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Abstract

A Newton–Krylov method is an implementation of Newton’s method in which a
Krylov subspace method is used to solve approximately the linear subproblems that
determine Newton steps. To enhance robustness when good initial approximate so-
lutions are not available, these methods are usually globalized, i.e., augmented with
auxiliary procedures (globalizations) that improve the likelihood of convergence from a
poor starting point. In recent years, globalized Newton–Krylov methods have been used
increasingly for the fully-coupled solution of large-scale CFD problems. In this paper,
we review several representative globalizations, discuss their properties, and report on
a numerical study aimed at evaluating their relative merits on large-scale 2D and 3D
problems involving the steady-state Navier–Stokes equations.

i



Acknowledgements

The authors would like to acknowledge Tamara Kolda for many discussions on nonlinear
algorithms design and working with the NOX library, Mike Heroux in supporting our work
with the Epetra and AztecOO libraries, Paul Lin in working with MPSalsa, and helpful
discussions with Jorge Moré.
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1 INTRODUCTION

1 Introduction

Krylov subspace methods constitute a broad and widely used class of iterative linear algebra
methods that includes, most notably, the classical conjugate gradient method for symmetric
positive-definite systems [26] and more recently developed methods for nonsymmetric linear
systems such as GMRES1 [42], which is of particular interest here, and also Bi-CGSTAB
[53], TFQMR [17], and related methods. An extensive discussion of these methods is beyond
the scope of this work; we refer the reader to the surveys [18] and [22] and the books [21],
[41], and [54].

A Newton–Krylov method (see, e.g., [3], [29], [31]) is an implementation of Newton’s
method in which a Krylov subspace method is used to solve approximately the linear systems
that characterize steps of Newton’s method. Specifically, if we seek a zero of a residual
function F : IRn → IRn and if u ∈ IRn is a current approximate solution, then a Krylov
subspace method is applied to solve approximately the Newton equation

F ′(u)s = −F (u), (1.1)

where F ′(u) ∈ IRn×n is the Jacobian (matrix) of F at u. A Newton–Krylov method that uses
a specific Krylov subspace method is often designated by appending the name of the method
to “Newton,” as in “Newton-GMRES” or “Newton–BiCGSTAB.” (The term “truncated
Newton method” is also widely used when the Krylov subspace method is the conjugate
gradient method; cf. [11] and [35].) Krylov subspace methods have special advantages in
the solution of (1.1). In particular, most of these methods, including those named above,
require only products of F ′(u) with vectors2 and thus allow “matrix-free” Newton–Krylov
implementations, in which these products are evaluated or approximated without creating
or storing F ′(u). (See, e.g, [31].)

A Newton–Krylov method is usually implemented as an inexact Newton method [10],
the basic form of which is as follows:

Algorithm IN: Inexact Newton Method [10]

Let u0 be given.

For k = 0, 1, . . . (until convergence) do:

Choose ηk ∈ [0, 1) and sk such that

(1.2) ‖F (uk) + F ′(uk) sk‖ ≤ ηk‖F (uk)‖.

Set uk+1 = uk + sk.

In the Newton–Krylov context, one chooses for each k a forcing term ηk ∈ [0, 1) (cf. [14])
and then applies the Krylov subspace method until an iterate sk satisfies the inexact Newton

1For convenience in the following, we usually do not distinguish between GMRES and its restarted version
GMRES(m).

2Some Krylov subspace methods require products of F ′(u)T as well.
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1 INTRODUCTION

condition (1.2). The forcing terms determine the local convergence properties of the method:
by choosing {ηk} appropriately, one can achieve desirably fast rates of local convergence, up
to the rate of exact Newton’s method (typically quadratic) [10]. Additionally, by reducing
the likelihood of oversolving, i.e., obtaining unproductive accuracy in approximately solving
(1.1), well-chosen forcing terms may significantly improve the efficiency of the method and,
in some applications, the robustness as well ([14],[49], [52]).

Newton–Krylov methods, like all Newton-like methods, must usually be globalized, i.e.,
augmented with certain auxiliary procedures (globalizations) that increase the likelihood
of convergence when good initial approximate solutions are not available. Globalizations
are typically structured to test whether a step gives satisfactory progress toward a solution
and, if necessary, to modify it to obtain a step that does give satisfactory progress. There
are two major categories of globalizations3: backtracking (line-search, damping) methods,
in which step lengths are adjusted (usually shortened) to obtain satisfactory steps; and
trust region methods, in which a step from an approximate solution u is ideally chosen to
minimize the norm of F (u) + F ′(u)s, the local linear model of F , within a specified “trust
region.” (More specifically, the trust region step is ideally arg min‖s‖≤δ‖F (u) + F ′(u)s‖,
where δ > 0 is the trust region radius.) Both backtracking and trust region methods have
strong theoretical support; see, e.g., [12] and [13]. Backtracking methods are relatively easy
to implement; however, each step direction is restricted to be that of the initial trial step,
which may be a weak descent direction, especially if the Jacobian is ill-conditioned [52].
Trust region methods have the potential advantage of producing modified steps that may
be stronger descent directions than the initial trial step; however, their implementation
may be problematic. In general, it is not feasible to compute the ideal trust region step
accurately, and popular ways of approximating this step require products of the transpose
of the Jacobian with vectors. These products may be difficult or impractical to compute
in some applications, especially in the Newton–Krylov context, in which the Jacobian may
not be known. Additionally, a step produced by a Newton–Krylov method (or any iterative
method) may not be well suited for use in these popular approaches unless it solves (1.1)
fairly accurately, and the necessary accuracy may be difficult to determine a priori. We
comment further on these issues in §2.4.

The purpose of this paper is to review several representative globalizations of Newton–
Krylov methods, discuss their properties, and report on extensive numerical experiments
with Newton–GMRES implementations that demonstrate their relative merits in large-
scale applications involving the steady-state Navier–Stokes equations. Our main goal is
to provide an accessible introduction to the methods of interest and a thorough study of
their performance on an important class of large-scale problems. We also offer pointers to
publicly available, downloadable software implementations used in our tests and report new
experimental data on the numerical solution of several 3D benchmark problems. This work
is meant to be a cohesive study of a representative variety of practically effective techniques
rather than an exhaustive survey. We do not cover other robust solution techniques such as
homotopy, continuation, pseudo-transient continuation, or mesh sequencing methods but
refer the reader to [56], [57], [1], [33], [7], [30], [31], and the references in those works.

3See [12, Ch. 6] for a general discussion of classical globalizations.
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2 THE NUMERICAL METHODS

In an earlier study [49], we considered a backtracking globalization from [13] and showed
in experiments that it significantly improves the robustness of a Newton-GMRES method
on the applications of interest here, especially when combined with adaptively determined
forcing terms from [14]. Here, we extend that study to include the backtracking globaliza-
tion of [13] and [49], a certain refinement of that globalization, an alternative line-search
procedure from [34], and a dogleg trust region implementation ([39], [12]). This dogleg im-
plementation is feasible because our testing environment allows the computation of products
of the transpose of the Jacobian with vectors. Further aspects of the implementation and
associated issues are discussed in §2.4.

The test problems are 2D and 3D versions of three benchmark flow problems, viz.,
the thermal convection, backward-facing step, and lid driven cavity problems. (The 2D
versions of these and the 3D backward-facing step problem were also used in [49].) These
problems are all large-scale, with the number of equations and unknowns ranging from
25,263 to 1,042,236 in our tests; consequently, all numerical experiments were necessarily
run on parallel computers, with the number of processors employed ranging from eight to
100. An important aspect of this study is describing the algorithmic features that were
used, beyond the basic globalized Newton–Krylov methods, to make the implementations
effective on these platforms in the problem regimes of interest.

In §2 below, we discuss the numerical methods of interest and outline their theoretical
support. In §3, we introduce the governing PDEs and the discretized equations. In §4,
the test problems and the computing environment are described. We summarize the test
results in §5, comment further on failure and robustness in §6, and draw conclusions in §7.
Proofs of some theorems and complete details of the test results are given in an appendix.
Throughout the paper, the norm ‖ · ‖ is assumed to be an inner-product norm but is
otherwise arbitrary.

2 The numerical methods

2.1 The forcing terms

Although the focus of this study is on globalization procedures, it has been seen in previous
studies ([14],[49], [52]) that the forcing terms may affect the robustness of a Newton-Krylov
method, globalization notwithstanding. Accordingly, we consider two choices of the forcing
terms here to assess their effects on the globalizations of interest. The first is a small
constant value, viz., ηk = 10−4 for each k, which requires solving each instance of (1.1) with
fairly high accuracy and should produce a close approximation of the exact Newton step.
The second is an adaptive forcing term, called Choice 1 in [14] and determined as follows:

3



2.1 The forcing terms 2 THE NUMERICAL METHODS

Select any η0 ∈ [0, 1) and set

ηk =

∣

∣

∣
‖F (uk)‖ − ‖F (uk−1) + F ′(uk−1) sk−1‖

∣

∣

∣

‖F (uk−1)‖
, k = 1, 2, . . . . (2.1)

In keeping with practice elsewhere ([14], [49], [38]), we also follow (2.1) with the safeguard

ηk ← min
{

ηmax,max{ηk, η(1+
√
5)/2

k−1 }
}

, whenever η
(1+

√
5)/2

k−1 > 0.1, (2.2)

which is intended to prevent the forcing terms from becoming too small too quickly away
from a solution and also to keep them below a prescribed ηmax ∈ [0, 1). (In our implemen-
tations, we used η0 = .01 and ηmax = .9.) The exponent (1 +

√
5)/2 is related to a local

convergence rate associated with these forcing terms; see the remark following Theorem 2.3
below.

