a full double precision implementation of GMRES(m) can be obtained
with storage requirements and arithmetic costs which, in a typical problem, are only
a little greater than those of a single precision implementation. In 3, we consider the
computation of inexact Newton steps for a nonlinear problem by means of Algorithm
EHA, in which products of the Jacobian (matrix) with vectors are approximated by
finite differences. We show that by using high-order finite difference approximations
in the computation of each r(x) and low-order finite difference approximations in ech
cycle of GMRES(m), we can obtain essentially the accuracy that could be obtained
by using high-order finite difference pproximations throughout, but at much less
cost.

2. Obtaining double precision accuracy efficiently. Here we show how AI-
gorithm EHA can be used to obtain essentially double precision accuracy efficiently
in the solution of a linear problem (1). By double precision accuracy, we mean the
accuracy which could be obtained by using double precision arithmetic throughout;
we do not mean that the result will be the exact solution rounded to double precision.

EFFICIENT HIGH ACCURACY SOLUTIONS WITH GMRES(m) 819

In applying Algorithm EHA, we use three double precision vectors: one for the
approximate solution x, one for the right-hand side b, and one for the matrix-vector
product Ax. A subroutine to compute Ax in double precision is needed in addition to
a subroutine that is used within GMRES(m) to compute products of A with other
vectors in single precision. We apply Algorithm EHA as follows: Given a double
precision approximate solution x, we first compute r(x) by computing Ax in double
precision, subtracting Ax from b in double precision, and then rounding the difference
to single precision. A cycle of GMRES(m) is then carried out, entirely in single
precision, producing a single precision correction z. The update of the approximate
solution is x -- x + dble (z), where dble (z) indicates that z is represented in double
precision in the addition. This representation is done componentwise and does not
require that z be converted in toto to a double precision vector.

2.1. Numerical experiments. We conducted numerical experiments on non-
symmetric linear systems arising from the discretization of the elliptic boundary value
problem

(4)
Aw+cw+ Ox f in D,

where D [0, 1] [0, 1] and c _> 0 and d are constants. In the experiments reported
here, we took f

_
1 and used a 100 100 mesh of equally spaced discretization points

in D, so that the resulting linear systems were of dimension 10,000. Discretization
was by the usual second-order centered differences.

We compared Algorithm EHA as specified above with methods which differed only
in that either exclusively single or exclusively double precision arithmetic and storage
were used throughout. We refer to the latter two methods as the full single precision
(FSP) and full double precision (FDP) methods, respectively. We note that in the
context of these experiments, Algorithm EHA requires only a little more storage than
the FSP method, which requires about half that of the FDP method. The additional
storage required by Algorithm EHA over the FSP method arises mainly from the
double precision storage of b, x, and Ax. In the double precision computation of
Ax, the simplicity of A in these experiments allows the nonzero entries of A to be
represented by a few nonzero constants.

In GMRES(m), we used m 10 in all of the experiments reported here because
that seemed to be more effective than other choices we tried. All computing was done
on a Sun Microsystems SPARCstation 1 using the SunOS FORTRAN compiler.

In our first set of experiments, we took c d 10 and used right preconditioning
with a fast Poisson solver from FISHPACK [11], which is very effective for these
fairly small values of c and d. We first started each method with zero as the initial
approximate solution and allowed it to run for 40 GMRES(m) iterations, after which
the limit of residual norm reduction had been reached. Figure 1 shows plots of the
logarithm of the Euclidean norm of the residual versus the number of GMRES(m)
iterations for the three methods. We note that in Fig. 1 and in all other figures
below, the plotted residual norms were not the values maintained by GMRES(m),
but rather were computed as accurately as possible "from scratch." That is, at each
GMRES(m) iteration, the current approximate solution was formed and its product
with the coefficient matrix was subtracted from the right-hand side, all in double
precision. It was important to compute the residual norms in this way because the
values maintained by GMRES(m) become increasingly untrustworthy as the limits

w 0 on OD,

820 KATHRYN TURNER AND HOMER F. WALKER

of residual norm reduction are neared; see [12]. It is seen in Fig. 1 that Algorithm
EHA achieved the same ultimate level of residual norm reduction as the FDP method
and required only a few,more GMRES(m) iterations to do so.