To briefly state the local convergence properties of Algorithm IN with these two choices
of the forcing terms, we formulate the following:

Assumption 2.1 (a) F : IRn → IRn is continuously differentiable in a neighborhood of
u∗ ∈ IRn such that F (u∗) = 0 and F ′(u∗) is nonsingular.

(b) F is Lipschitz continuously differentiable at u∗, i.e., there is a constant Γ for which
‖F ′(u)− F ′(u∗)‖ ≤ Γ‖u− u∗‖ for all u sufficiently near u∗.

With this assumption, we have the results below from [10] and [14].

Theorem 2.2 ([10],Th. 2.3) Suppose that Assumption 2.1(a) holds, and let {uk} be a
sequence produced by Algorithm IN with 0 ≤ ηk ≤ η∗ < 1 for each k. If u0 is sufficiently
near u∗, then {uk} converges to u∗ and, provided uk 6= u∗ for all k,

lim sup
k→∞

‖uk+1 − u∗‖∗/‖uk − u∗‖∗ ≤ η∗, (2.3)

where ‖v‖∗ ≡ ‖F ′(u∗)v‖ for each v ∈ IRn.

It follows that if ηk = 10−4 for each k, then, under Assumption 2.1(a), Algorithm
IN exhibits fast local q-linear convergence4 to a solution u∗; specifically, (2.3) holds with
η∗ = 10−4.

Theorem 2.3 ([14], Th. 2.2) Suppose that Assumption 2.1 holds, and let {uk} be a se-
quence produced by Algorithm IN with each ηk given by (2.1). If u0 is sufficiently near u∗,
then {uk} converges to u∗ with

‖uk+1 − u∗‖ ≤ γ ‖uk − u∗‖ ‖uk−1 − u∗‖, k = 1, 2, . . . (2.4)

for a constant γ independent of k.

4For definitions of the kinds of convergence referred to here, see [12].
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2 THE NUMERICAL METHODS 2.2 The backtracking methods

As observed in [14], it follows from (2.4) that the convergence is q-superlinear, two-step
q-quadratic, and of r-order (1 +

√
5)/2. Also, the conclusions of the theorem still hold if

each ηk is determined by (2.1) followed by the safeguard (2.2).

2.2 The backtracking methods

We consider here the following general backtracking method from [13].

Algorithm INB: Inexact Newton Backtracking Method [13]

Let u0, ηmax ∈ [0, 1), t ∈ (0, 1), and 0 < θmin < θmax < 1 be given.

For k = 0, 1, . . . (until convergence) do:

Choose initial ηk ∈ [0, ηmax] and sk such that

‖F (uk) + F ′(uk) sk‖ ≤ ηk‖F (uk)‖.

While ‖F (uk + sk)‖ > [1− t(1− ηk)] ‖F (uk)‖ do:

Choose θ ∈ [θmin, θmax].

Update sk ← θsk and ηk ← 1− θ(1− ηk).

Set uk+1 = uk + sk.

In Algorithm INB, the backtracking globalization resides in the while-loop, in which
steps are tested and shortened as necessary until the acceptability condition

‖F (uk + sk)‖ ≤ [1− t(1− ηk)] ‖F (uk)‖ (2.5)

holds. As noted in [13], if F is continuously differentiable, then this globalization produces
a step for which (2.5) holds after a finite number of passes through the while-loop; further-
more, the inexact Newton condition (1.2) still holds for the final sk and ηk. The condition
(2.5) is a “sufficient decrease” condition on ‖F (uk+sk)‖. To illuminate it further, we follow
[13] and [49] and define

aredk ≡ ‖F (uk)‖ − ‖F (uk + sk)‖,
predk ≡ ‖F (uk)‖ − ‖F (uk) + F ′(uk) sk‖,

(2.6)

respectively, the actual reduction in ‖F‖ and the predicted reduction given by the local linear
model. It is easily verified that (1.2) is equivalent to pred k ≥ (1 − ηk)‖F (uk)‖ and (2.5)
is equivalent to aredk ≥ t(1 − ηk)‖F (uk)‖. Thus, if (1.2) requires the predicted reduction
to be at least (1 − ηk)‖F (uk)‖, then (2.5) requires the actual reduction to be at least the
fraction t of that amount. In our implementation, we used t = 10−4 so that, consistent with
recommendations in [12], only a very modest decrease in ‖F‖ is required for a step to be
accepted.

Theoretical support for Algorithm INB is provided in [13] by the following result.

5



2.3 The Moré–Thuente line-search method 2 THE NUMERICAL METHODS

Theorem 2.4 ([13], Th. 6.1) Assume that F is continuously differentiable. If {uk} pro-
duced by Algorithm INB has a limit point u∗ such that F ′(u∗) is nonsingular, then F (u∗) = 0
and uk → u∗. Furthermore, the initial sk and ηk are accepted without modification in the
while-loop for all sufficiently large k.

A consequence of the theorem is that if {uk} converges to a solution u∗ such that F ′(u∗)
is nonsingular, then, under Assumption 2.1, the convergence is ultimately governed by the
initial ηk’s. In particular, if ηk = 10−4 for each k, then (2.3) holds with η∗ = 10−4, and
if each ηk is given by (2.1) followed by (2.2), then an inequality (2.4) holds for sufficiently
large k and a γ independent of k.

Restricting each step-length reduction factor θ to lie in [θmin, θmax] is known as safe-
guarded backtracking. In our implementation, we used the common choices θmin = 1/10 and
θmax = 1/2 (cf. [12]). We also followed standard practice in choosing θ ∈ [θmin, θmax]
to minimize a low-degree polynomial that interpolates values of ‖F‖. Specifically, in
this study, we tested two possibilities: The first is that used in [49], viz., to determine
θ ∈ [θmin, θmax] to minimize a quadratic polynomial p(t) that satisfies p(0) = 1

2‖F (uk)‖2,
p(1) = 1

2‖F (uk + sk)‖2, and p′(0) = d
dt
1
2‖F (uk + tsk)‖2

∣

∣

∣

t=0
. The second is a refinement of

this idea from [12], as follows: On the first step-length reduction, θ is chosen to minimize
an interpolating quadratic polynomial as before. On subsequent reductions, θ is chosen to
minimize over [θmin, θmax] a cubic polynomial p(t) for which p(0), p(1), and p′(0) have the
same values as before and additionally p(θ−1prev) =

1
2‖F (uk + θ−1prevsk)‖2, where θprev is the

step-length reduction factor used in the previous reduction and ‖F (uk + θ−1prevsk)‖ has been
retained from that reduction. Formulas for the minimizers of these polynomials are given
in [12, Ch. 6].

2.3 The Moré–Thuente line-search method

This line-search procedure from [34] is intended for the unconstrained minimization of a
general functional f : IRn → IR1 and is adapted to the present setting by taking f(u) ≡
1
2 ‖F (u)‖2. It differs from the backtracking methods of §2.2 primarily in being more directly
focused on approximately minimizing ‖F‖ in a given search direction and by allowing steps
that are longer than the initial trial step if such steps seem warranted by potential further
decrease in ‖F‖.

To set the context, we formulate an inexact Newton method incorporating this line
search as follows:

Algorithm INMTL: Inexact Newton Moré–Thuente Line-Search Method

Let u0 and ηmax ∈ [0, 1) be given.

For k = 0, 1, . . . (until convergence) do:

Choose ηk ∈ [0, ηmax] and initial sk such that

6



2 THE NUMERICAL METHODS 2.3 The Moré–Thuente line-search method

‖F (uk) + F ′(uk) sk‖ ≤ ηk‖F (uk)‖.

Apply the Moré–Thuente line search [34] to

determine a final sk.

Set uk+1 = uk + sk.

To describe the Moré–Thuente line search, we define for a particular k

φ(λ) ≡ f(uk + λsk) =
1

2
‖F (uk + λsk)‖2. (2.7)

We assume for this discussion that F is continuously differentiable, which implies that f
and φ are as well. Since the initial sk is an inexact Newton step from uk, it is also a descent
direction for ‖ · ‖ and f in the sense that φ′(0) < 0 ([4, Prop. 3.3], [13, Lem. 7.1]).

The goal of the line search is to find a λ > 0 satisfying the two inequalities

φ(λ) ≤ φ(0) + αφ′(0)λ, (2.8)

|φ′(λ)| ≤ β|φ′(0)|, (2.9)

where α and β are given parameters in (0, 1). Once such a λ has been determined by the
line search, the initial sk is updated by sk ← λsk to determine the final sk. Inequalities
(2.8) and (2.9) are sometimes known as the (strong) Wolfe conditions [34, Ch. 3]. (The
weak Wolfe conditions consist of (2.8) and the inequality φ′(λ) ≥ βφ′(0).) Inequality (2.8) is
a sufficient decrease condition on ‖F (uk + λsk)‖; cf. (2.5). Since φ′(0) < 0 and 0 < α < 1,
(2.8) holds for sufficiently small λ > 0. Inequality (2.9) does not hold for small λ > 0,
and its primary function is to prevent steps from being too short to give adequate progress
toward a solution. Additionally, (2.9) is sometimes called a curvature condition since it
implies

φ′(λ)− φ′(0) ≥ (1− β)|φ′(0)| > 0,

from which it follows that the average curvature of φ on (0, λ) is positive [34]. Such con-
ditions are used in the optimization setting to ensure that certain quasi-Newton updates
inherit positive-definiteness (see, e.g., [36]).

In our context, φ(λ) ≥ 0 for all λ, and an easy calculus argument shows that there is
at least one λ > 0 that satisfies both (2.8) and (2.9) provided β ≥ α, which is usually the
case in practice. (In our implementation, we used α = 10−4 and β = .9999.) If β < α, then
there may be no λ > 0 that satisfies both (2.8) and (2.9). However, if the set of λ satisfying
(2.8) contains a local minimizer of φ, then this set contains solutions of (2.9) as well, and
small values of β may serve to restrict solutions of (2.8)-(2.9) to be near this minimizer.

The line search generates a sequence of iterates that lie within “intervals of uncertainty”
and are additionally constrained to be within an interval [λmin, λmax] for specified 0 < λmin <
λmax. Since φ is bounded below, it is possible to determine λmin and λmax for each k to
ensure that [λmin, λmax] contains at least one λ satisfying (2.8) and (2.9), provided β ≥ α;
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however, in typical practice, fixed λmin and λmax are used for all k. (We used λmin = 10−12

and λmax = 106 in our implementation.)

The intervals of uncertainty are bounded by points λ` and λu that are updated at
each iteration in order to maintain λ` as the “best point so far” in a certain sense and,
with high likelihood, ultimately to bracket a minimizer of φ within the interval, if that
is possible. The rules for updating λ` and λu are complex and are explained in detail in
Appendix 1. As noted there, each update may involve multiplication of sk by the Jacobian
evaluated at a new point, which, while presumably feasible in the Newton–Krylov context,
will entail additional, possibly significant expense. (In our implementation, these products
can be produced either analytically with a freshly-evaluated Jacobian or approximated as
directional derivatives using finite-differences of F -values.)

Given a current interval of uncertainty, the next iterate is determined according to
sophisticated rules that select and, in some cases, combine minimizers of cubic and quadratic
interpolating polynomials, together with safeguards that ensure that the iterate lies within
[λmin, λmax] and other desired bounds and still gives adequate movement. We refer the
reader to [34] for details.

The possible outcomes of the line search, as explained in Appendix 1, are as follows:

1. The iterates increase monotonically and reach λmax after a finite number of iterations;
with λ = λmax, (2.8) holds but (2.9) may not hold.

2. The iterates decrease monotonically and reach λmin after a finite number of iterations;
neither (2.8) nor (2.9) is guaranteed to hold with λ = λmin.

3. A value of λ ∈ (λmin, λmax) is reached for which (2.8) holds and (2.9) also holds with
β = α.

4. A value of λ ∈ (λmin, λmax) is reached for which both (2.8) and (2.9) hold.

Note that if one of the first two outcomes occurs, then both (2.8) and (2.9) may hold, but
this is not guaranteed. Note also that if (2.9) holds with β = α, then it also holds with
β ≥ α. Thus if β ≥ α, as in our implementation, then the third and fourth outcomes
become one.

Our global convergence result for Algorithm INMTL is Theorem 2.5 below. The proof
is given in Appendix 1.

Theorem 2.5 Suppose that u0 is given and that F is Lipschitz continuously differentiable
on L(u0) ≡ {u : ‖F (u)‖ ≤ ‖F (u0)‖}, i.e., F ′(u) exists everywhere on L(u0) and there is a
Γ ≥ 0 such that

‖F ′(v)− F ′(u)‖ ≤ Γ‖v − u‖ (2.10)

for all u ∈ L(u0) and nearby v ∈ L(u0). Assume that {uk} is produced by Algorithm
INMTL such that, for each k, the λ determined by the Moré–Thuente line search satisfies

8
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(2.8) and (2.9) with φ defined in (2.7). If {uk} has a subsequence {ukj
} such that F ′(ukj

) is
nonsingular for each j and {‖F ′(ukj

)−1‖} is bounded, then F (uk)→ 0. If {uk} has a limit
point u∗ such that F ′(u∗) is nonsingular, then F (u∗) = 0 and uk → u∗.

Note that, in contrast to Theorem 2.4 above and Theorem 2.7 below, Theorem 2.5
provides no assurance that initial inexact Newton steps will ultimately be accepted without
modification as the iterates near a solution. Indeed, such an assurance cannot be made
without further assumptions. For example, it is well-known that one must require α < 1/2 in
order to ensure that exact Newton steps will ultimately be acceptable without modification
near a solution (see, e.g., [12]). The following lemma, which is proved in the appendix,
generalizes this observation to the inexact Newton context. Note that the lemma reduces
to standard results (cf. [12, Th. 6.3.4]) if limk→∞ ηk = 0.

Lemma 2.6 Suppose that {uk} produced by Algorithm INMTL converges to u∗ for which
Assumption 2.1(a) holds. Then, with φ defined in (2.7), (2.8) holds with λ = 1 for all
sufficiently large k if

α <
1− lim supk→∞ ηk

2
(2.11)

and only if

α <
1

2 (1− lim infk→∞ ηk)
. (2.12)

Additionally, (2.9) holds for all sufficiently large k if

β >
lim supk→∞ ηk (1 + lim supk→∞ ηk)

1− lim supk→∞ ηk
. (2.13)

If something is known about lim supk→∞ ηk, then (2.11) and (2.13) may provide useful
guidance in specifying α and β. Note, however, that the bound on the right-hand side of
(2.13) is not less than one if lim supk→∞ ηk ≥

√
2− 1, in which case (2.13) is not helpful.

Lemma 2.6 can be used to advantage with the forcing terms considered here. In the case
of the adaptive Choice 1 forcing terms, it is easy to show that lim supk→∞ ηk = 0 under the
assumptions of the lemma. Thus, in this case, the lemma implies that, for any α ∈ (0, 12)
and β ∈ (0, 1), initial inexact Newton steps are ultimately acceptable without modification
and an inequality (2.4) holds for sufficiently large k and a γ independent of k. In the case
in which ηk = 10−4 for each k, it follows from the lemma that, under the scarcely more
restrictive conditions 0 < α < (1− 10−4)/2 and 10−4(1 + 10−4)/(1− 10−4) < β < 1, initial
inexact Newton steps are again ultimately acceptable and the convergence obeys (2.3) with
η∗ = 10−4. The values α = 10−4 and β = .9999 used in our implementation generously
satisfy (2.11) and (2.13) in either case and are typical values used in practice.

9



2.4 The dogleg method 2 THE NUMERICAL METHODS

2.4 The dogleg method

The traditional dogleg method (cf. [39], [12]) determines, at the kth Newton iteration,
a step along the dogleg curve ΓDLk . This is the piecewise linear curve connecting 0, the
“Cauchy point” sCPk (defined to be the minimizer of the local linear model norm in the
steepest descent direction), and the Newton step sNk = −F ′(uk)−1F (uk). The dogleg curve
has the desirable properties that, as a point s traverses the curve from 0 to sCPk to sNk ,
‖s‖ is monotone increasing and ‖F (uk) + F ′(uk) s‖ is monotone decreasing (see, e.g., [12]).
Consequently, if δ > 0 is a given trust region radius, then there is a unique sk ∈ ΓDLk such
that sk = arg mins∈ΓDL

k
,‖s‖≤δ‖F (uk) + F ′(uk) s‖, and this sk is characterized as follows: If

‖sNk ‖ ≤ δ, then sk = sNk , and if ‖sNk ‖ > δ, then sk is the unique point on the dogleg curve
satisfying ‖sk‖ = δ. If sk so chosen is acceptable, then the next approximate solution is
uk+1 = uk + sk; if not, then the trust region radius is reduced and a new sk is similarly
determined.

In this study, we use a straightforward adaptation of the traditional method, outlined
in general form below, that is suitable for implementation as a Newton–Krylov method. In
this, each Newton step sNk is replaced by an inexact Newton step sINk , and the corresponding
dogleg curve ΓDLk connects 0, the Cauchy point sCPk , and sINk . We note that the computation
of sCPk requires the product of F ′(uk)T with a vector. As indicated in the introduction, these
products can be evaluated by our test codes. However, they may not be readily available in
other circumstances, especially those involving “matrix-free” Newton–Krylov implementa-
tions in which the Jacobian is not created. A Newton–GMRES dogleg adaptation that does
not require these products is described in [3]; in this, each Cauchy point sCPk is replaced by
an approximation determined using quantities generated by GMRES.

Algorithm INDL: Inexact Newton Dogleg Method

Let u0, ηmax ∈ [0, 1), t ∈ (0, 1), 0 < θmin < θmax < 1, and

0 < δmin ≤ δ be given.

For k = 0, 1, . . . (until convergence) do:

Choose ηk ∈ [0, ηmax] and sINk such that

‖F (uk) + F ′(uk) sINk ‖ ≤ ηk‖F (uk)‖.

Evaluate sCPk and determine sk ∈ ΓDLk .

While aredk < t · predk do:

Choose θ ∈ [θmin, θmax].

Update δ ← max{θδ, δmin}.

Redetermine sk ∈ ΓDLk .

Set uk+1 = uk + sk and update δ.

10
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The procedure for determining each sk ∈ ΓDLk is as follows:

• If ‖sINk ‖ ≤ δ, then sk = sINk .

• Otherwise, if ‖sCPk ‖ ≥ δ, then sk = (δ/‖sCPk ‖) sCPk .

• Otherwise, sk = (1 − τ)sCPk + τsINk , where τ ∈ (0, 1) is uniquely determined so that
‖sk‖ = δ.