2.00

0.00

-2.00

-4.00

-6.00

-8.00

-10.00

0 10 20 30 40

FIG. 1. Log10 of the residual norm versus the number of GMRES(m) iterations for c d 10
with fast Poisson preconditioning. Solid curve: Algorithm EHA; dotted curve: FDP method; dashed
curve: FSP method.

In order to assess the relative amount of computational work required by Algo-
rithm EHA and the FDP method to reach comparable levels of residual norm re-
duction, we observed in each of 20 trials the GMRES(m) iteration numbers and run
times required by each method to reduce the residual norm by a factor of 10-12. Since
timing was of major interest, the residual norms were not computed "from scratch" in
these trials; instead, the values maintained by GMRES(m) were used. These values
were trustworthy because 10-12 is significantly larger than the limiting residual norm
reduction factor for these methods evident in Fig. 1. In each trial, the components
of the initial approximate solution were obtained by generating uniformly distributed
random numbers over [-1, 1]. The means and standard deviations of the run times
are given in Table 1. Each method required exactly 30 GMRES(m) iterations to
reach termination in every trial, which accounts for the small standard deviations.

In our second set of experiments, we took c d 100 and carried out trials
analogous to those in the first set above. No preconditioning was used in these ex-
periments, both because we wanted to compare the methods without preconditioning
and because the fast Poisson preconditioning used in the first set of experiments is not

EFFICIENT HIGH ACCURACY SOLUTIONS WITH GMRES(m) 821

TABLE 1
Statistics over 20 trials of run times required to reduce the residual norm by a factor of 10-12.

Fast Poisson preconditioning; c d 10. Each method took 30 GMRES(m) iterations to terminate
in every trial.

Method
EHA
FDP

Mean Run Time
(Seconds)

28.77
45.80

Standard
Deviation

.03125

.06442

cost effective for these large values of c and d. We first allowed each method to run
for 600 GMRES(m) iterations, starting with zero as the initial approximate solution,
after which the limit of residual norm reduction had been reached. The results are
shown in Fig. 2. We note that Algorithm EHA reached the same ultimate level of
residual norm reduction as the FDP method but required about ten percent more

GMRES(m) iterations to reach this level.

2.00

0.00

-2.00

-4.00

-6.00

-8.00

-10.00

-12.00

0 100 200 300 400 500 600

FIG. 2. Log10 of the residual norm versus the number of GMRES(m) iterations for c d 100
with no preconditioning. Solid curve: Algorithm EHA; dotted curve: FDP method; dashed curve:
FSP method.

We then observed in each of 20 trials the numbers of GMRES(m) iterations and
run times required by Algorithm EHA and the FDP method to reduce the residual
norm by a factor of 10-12. In these trials, the initial approximate solutions were
obtained by generating random components as in the previous such trials. In contrast

822 KATHRYN TURNER AND HOMER F. WALKER

TABLE 2
Statistics over 20 trials of GMRES(m) iteration numbers and run times required to reduce the

residual norm by a factor of 10-12 No preconditioning; c d 100.

Method
EHA
FDP

Mean Number
of Iterations

346.2
345.9

Standard
Deviation

34.18
35.56

Mean Run Time
(Seconds)

91.57
153.0

Standard
Deviation

9.068
15.72

to the previous trials, there was in these trims significant variation in both the numbers
of GMRES(m) iterations and the run times for each method. Consequently, the
means and standard deviations of the GMRES(m) iteration counts as well as the run
times are given in Table 2.

3. Computing inexact Newton steps using finite differences. We now
consider an inexact Newton method [3] for the solution of a nonlinear problem, written
as follows:

Given F" IRn -]an, find u* E]an such that F(u*) O.