This procedure always determines sk uniquely and is standard for dogleg implementations.
However, there are several issues that arise as a consequence of using sINk in place of sNk .
First, for any ηk ∈ (0, ηmax], no matter how small, ‖F (uk)+F ′(uk) s‖ may not be monotone
decreasing as s traverses ΓDLk from sCPk to sINk ; consequently, sk may not minimize the local
linear model norm along ΓDLk within the trust region. However, if ηk is small, then this non-
monotonicity can occur only in a small neighborhood of sINk and is not a serious concern.
Second, unless ηk is sufficiently small, ‖s‖ may not be monotone increasing as s traverses
ΓDLk from sCPk to sINk ; indeed, if ‖sCPk ‖ > δ and ηk is not small, then ΓDLk may have up to
three points of intersection with the trust region boundary: one between 0 and sCPk and one
or two between sCPk and sINk . Thus sk may not be uniquely characterized by ‖sk‖ = δ when
‖sINk ‖ > δ. Third, and perhaps of greatest concern, if ηk is sufficiently large to allow

ηk‖F (uk)‖ ≥ ‖F (uk) + F ′(uk) s
IN
k ‖ ≥ ‖F (uk) + F ′(uk) s

CP
k ‖

and ‖sINk ‖ ≤ δ ≤ ‖sCPk ‖, then the procedure will specify sk = sINk , even though the step
(δ/‖sCPk ‖)sCPk may (depending on δ, sCPk , and sINk ) give greater reduction of the local linear
model norm along ΓDLk within the trust region. Although Algorithm INDL was effective
in our tests, as evidenced by the results in §5, these issues remain a potential cause for
concern. We are currently exploring alternative strategies that mitigate them [37].

In the while-loop, aredk and predk are defined as in (2.6). In our implementation,
we used t = 10−4 as in the case of Algorithm INB. In updating δ within the while-loop,
we used a simple reduction δ ← .25δ. (Alternatives based on minimizing interpolating
polynomials are suggested in [12].) In the final update of δ following the while-loop, we
used a procedure similar to that in [12], in which the trust region is shrunk if ‖F (uk + sk)‖
and ‖F (uk) + F ′(uk) sk‖ do not agree well, expanded if they agree especially well, and left
unchanged otherwise. The specific procedure, in which 0 < ρs < ρe < 1, 0 < βs < 1 < βe,
and δmax > δmin, is as follows:

• If aredk/predk < ρs and ‖sINk ‖ < δ, then δ ← max{‖sINk ‖, δmin}.

• Otherwise, if aredk/predk < ρs, then δ ← max{βsδ, δmin}.

• Otherwise, if aredk/predk > ρe and ‖sk‖ = δ, then δ ← min{βeδ, δmax}.

In our implementation, we used ρs = 0.1, ρe = 0.75, βs = .25, βe = 4.0, δmin = 10−6,
and δmax = 1010. The initial δ was determined after the computation of sIN0 as follows: If
‖sIN0 ‖ < δmin, then δ = 2δmin; otherwise, δ = ‖sIN0 ‖.
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We conclude this subsection with a convergence theorem for the general Algorithm
INDL. The proof is given in Appendix 1. The theorem affirms a notable property of Al-
gorithm INDL shared with other trust region methods, viz., that every limit point of {uk}
produced by the algorithm must be a stationary point of ‖F‖.5 (It is possible for line-search
methods to produce iterates that converge to non-stationary points at which the Jacobian
is singular; see [39] and [5].) Additionally, as in the case of Theorem 2.4, a particular
consequence of the theorem is that if {uk} converges to a solution u∗ such that F ′(u∗) is
nonsingular, then the convergence is ultimately governed by the ηk’s. Thus, as before, if
ηk = 10−4 for each k, then (2.3) holds with η∗ = 10−4, and if each ηk is given by (2.1)
followed by (2.2), then an inequality (2.4) holds for sufficiently large k and a γ independent
of k.

Theorem 2.7 Assume that F is continuously differentiable. If u∗ is a limit point of {uk}
produced by Algorithm INDL, then u∗ is a stationary point of ‖F‖. If additionally F ′(u∗)
is nonsingular, then F (u∗) = 0 and uk → u∗; furthermore, sk = sINk for all sufficiently large
k.

3 The discretized equations

In this section the governing transport PDEs are briefly presented. These equations describe
the conservation of linear momentum and mass along with the thermal energy equation for a
variable density low-speed flow. The physical transport mechanisms include diffusion, con-
vection, a volumetric continuity constraint, external surface forces set by pressure boundary
conditions and buoyancy forces that are incorporated in our examples by using a Boussinesq
approximation [8].

To describe the system that defines our nonlinear residual equations, we present the
transport equations below in residual form. In these equations the unknown quantities are
u, P , and T ; these are, respectively, the fluid velocity vector, the hydrodynamic pressure,
and the temperature.

Momentum Transport:
Rm = ρu · ∇u−∇ ·T− ρg (3.1)

Total Mass Conservation:
RP = ρ∇ · u (3.2)

Energy Transport:
RT = ρCpu · ∇T +∇ · q (3.3)

In these equations, ρ, g, and Cp are, respectively, the density, the gravity vector, and the
specific heat at constant pressure. The necessary constitutive equations for the stress tensor,
T and the heat flux vector, q are given by (3.4)–(3.5) below.

5A vector u ∈ IR
n is a stationary point of ‖F‖ if ‖F (u)‖ ≤ ‖F (u) + F ′(u) s‖ for every s ∈ IR

n.
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Stress Tensor:

T = −P I+ µ{∇u+∇uT } (3.4)

Heat Flux:

q = −κ∇T (3.5)

Here µ and κ are, respectively, the dynamic viscosity and the thermal conductivity.

The above equations are derived by assuming a low Mach number flow where density can
vary only with temperature and viscous dissipation effects can be neglected in the energy
transport equation (3.3). More information on this system of equations can be found in
[48].

Finally, to complete the system, boundary conditions are imposed on (3.1)–(3.3) by
taking combinations of Dirichlet conditions on u, P , and T and specified flux conditions
on T and q. In §4.1, we discuss the specific boundary conditions for each test problem in
more detail.

To obtain an algebraic system of equations F (u) = 0, a stabilized finite element formu-
lation of (3.1)–(3.3) is employed. The stabilized method allows equal order interpolation
of velocity and pressure and also provides stabilization of the convection operators to limit
oscillations due to high grid Reynolds and Peclet number effects. This formulation follows
the work of Hughes et al. [28] and Tezduyar [50]. Specifically, the discrete equations are
obtained from the following equations.

Momentum:

Fui
=

∫

Ω
Rmi

Φ dΩ+
∑

e

∫

Ωe

τm(u · ∇Φ)Rmi
dΩ (3.6)

Total Mass:

FP =

∫

Ω
RPΦ dΩ+

∑

e

∫

Ωe

ρτm∇Φ ·Rm dΩ (3.7)

Energy:

FT =

∫

Ω
RTΦ dΩ+

∑

e

∫

Ωe

τT (u · ∇Φ)RT dΩ (3.8)

In these equations the stability parameters (the τ ’s) are functions of the fluid velocity u
and the transport coefficients of the PDEs and are given in [28], [50], [48].

To form the Jacobian F ′ of the system, the equations (3.6)–(3.8) are linearized. The
discrete form of these linearized terms is then determined by expanding the unknowns u, P ,
and T and the weighting function Φ in terms of a linear finite element basis. The resulting
Newton equation (1.1) is a fully-coupled nonsymmetric linear system.
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4 The test problems and algorithm evaluation framework

4.1 The test problems

The three test problems described below are standard benchmark problems used in the
verification of fluid flow codes and solution algorithms [49]. In the numerical tests, we
employed both 2D and 3D forms of these.

The thermal convection problem [9]

This problem concerns the flow of a fluid driven by thermal convection in a differentially
heated square box in the presence of gravity. It requires the solution of the momentum
transport, energy transport, and total mass conservation equations on the unit square in
IR2 or the unit cube in IR3. In this formulation, a Boussinesq approximation to the body
force terms is employed. When the equations and boundary conditions are suitably nondi-
mensionalized, two nondimensional parameters appear. These are the Rayleigh number
Ra and the Prandtl number Pr. As Ra increases for fixed Pr, the nonlinear effects of the
convection terms increase and the solution becomes increasingly difficult to obtain.

In this study, we took Pr = 1 and used Ra = 103, 104, 105, 106. The following Dirichlet
and Neumann boundary conditions were imposed:

T = Tcold, u = 0 at x = 0,

T = Thot, u = 0 at x = 1,

∂T
∂y = 0, u = 0 at y = 0 and y = 1,

with the additional boundary condition in 3D

∂T
∂z = 0, u = 0 at z = 0 and z = 1.

All solutions in 2D were computed on a 100 × 100 equally spaced mesh, which resulted
in 40,804 unknowns for the discretized problem. In 3D, solutions were computed on a
32×32×32 equally spaced grid, resulting in 179,685 unknowns for the discretized problem.
Figure 1 depicts representative solutions of the problem.
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Ra= 1.0E5
(a)

Ra= 1.0E3
(b)

Figure 1. Thermal convection problem: (a) 2D Model: Colored
contour plot shows temperature magnitude with streamlines. (b)
3D Model: Colored side wall shows a temperature contour plot
along with a temperature iso-surface plot colored by velocity vector
magnitude with streamlines.

The backward-facing step problem [19]

This problem involves the simulation of flow through a rectangular channel that is initially
constricted and subsequently expands over a reentrant backward-facing step. It requires the
solution of the momentum transport equation and the total mass conservation equation.
The nondimensionalized form of the equations and boundary conditions depends on the
Reynolds number Re. As this parameter is increased, the nonlinear components of the
equations become more dominant and the problem becomes more difficult. As the fluid flows
downstream, it produces a recirculation zone on the lower channel wall, and for sufficiently
high Reynolds numbers, it also produces a recirculation zone farther downstream on the
upper wall. In our experiments, we used Re = 100, 200, . . . , 700, 750, 800.

In our 2D problem, the flow was computed only in the expanded portion of the channel,
which had a 1×30 aspect ratio. Flow entering from the constricted portion was simulated by
introducing a parabolic velocity profile in the upper half of the inlet boundary and imposing
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zero velocity on the lower half. The boundary conditions were as follows:

u = (24y(0.5− y), 0)T at x = 0, 0 ≤ y ≤ 0.5,

u = 0 at x = 0, −0.5 ≤ y ≤ 0,

Txx = 0, Txy = 0 at x = 30, −0.5 ≤ y ≤ 0.5,

u = 0 at y = −0.5 and y = 0.5.

The discretization was a 20× 400 unequally spaced mesh (with a finer mesh near the step),
which resulted in 25,263 unknowns.

In 3D, we computed the flow over the entire domain, with the step placed one-fourth of
the distance along the channel. The height-length and height-width ratios for the constricted
portion of the channel were 1× 20 and 1× 8, respectively. For the expanded portion, these
ratios were 1× 30 and 1× 4, respectively.

The boundary conditions were as follows:

u = (U0, 0, 0)
T at x = 0, 0.1 ≤ y ≤ 0.2, −0.4 ≤ z ≤ 0,

Txx = 0, Txy = 0, Txz = 0 at x = 8, 0 ≤ y ≤ 0.2, −0.4 ≤ z ≤ 0,

u = 0 on all other walls.

To provide an example of a problem with larger scale, we used a finer discretization on this
problem than on the others, viz., a 20 × 400 × 30 unequally spaced mesh. (As in the 2D
case, the mesh was refined near the step.) This resulted in 1,042,236 unknowns. Figure 2
depicts representative solutions of the problem.

The lid driven cavity problem [20], [45]

The third test problem addresses a confined flow in the unit square in IR2 or the unit
cube in IR3 driven by a moving upper boundary. Like the backward-facing step problem
above, it requires solving the momentum transport equation and the total mass conservation
equation, and a suitably nondimensionalized formulation leads to the appearance of the
Reynolds number Re. As above, the problem becomes more difficult as Re increases, in this
case with increasingly prominent regions of countercirculation appearing in the corners of
the domain.

For the tests performed in 2D, we took Re = 1, 000, 2, 000, . . . , 10, 000. (In one study,
we also considered Re = 100, 200, . . . , 1, 000 in order to obtain a larger data set.) In the
3D case, there is evidence that the stability of the solution is questionable for Re > 700.
Accordingly, for the 3D tests, we used the smaller values Re = 100, 200, . . . , 1, 000. The
boundary conditions were as follows:

u = 0 at x = 0 and x = 1,

u = 0 at y = 0,

u =

{

(U0, 0)
T in 2D

(U0, 0, 0)
T in 3D

at y = 1,
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Re= 500
(a)

Re= 200
(b)

Figure 2. Backward facing step problem: (a) 2D Model: Col-
ored contour plot shows the velocity vector magnitude along with
streamlines. (b) 3D Model: Colored iso-surfaces show a positive
(orange) and negative (blue) x-velocity; a colored contour plot with
iso-lines is shown on a central slice plane.

with the additional boundary condition in 3D

u = 0 at z = 0 and z = 1.

The 2D problem was discretized on a 100×100 equally spaced grid, which resulted in 30,603
unknowns for the discretized problem. In 3D, the discretization was a 32× 32× 32 equally
spaced grid, resulting in 143,748 unknowns. Figure 3 depicts representative solutions of the
problem.

4.2 The algorithm evaluation framework

For our numerical tests, we used implementations of the nonlinear solution algorithms in
§2 provided by the NOX nonlinear solver package [32]. NOX is a C++ object-oriented
library designed for the efficient solution of systems of nonlinear equations. It offers various
globalized Newton-based solvers, including those in §2, and other techniques such as tensor
and Broyden methods. The GMRES implementation and preconditioners used to solve the
linear subproblems were provided by the AztecOO package [24], an extension of the Aztec
library [51], which provides an easy-to-use framework for the efficient parallel solution of
linear systems through an extensive suite of Krylov solvers and preconditioners. We give
more details below about the particular GMRES algorithm and preconditioners used in our
tests. NOX and AztecOO were developed as part of the Trilinos project ([25], [15]), an
effort to develop parallel solver algorithms and libraries within an object-oriented software
framework for the solution of large-scale, complex multi-physics engineering and scientific
applications.
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Re= 5000
(a)

Re= 200
(b)

Figure 3. Lid driven cavity problem: (a) 2D Model: Colored
contour plot of the velocity vector magnitude along with stream-
lines. (b) 3D Model: Colored iso-surfaces of positive (red) and
negative (blue) x-velocities are shown along with a colored contour
plot of y-velocity on a central slice plane. A few streamlines in the
volume are also included.

18



4 THE TEST PROBLEMS AND ALGORITHM EVALUATION FRAMEWORK4.2 The algorithm evaluation framework

The parallel finite element reacting flow code MPSalsa [48] was used to set up the finite
element discretization described in §3 and to invoke the solvers. In brief, the parallel imple-
mentation of the finite element equations proceeds as follows: Chaco [23], a general graph
partitioning tool, is used to partition the FE mesh into subdomains and assign subdomains
to processors; then, using the decomposition created by Chaco, MPSalsa sets up the finite
element discretization, with each processor producing a subset of the discretized equations
and Jacobian entries corresponding to its assigned subdomain. Chaco uses a variety of new
and established graph partitioning heuristics to construct partitions and subdomain map-
pings that result in low communication volume, good load balance, few message start-ups,
and only small amounts of network congestion. For the results in this paper, multi-level
methods with Kernighan–Lin improvement were used. For a detailed description of parallel
FE data structures and a discussion of the strong link between partitioning quality and
parallel efficiency, see [47].

In our tests, we used the restarted GMRES implementation in AztecOO with a restart
value (maximum Krylov subspace size) of 200 and a maximum number of GMRES iter-
ations equal to 600 (i.e., three restarts). Products of the Jacobian F ′ or, when needed,
its transpose with vectors were evaluated by analytically evaluating F ′ as indicated in §3
and subsequently using the stored value of F ′ or its transpose to perform the necessary
matrix-vector multiplications. (An exception was in the case of the Moré–Thuente line-
search iterations: there, products of F ′ with vectors were, in most instances, approximated
with finite-differences of F -values. See the remark in §5 for more details.)

In large-scale PDE applications such as those of interest here, preconditioning is usually
a very important factor in GMRES performance and is the key to scalability on massively
parallel machines. The preconditioners available in AztecOO include numerous algebraic
and polynomial preconditioners and also additive Schwarz domain decomposition precon-
ditioners, which use incomplete LU factorizations for subdomain solves and allow variable
levels of overlap. (AztecOO also allows using a coarse grid with additive Schwarz precondi-
tioning; however, we did not enable this in our experiments.) In our experiments, we used
an additive Schwarz preconditioner with an ILUT(fill-in,drop) incomplete factorization [40],
which allows the user to specify a fill-in parameter and a drop tolerance. For these, we used
fill-in = 1 and drop = 0, resulting in no additional fill-in and no entries dropped due to
small magnitude. In the parallel domain decomposition implementation, each processor is
assigned one subdomain and performs ILUT factorizations and solves on that subdomain.
To increase robustness, the preconditioners can effectively expand the individual subdo-
mains to include FE nodes assigned to neighboring processors by allowing more overlap
between subdomains. In a geometric sense, this overlap corresponds to increasing the size
of the locally defined subdomain to include additional levels of FE nodes outside of the
processor’s assigned nodes. Thus a single level of overlapping uses only information from
FE nodes that are connected by an edge (in the FE connectivity graph) that was cut by
the original subdomain partition. Successive levels of overlap use this method recursively
by considering the previously overlapped points now to be assigned nodes in the ILU pre-
conditioner setup phase of the algorithm. The results in §5 were obtained using one level
of overlap.
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In all of our tests, we imposed left-sided diagonal scaling determined by the dependent
variables. In this, at the kth step and for i = 1, . . . , n, the ith dependent variable Fi(uk)
was scaled by the inverse of the sum of the absolute values of the entries in the ith row of
F ′(uk). This scaling was very important to success in many cases. It was used not only
in the GMRES solve but also throughout the algorithm by incorporating it as a diagonal
scaling matrix in the inner product.

Successful termination of the Newton–Krylov iterations was declared if ‖F (uk)‖ ≤
εF ‖F (u0)‖, where εF = 10−2 in our tests, and the following step-length criterion is also
satisfied:

1

n
||Wsk||2 < 1,

where n is the total number of unknowns andW is a diagonal weighting matrix with entries

Wii =
1

εr|u(i)k |+ εa
,

in which u
(i)
k is the ith component of uk and εr = 10−3 and εa = 10−8 in our tests. In

our experience, this second criterion is typically more stringent and is necessary to ensure
that finer physical details of the flow and transport are adequately resolved. Essentially, it
requires that each variable of the Newton correction be small relative to its current value,
which assures that all variables are treated equitably in determining when to terminate.
This weight-matrix definition is similar to a criterion used to dynamically control time step
sizes and is standard in general purpose ODE packages such as LSODE [27].