Given an approximate solution u of (5), an inexact Newton method determines a
step x such that F’(u)x -F(u) and updates u -- u / x; such a method is of
interest when computing the exact Newton step -F’(u)-lF(u) is infeasible. We shall
apply Algorithm EHA to the computation of a single inexact Newton step, in which
u remains fixed and r(x) -F(u)- F’(u)x.

We focus on the case in which Fl(u) cannot be used analytically. In this case,
we might approximate F’(u) using finite differences. However, with GMRES(m),
F (u) or an approtimation of it is not explicitly needed; we require only its action on
vectors v, which can be approximated, e.g., to first, second, fourth, and sixth order,
respectively, by

(6)
1

+5

(7)
L

[E(u + 5v)25

()]8F -8E

(9) 9105 [256F (u+ v)- 256F (u -5)-40F (u+ v)

In an inexact Newton method, F(u) is already available; therefore, each of (6)-(9)
requires a number of new F-evaluations equal to its order.

We apply Algorithm EHA in this context by using a higher-order formula, e.g., one
of (7)-(9), in the residual computation preceding each cycle of GMRES(m) and using
a lower-order formula, e.g., the first-order formula (6), for matrix-vector products
required within GMRES(rn).

EFFICIENT HIGH ACCURACY SOLUTIONS WITH GMRES(m) 823

3.1. Numerical experiments. We conducted numerical experiments in com-
puting inexact Newton steps for discretizations of a modified Bratu problem, given
by

(w
Aw + ceTM + d--_ f in D,

(10)
w 0 on OD,

where c and d are constants. The actual Bratu problem has d 0 and f 0. It
provides a simplified model of nonlinear diffusion phenomena, e.g., in combustion and
semiconductors, and has been considered by Glowinski, Keller, and Rheinhardt [6], as
well as by a number of other investigators; see [6] and the references therein. See also
problem 3 by Glowinski and Keller and problem 7 by Mittelmann in the collection
of nonlinear model problems assembled by Mor [8]. The modified problem (10) has
been used as a test problem for inexact Newton methods by Brown and Shad [2].

In our experiments, we took D [0, 1] [0, 1], f 0, c- d- 10, and discretized
(10) using the usual second-order centered differences over a 100 100 mesh of equally
spaced points in D. In GMRES(m), we took rn 10 and used fast Poisson right
preconditioning as in the experiments in 2. The computing environment was as
described in 2. All computing was done in double precision.

Letting F denote the nonlinear function obtained by discretizing (10) and letting
u denote an approximate solution of the discretized problem, we used (6)-(9) in
approximating Jacobian-vector products F (u)v. The value of 5 used for each formula
was chosen according to the usual heuristic when F is evaluated to full machine
precision" If p is the order of the formula, then 5 u1/(p+1), where u is unit roundoff
(taken to be 10-16 here).

The methods we compared in our experiments are the following:
1. Four methods, each of which used one of (6), (7), (8), or (9) exclusively for

all Jacobian-vector products. We refer to these below as FD1, FD2, FD4,
and FD6, respectively.

2. Three versions of Algorithm EHA, each of which used one of (7), (8), or
(9) exclusively in the accurate evaluation of initial residuals and then used
(6) exclusively in the GMRES(rn) cycles. We refer to these below as EHA2,
EHA4, and EHA6, respectively.

3. A method in which all Jacobian-vector products were evaluated analytically.
We refer to this as method A.

In the first set of experiments, we allowed each method to run for 40 GMRES(m)
iterations, starting with zero as the initial approximate solution, after which the limit
of residual norm reduction had been reached. The results are shown in Fig. 3. In
Fig. 3, the top curve was produced by method FD1. The second curve from the top
is actually a superposition of the curves produced by methods EHA2 and FD2; the
two curves are visually indistinguishable. Similarly, the third curve from the top is
a superposition of the curves produced by methods EHA4 and FD4, and the fourth
curve from the top, which lies barely above the bottom curve, is a superposition of
the curves produced by methods EHA6 and FD6. The bottom curve was produced
by method A.