All numerical experiments were performed on parallel machines located at Sandia Na-
tional Laboratories in Albuquerque, NewMexico. All tests except those on the 3D backward-
facing step problem were done on an IBM cluster having 16 nodes, with each node containing
two 1 GHz Pentium III processors with 1 GB of RAM each. On this machine, the 2D tests
were done using four nodes (eight processors), and the 3D tests on the thermal convection
and lid driven cavity problems were done using 15 nodes (30 processors). The tests on
the 3D backward-facing step problem were performed on the Sandia Institutional Cluster.
This machine has 256 nodes, with each node containing two 3 GHz Pentium IV proces-
sors with 1 GB of RAM each; 50 nodes (100 processors) were used in our tests on the 3D
backward-facing step problem.

5 Results

We performed extensive numerical tests involving the application of the methods in §2 to the
benchmark problems in §4. For comparison, we also included in these tests a non-globalized
method, i.e., a method taking full, unmodified inexact Newton steps. For each method, we
used both small constant (10−4) forcing terms and adaptive (Choice 1) forcing terms, as
discussed in §2.1. In every test case, the initial approximate solution was the zero vector.

In the following, we begin with a report on two studies based on these tests. The first is
a robustness study, in which we observed the numbers of failures of the methods on the test
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problems as problem parameters varied over specified ranges. The second is an efficiency
study, in which we tabulated run times and other statistics for the methods when applied
to a selected subset of the test problems. We conclude this section with graphs that provide
further details and additional perspectives on these studies.

In the robustness study, to give insight into the distribution of failures of the methods in
§2, we divided the problem regimes into “easier” and “harder” parameter ranges, as follows:

Easier Harder

2D and 3D Thermal Convection Ra = 103, 104, 105 106

2D and 3D Backward Facing Step Re = 100, . . . , 500 600, 700, 750, 800

2D Lid Driven Cavity Re = 1, 000, . . . , 5, 000 6, 000, . . . , 10, 000

3D Lid Driven Cavity Re = 100, . . . , 500 600, . . . , 1, 000

The numbers of instances in which the methods failed in these ranges are shown in Ta-
bles 1 and 2. For convenience, total numbers of failures are summarized in Table 3. In
these tables and in Table 4 that follows, “Backtracking, Quadratic/Cubic” refers to Algo-
rithm INB with θ ∈ [θmin, θmax] determined at each inexact Newton step by minimizing a
quadratic interpolating polynomial on the first step-length reduction and then minimizing
cubic interpolating polynomials on all subsequent step-length reductions. “Backtracking,
Quadratic Only” refers to the method with minimization of only quadratic interpolating
polynomials. “Full Step” designates the non-globalized method that takes full, unmodified
inexact Newton steps. For each method, the two table rows to the right show the numbers
of failures with adaptive forcing terms (upper row) and with constant forcing terms (lower
row).

The results summarized in Table 3 indicate that, overall, each of the globalizations of
interest significantly improved robustness in these experiments. The backtracking methods
and the dogleg method suffered fewer failures overall than the Moré–Thuente line-search
method by a modest margin. The more detailed results in Tables 1 and 2 show that the
degree of improvement resulting from globalization varied considerably among the test cases.
For example, the improvement was striking in all cases involving the 2D backward-facing
step problem but only marginal in the tests with small constant forcing terms on the 2D
lid driven cavity problem. No globalization was always superior to the others in these
tests. For example, the backtracking/line-search methods succeeded in every case of the 2D
thermal convection problem, while the dogleg method failed in one instance; however, the
dogleg method was the only method to succeed in every case of the 2D backward-facing step
problem. Overall, the adaptive forcing terms significantly improved the robustness of all
methods, including the “Full Step” method; for the globalized methods, the improvement
was dramatic. This outcome is consistent with the study in [49], which included results for
other adaptive forcing terms from [14] and a larger constant forcing term (10−1) in addition
to the forcing terms considered here. Overall, the combination of adaptive forcing terms
and globalization is very effective on these problems; however, even this combination did
not lead to success in every case.
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2D Thermal 2D Lid Driven 2D Backward

Method Convection Cavity Facing Step

Easier Harder Easier Harder Easier Harder

Backtracking, 0 0 0 0 0 1

Quadratic/Cubic 0 0 4 5 0 0

Backtracking, 0 0 0 0 0 0

Quadratic Only 0 0 4 5 0 1

Moré–Thuente 0 0 0 0 0 1

Line Search 0 0 4 5 0 0

Dogleg
0 0 0 0 0 0

0 1 4 5 0 0

Full Step
0 1 4 5 1 4

0 1 5 5 3 4

Table 1. Distribution of failures for the 2D problems: For each
method, the upper and lower rows to the right show the numbers of
failures with the adaptive and constant forcing terms, respectively.

A further remark is in order concerning the results for the Moré–Thuente line search.
As noted in §2.3, each iteration of the line search requires multiplication of a vector by the
Jacobian evaluated at a new point. For all of the test problems except one, these products
were satisfactorily approximated in our experiments using finite-differences of F -values.
The exception was the 3D backward-facing step problem, in which the finite-difference
approximations were at times sufficiently in error to cause the algorithm to fail. (Specifically,
the error in these cases was such that the algorithm declared the trial steps not to be descent
directions and terminated with failure.) For this problem, it was necessary to evaluate each
of these products analytically, at the cost of a fresh Jacobian evaluation and a matrix-vector
multiplication, in order to obtain the level of success shown in Table 2.

In the efficiency study, we compiled various statistics for a selected set of test problem
cases. This set included all cases considered in the robustness study in which all of the
globalized methods succeeded. Additionally, since at least one globalized method failed on
the 2D lid driven cavity problem for each value of Re above 1, 000, we included cases of
this problem with 100 ≤ Re ≤ 1, 000. (We did not include the non-globalized “Full Step”
method in this study because its high incidence of failure would have made the test set
undesirably small.) The specific cases considered are as follows:
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3D Thermal 3D Lid Driven 3D Backward

Method Convection Cavity Facing Step

Easier Harder Easier Harder Easier Harder

Backtracking, 0 0 0 0 0 0

Quadratic/Cubic 0 0 0 0 0 0

Backtracking, 0 0 0 0 0 0

Quadratic Only 0 0 0 0 0 0

Moré–Thuente 0 0 0 0 0 1

Line Search 0 0 0 0 0 2

Dogleg
0 0 0 0 0 0

0 0 0 0 0 0

Full Step
0 1 0 0 0 3

0 1 0 4 1 4

Table 2. Distribution of failures for the 3D problems: For each
method, the upper and lower rows to the right show the numbers of
failures with the adaptive and constant forcing terms, respectively.

2D Thermal Convection Ra = 103, 104, 105

3D Thermal Convection Ra = 103, 104, 105, 106

2D and 3D Backward Facing Step Re = 100, 200, . . . , 700

2D and 3D Lid Driven Cavity Re = 100, 200, . . . , 1, 000

The results for these test cases are given in Table 4, which shows for each method mean
numbers of inexact Newton steps, backtracks per inexact Newton step, total function eval-
uations, total GMRES iterations, and GMRES iterations per inexact Newton step, and
also mean run times relative to that of the “Backtracking, Quadratic Only” method with
constant forcing terms. All values are geometric means except for numbers of backtracks
per inexact Newton step, which are arithmetic means.

The results in Table 4 indicate that, for a particular choice of the forcing terms, the
globalized methods performed rather similarly on this test set. There are some differences
in performance, but, in view of the modest size of the test set, these seem unlikely to have
much significance. In contrast, notable differences are seen with each method when different
forcing terms were used. Compared to the small constant forcing terms, the adaptive forcing
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Method 2D Problems 3D Problems All Problems

Backtracking, 1
10

0
0

1
10

Quadratic/Cubic 9 0 9

Backtracking, 0
10

0
0

0
10

Quadratic Only 10 0 10

Moré–Thuente 1
10

1
3

2
13

Line Search 9 2 11

Dogleg
0

10
0

0
0

10
10 0 10

Full Step
15

33
4

14
19

47
18 10 28

Table 3. Failure totals: For each method, the upper and lower
rows in the second, fourth, and sixth columns show the numbers of
failures with the adaptive and constant forcing terms, respectively;
the third, fifth, and seventh columns show total numbers of failures.

terms resulted in greatly reduced mean numbers of GMRES iterations per inexact Newton
step and significantly reduced numbers of total GMRES iterations. On the other hand, the
small constant forcing terms required significantly fewer inexact Newton steps on average.
In the balance, the adaptive forcing terms yielded considerably better run times than those
obtained with the small constant forcing terms (except in the case of the Moré–Thuente
linesearch, in which the improvement was slight). A likely explanation is that, on most
inexact Newton steps, the small constant forcing terms were smaller than the adaptive
forcing terms. Consequently, they often achieved more nonlinear residual norm reduction,
but only at the cost of significant oversolving that ultimately outweighed this advantage.

The summary results presented in the two studies above, while providing very useful
views of overall performance, necessarily contain less than full information about the test
outcomes. Specifically, Tables 1–3 do not show particular instances of failure, and Table 4
does not include information from test cases in which one or more of the globalized methods
failed. For completeness and to provide further details of method performance on the entire
test set, we include Figures 4–9 below. The bar graphs in these figures show run times (in
seconds) on all problems for all methods (including the non-globalized “Full Step” method)
except the “Backtracking, Quadratic/Cubic” method, which has been omitted because its
performance was so similar to that of the “Backtracking, Quadratic Only” method. The
failure of a method in a particular case is indicated by a negative bar. Methods using
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Inexact Total Total GMRES
Method Newton Backtracks Function GMRES Iterations Normalized

Steps per INS Evaluations Iterations per INS Time

Backtracking, 16.0 0.13 19.2 989.6 61.9 0.77

Quadratic/Cubic 9.20 0.20 11.8 1498 163 1.02

Backtracking, 16.0 0.13 19.2 997.1 62.2 0.77

Quadratic Only 9.23 0.18 11.7 1502 163 1.0 (REF)

Moré–Thuente 15.2 0.17 43.4 979.7 64.3 0.90

Line Search 8.67 0.17 25.1 1408 162 0.96

Dogleg
17.0 NA 18.9 1454 85.3 0.83

10.7 NA 12.6 1799 168 1.01

Table 4. Efficiency Study: For each method, the upper and
lower rows to the right show results with the adaptive and constant
forcing terms, respectively. Times are relative to the “Backtrack-
ing, Quadratic Only” method with constant forcing terms. “INS”
stands for “Inexact Newton Steps.”

the small constant forcing terms are shown in shades of blue; methods using the adaptive
forcing terms are shown in shades of red.

The results for the thermal convection problem in Figures 4 and 5 show failures at only
the largest Rayleigh number Ra of 106. At this Ra value, the non-globalized “Full Step”
method always failed; in the 2D case, the dogleg method with constant forcing terms also
failed. For the backward-facing step problem, Figures 6 and 7 show many more failures.
At low values of the Reynolds number Re, all methods converged. As the problems became
more difficult with increasing Re, the first method to fail in both the 2D and 3D cases
was the “Full Step” method with a small constant forcing term. Increasing Re further
resulted in failure of the “Full Step” method with adaptive forcing terms as well. At the
two largest values of Re, failures of the globalized methods were observed. The only methods
that converged over the entire range of Re values were the “Backtracking, Quadratic Only”
method with adaptive forcing terms and the dogleg algorithm with both adaptive and small
constant forcing terms. The 2D lid driven cavity problem (Figure 8) was more difficult to
solve. No method succeeded with small constant forcing terms beyond Re = 1, 000; however,
all globalized methods in combination with adaptive forcing terms attained convergence over
the entire range. In the 3D cases (Figure 9), the methods exhibited excellent convergence,
with only the “Full Step” method with small constant forcing terms failing.
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Figure 4. 2D Thermal Convection timings

Figure 5. 3D Thermal Convection timings
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Figure 6. 2D Backward Facing Step timings

Figure 7. 3D Backward Facing Step timings
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Figure 8. 2D Lid Driven Cavity timings

Figure 9. 3D Lid Driven Cavity timings
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6 Additional remarks on failure and robustness

In practice, globalized Newton–Krylov methods can fail in a number of ways, and there are
a variety of factors that contribute to their success or failure. We describe below several
general failure modes and comment on the extent to which these were observed in our tests.

• Fatal near-stagnation. In this, the method achieves sufficient residual norm reduction at
each step to proceed but not enough in the aggregate to achieve success before the maximum
allowable number of steps has been reached. This mode accounted for most of the failures
in our tests: 26 out of 33 failures for the backtracking and line-search methods and all
10 failures for the dogleg method. In our tests, we specified generous maximum allowable
numbers of steps, specifically, 300 steps for the 2D lid driven cavity problem and 200 steps
in all other cases; in no failure case did it seem likely that increasing these numbers would
have ultimately resulted in success. Likely possible causes underlying this failure mode
include problem conditioning and nonlinearity. (See [6] for interesting perspectives.)

• Globalization failure. In failures of this type, the globalization fails to determine an
acceptable step at some Newton–Krylov iteration. For example, a backtracking routine
might fail to produce an acceptable step within the maximum allowable number of step-
length reductions. In our tests, such failures accounted for seven of 33 failures for the
backtracking and line-search methods. Like fatal near-stagnation, failures of this type can
result from problem conditioning and nonlinearity. (See [52] for a detailed example involving
the 2D lid driven cavity problem.) A particular circumstance in which such failures may
occur is convergence of the iterates to a local residual norm minimizer that is not a solution,
at which the residual function is non-zero and the Jacobian is singular. In this event, because
of the singularity of the Jacobian at the minimizer, initial steps produced by the Krylov
solver may become increasingly long as the minimizer is approached. If this occurs, then
steps may have to be reduced increasingly in length in order to be acceptable; as a result, the
number of necessary step-length reductions may eventually exceed the maximum number
allowed. We did not verify that this particular cause of failure occurred in our tests but did
observe an instance of backtracking failure in which, at the iteration when failure occurred,
the initial step returned by GMRES, while unacceptable, would have led ultimately to
success if it had been taken. (Our implementation optionally allows taking this “recovery
step” in the event of backtracking failure.) This outcome is consistent with the GMRES
step “escaping” a basin of attraction of a local residual norm minimizer.

• Divergence. This failure mode is characterized by clear failure of the iterates to converge.
This is likely to be manifested in unbounded growth of the iterates, which we observed in
some of our tests involving the Newton–GMRES method with no globalization. We did not
observe unbounded iterate growth in any of our tests of the globalized methods. However,
this can occur for globalized methods; see [13, p. 400] for a simple example. It is also
possible for the sequence of iterates to have several limit points, with the Jacobian singular
at each; however, while this has been shown to occur in contrived examples [13, p. 400], it
seems unlikely to occur in real applications.

• Component failure. By this, we mean the failure of one or more “components” of the
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algorithm, such as the Krylov solver, the preconditioner, or the function evaluation routine.
We saw no failures of this type in our tests. Such failures can occur for a variety of reasons
and are best addressed through thoughtful algorithm and code design.

There are many ancillary factors that may affect the robustness of a globalized Newton–
Krylov method on problems such as those of interest here. We conclude this section by
discussing several that we have found to be influential.

• The nonlinear solution structure of the continuous PDE problem. Large-scale coupled
nonlinear PDE systems often have characteristic parameters, such as the Reynolds number,
the Rayleigh number, and the Prandtl number in the problems considered here. These
parameters may strongly affect problem difficulty (see §4.1), and the limits of practical
solvability may occur near parameter values at which the steady-state solution becomes
unstable. More generally, the structure of the nonlinear solution branches obtained by
varying the parameters can be very complex: multiple solutions can co-exist; isolated so-
lution branches can appear; solution branches can intersect; stable steady-state solution
branches can become unstable and vice versa; and steady-state solutions can become un-
stable to time-dependent disturbances. If the goal is to map out this complex nonlinear
solution space, then the most appropriate methods may be continuation methods, which
can follow stable and unstable solution branches and track critical points as parameters are
varied (see [33] and [7] and the references therein). If the goal is to find a stable steady-state
solution within a complex nonlinear landscape, then pseudo-transient continuation methods
can also be used [30]. We note that, for large-scale problems, Newton–Krylov methods are
often used as nonlinear solvers within these methods (cf. [43], [44], [55]).

• The discretization of the PDE problem. For complex PDE systems, the convergence of
globalized Newton–Krylov methods is also affected by the spatial discretization. Failure
of the spatial discretization to adequately reflect the underlying physics of the continuous
problem can cause convergence difficulties. For example, in the case of strong convection
(large Reynolds numbers) in our prototype problems, common spatial discretizations, such
as centered finite-difference or Galerkin finite-element methods, become unstable when the
computational mesh is too coarse, exhibiting non-physical spatial oscillations and produc-
ing Jacobian matrices that are ill-conditioned [16]. This ill-conditioning is likely to result
in poor convergence of the Krylov solver, which can in turn lead to fatal near-stagnation
of the Newton–Krylov method. (In our tests, we used a stabilized finite-element method
[28] closely related to the streamline upwind Petrov-Galerkin (SUPG) method. In general,
these schemes attempt to suppress spurious oscillations on coarser grids and also produce
Jacobians that are better conditioned.) Additionally, ill-chosen spatial discretizations can
produce spurious non-physical solutions. This has been demonstrated for the straightfor-
ward centered-difference discretization of the 2D lid driven cavity problem ([46], [55]). In
this case, Newton–Krylov iterates may converge to these non-physical solutions from an
unfortunate initial guess.

• The convergence of the Krylov solver and preconditioning. In general, the robustness and
efficiency of a Newton–Krylov method are critically tied to the performance of the Krylov
subspace method on the linear subproblems. In turn, effective preconditioning techniques
(see, for example, [41] and [2]) are essential for good Krylov solver performance on the large,
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complex nonlinear PDE systems of interest here. For these systems, we have already pointed
out a number of issues that make the linear subproblems challenging. For high-resolution
discretizations, an additional concern is the ill-conditioning that results from using very
fine mesh spacing and/or very large aspect-ratio cells or elements in the discretization of
the PDE problem, and well-chosen preconditioning is necessary to address this. Also, as
indicated in §4.2, appropriate preconditioning techniques are central to the scalability of
the Krylov solver on massively parallel platforms and, therefore, a crucial factor in the
scalability of the overall Newton–Krylov method.

• Scaling. Proper scaling of variables can be an important contributor to method success.
In our case, we found it effective to implement scaling consistently throughout the algorithm
by incorporating it into a specific weighted norm defined by row-sums of the Jacobian
matrix. This technique, described in §4.2, significantly improved the robustness of all
methods in our tests.