In the second set of experiments, our purpose was to assess the relative amount of
computational work required by the methods which use higher-order differencing to
reach comparable levels of residual norm reduction. We compared pairs of methods
EHA2 and FD2, EHA4 and FD4, and EHA6 and FD6 by observing in each of 20

824 KATHRYN TURNER AND HOMER F. WALKER

3.00

1.00

-1.00

-3.00

-5.00

-7.00

-9.00

0 10 20 30 40

FIG. 3. Loglo of the residual norm versus the number of GMRES(m) iterations for the finite
difference methods.

TABLE 3
Statistics over 20 trials ofGMRES(m) iteration numbers, F-evaluations, and run times required

to reduce the residual norm by a factor of e. For each method, the number of GMRES(m) iterations
and F-evaluations was the same in every trial.

Method
EHA2
FD2
EHA4
FD4
EHA6
FD6

10-1 26
10-1 26
10-12 30
10-12 30
10-12 30
10-12 30

Number of
Iterations

Number of
F-Evaluations

32
58
42
132
48
198

Mean Run Time
(Seconds)

47.12
53.79
56.76
81.35
58.56
100.6

Standard
Deviation

.1048

.1829

.1855

.3730

.1952

.3278

trials the number of GMRES(m) iterations, number of F-evaluations, and run time
required by each method to reduce the residual norm by a factor of e, where for
each pair of methods e was chosen to be somewhat greater than the limiting ratio
of final to initial residual norms obtainable by the methods. In these trials, the
initial approximate solutions were obtained by generating random components as
in the similar experiments in 2. We note that for every method, the numbers of
GMRES(m) iterations and F-evaluations required before termination did not vary
at all over the 20 trials. The GMRES(m) iteration counts, numbers of F-evaluations,

EFFICIENT HIGH ACCURACY SOLUTIONS WITH GMRES(m) 825

and means and standard deviations of the run times are given in Table 3.

Acknowledgments. We thank John Dennis and Gene Golub for stimulating
conversations relating to this work.

REFERENCES

[1] O. AXELSSON, Conjugate gradient type methods for unsymmetric and inconsistent systems of
linear equations, Linear Algebra Appl., 29 (1980), pp. 1-16.

[2] P. N. BROWN AND Y. SAAD, Hybrid Krylov methods for nonlinear systems of equations, SIAM
J. Sci. Statist. Comput., 11 (1990), pp. 450-481.

[3] R. S. DEMBO, S. C. EISENSTAT, AND W. STEIHAUG, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400-408.

[4] S. C. EISENSTAT, H. C. ELMAN, AND M. H. SCHULTZ, Variational iterative methods for
nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20 (1983), pp. 345-357.

[5] H. C. ELMAN, Iterative methods for large, sparse, nonsymmetric systems of linear equations,
Ph.D. thesis, Department of Computer Science, Yale University, New Haven, CT, 1982.

[6] R. GLOWINSKI, H. B. KELLER, AND L. RHEINHART, Continuation-conjugate gradient methods
for the least-squares solution of nonlinear boundary value problems, SIAM J. Sci. Statist.
Comput., 6 (1985), pp. 793-832.

[7] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, Second Edition, The Johns Hopkins
University Press, Baltimore, MD, 1989.

[8] J. J. MOR, A collection of nonlinear model problems, in Computational Solutions of Nonlinear
Systems of Equations, E. L. Allgower and K. Georg, eds., Lectures in Applied Mathematics,
Vol. 26, American Mathematical Society, Providence, RI, 1990, pp. 723-762.

[9] Y. SAAD, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp.,
37 (1981), pp. 105-126.

[10] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual method for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

[11] P. N. SWARZTRAUBER AND R. A. SWEET, Efficient FORTRAN subprograms for the solution of
elliptic partial differential equations, ACM Trans. Math. Software, 5 (1979), pp. 352-364.

[12] H. F. WALKER, Implementation of the GMRES method using Householder transformations,
SIAM J. Sci. Statist. Comput., 9 (1988), pp. 152-163.

[13] , Implementations of the GMRES method, Computer Phys. Comm., 53 (1989), pp. 311-
320.