• Accuracy. Finally, the accuracy of computations within the algorithm is important. As
noted in §5, finite-difference approximations of Jacobian-vector products within the Moré–
Thuente line search were not sufficiently accurate for good success on the 3D backward-
facing step problem; analytic evaluations were necessary in this case. Also, in preliminary
experimentation, we found that high-accuracy Jacobian evaluations, which were used to
produce matrix-vector products in GMRES solves, resulted in much better method perfor-
mance than certain cheaper but less accurate alternatives that were available in our codes.
These high-accuracy evaluations were used in obtaining the results reported in §5.

7 Conclusions

We have considered several representative globalizations that can be used to improve the
robustness of a Newton–Krylov method: two variants of a backtracking method from [13], a
line-search procedure from [34], and a dogleg implementation of a trust region method ([39],
[12]). (The backtracking variants differ in their step-length reduction strategies, with one
minimizing both quadratic and cubic interpolating polynomials and the other minimizing
only quadratics.) These methods all have strong global convergence properties, as indicated
by the theoretical results outlined in §2. For each method, the main consequence of these
results is that, under mild assumptions, if a sequence of iterates produced by the method
has a limit point at which the Jacobian is nonsingular, then that point must be a solution
and the iterates must converge to it. (The dogleg method has the additional property that,
convergence aside, every limit point of the sequence of iterates must be a stationary point
of the residual norm.) Moreover, the steps between successive iterates are ultimately the
unmodified approximate solutions of (1.1) produced by the Krylov solver; hence, the speed
of convergence of the iterates is ultimately governed by the forcing terms that determine
the accuracy with which (1.1) is solved.

We extensively tested Newton–GMRES implementations of these methods on large-scale
benchmark problems involving the steady-state 2D and 3D Navier–Stokes equations; the
results are given in §5. Each of the globalizations considered here significantly improved
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robustness in our tests. Overall, the two backtracking methods and the dogleg method were
the most robust, with the two backtracking methods producing slightly better run times.
(The two backtracking step-length reduction strategies produced very similar results.) The
line-search procedure of [34] performed almost as well. These overall results notwithstand-
ing, no method was better than the others in every test, and the only methods to succeed
in every case were the backtracking method (with quadratic minimization only) and the
dogleg method, with each using adaptive forcing terms.

The use of adaptive forcing terms resulted in major improvements in the robustness of
all methods, including the method with no globalization. For the globalized methods, the
improvement was dramatic. Using adaptive forcing terms also contributed significantly to
the efficiency of the globalized methods.

Among the globalizations considered here, the backtracking method may be a first choice
for implementation because of its simplicity as well as its effectiveness in our tests. In our
backtracking tests, we saw no reason to prefer the step-length reduction strategy using
both cubic and quadratic polynomials over the simpler strategy that uses only quadratic
polynomials. We stress, though, that no method was uniformly superior in our experiments.
Additionally, our test set was limited to a particular class of problems, and results on other
types of problems may differ. Ideally, one would have several globalizations available to
determine which works best in a particular application. Similarly, while the adaptive forcing
terms greatly improved the performance of the globalized methods in these experiments, no
particular choice of the forcing terms is best for all problems. (Indeed, the small constant
value of 10−4 was the most effective forcing term among a number of alternatives in a 3D
chemical vapor deposition reactor simulation described in [49].) Thus it would be ideal to
have available several forcing term choices as well as several globalizations to determine the
most effective combination.

Finally, as noted in additional remarks on failure and robustness in §6, there are many
factors other than the globalization and forcing terms that may affect the performance of
a Newton–Krylov method on problems such as those of interest here, and these should be
considered in formulating problems and algorithms to solve them. Additionally, there are
other robust solution techniques, such as homotopy, continuation, pseudo-transient con-
tinuation, and mesh-sequencing, that should be kept in mind as possible alternatives to
globalized Newton–Krylov methods. In particular, if the goal is to traverse or map out a
complex nonlinear solution set as problem parameters vary, then some form of continuation
is likely to be preferred.
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Appendix

A1 The Moré-Thuente line-search method

Details and outcomes of the interval updating algorithm

The algorithm for updating the intervals of uncertainty proceeds in two stages. The first
stage employs an auxiliary function

ψ(λ) ≡ φ(λ)− φ(0)− αφ′(0)λ

on which the interval updating rules are based, as follows:

Updating Algorithm. Given an iterate λ+ in the current uncertainty interval with
endpoints λ` and λu, update as follows:

1. If ψ(λ+) > ψ(λ`), then λu ← λ+ and λ` is unchanged.

2. If ψ(λ+) ≤ ψ(λ`) and ψ′(λ+)(λ` − λ+) ≥ 0, then λ` ← λ+ and λu is unchanged.

3. If ψ(λ+) ≤ ψ(λ`) and ψ′(λ+)(λ` − λ+) < 0, then λu ← λ` and λ` ← λ+.

Note that each occurrence of the second or third case requires the evaluation of F ′(uk+
λ+sk)sk as well as F (uk + λ+sk). Even though evaluating this Jacobian-vector product is
presumably feasible in the Newton-GMRES context, it may entail significant expense.

It is usual to take λ` = 0 initially, which we do in our implementation. Then, since
ψ(0) = 0, it follows from the updating rules that ψ(λ`) ≤ 0 always and, hence, that (2.8)
always holds with λ = λ`. It may be that the first case above always holds, and λ` = 0
always. If this occurs, then the procedures for determining successive values of λ+ force
them to decrease monotonically and reach λmin after a finite number of iterations, and the
algorithm fails to determine a point in [λmin, λmax] that satisfies (2.8). (Note that ψ must
have a minimizer in (0, λmin) in this event.) However, if either the second or third case ever
holds, then all subsequent values of λ` lie in [λmin, λmax] and satisfy (2.8). A possibility
is that only the first case holds prior to some iteration, then the third case holds at that
iteration, and only the second case holds at all subsequent iterations. If this occurs, then
the iterates again decrease monotonically and reach λmin after a finite number of iterations.
However, in this event (2.8) holds with λ = λmin; moreover, we must have ψ′(λmin) ≥ 0.
If ψ′(λmin) > 0, then ψ must have a minimizer in (0, λmin). In the unlikely event that
ψ′(λmin) = 0, then λ = λmin satisfies not only (2.8) but also (2.9), provided β ≥ α.

Since λu plays no role in determining the cases above, it can be initialized to any
value. If only the second case holds throughout the iterations, then λu is never assigned
a new value, and the procedures for determining successive values of λ+ force them to
increase monotonically and reach λmax after a finite number of iterations. (Note that if
this occurs, then (2.8) holds with λ = λmax.) However, if either the first or third case
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holds at some iteration, then λu is assigned a new value, and clearly ψ(λ`) ≤ ψ(λu) for
all subsequent iterations. Moreover, one can verify that also ψ′(λ`)(λu − λ`) < 0 for all
subsequent iterations, provided ψ′(λ`) is never zero. Indeed, we have sign{ψ′(λ`)(λu−λ`)} =
sign{ψ′(λ`)(λ+− λ`)} for all subsequent iterations and, since ψ′(0) = (1−α)φ′(0) < 0 and,
therefore, ψ′(λ`)(λ+ − λ`) < 0 initially, it follows by induction that ψ′(λ`)(λ+ − λ`) < 0
always.

Note that the iterates converge to λmin or λmax only if λ` and λu are never simultaneously
in [λmin, λmax]. If both λ` and λu are in [λmin, λmax] at some iteration, then they are in
[λmin, λmax] for all subsequent iterations.

We summarize these observations as follows (cf. [34, Th. 2.2]): With λ` = 0 initially,
the possible outcomes are the following:

1. The iterates increase monotonically and reach λmax after a finite number of iterations,
and (2.8) holds with λ = λmax.

2. The iterates decrease monotonically and reach λmin after a finite number of iterations.
Either ψ has a minimizer in (0, λmin) and (2.8) may or may not hold, or λ = λmin
satisfies both (2.8) and (2.9), provided β ≥ α.

3. Subsequent to some iteration, both λ` and λu always lie in [λmin, λmax] and satisfy
ψ(λ`) ≤ 0, ψ(λ`) ≤ ψ(λu), and, provided ψ′(λ`) is never zero, ψ′(λ`)(λu − λ`) < 0.

Note that if the third outcome holds with ψ′(λ`) never zero, then ultimately ψ has a
minimizer between each λ` and λu. If λ∗ is such a minimizer, then ψ(λ∗) < 0 and, therefore,
(2.8) holds with λ = λ∗. Moreover, ψ′(λ∗) = 0, and therefore (2.9) also holds with λ = λ∗,
provided β ≥ α. If ever ψ′(λ`) = 0, then similarly both (2.8) and (2.9) hold with λ = λ`,
provided β ≥ α.

A possibility is to continue to iterate until either one of the first two outcomes above
occurs or until a value of λ ∈ [λmin, λmax] is reached for which (2.8) holds and (2.9) also
holds for all β ≥ α. However, to allow for β < α, we terminate the first stage of the
algorithm if an iterate λ+ is reached for which ψ(λ+) ≤ 0 and φ′(λ+) ≥ min{α, β}φ′(0). By
slightly modifying the arguments in [34, Th. 3.1], one can verify that the first such λ+ is
greater than λ` and either (a) satisfies both (2.8) and (2.9), or (b) is such that φ′(λ+) > 0,
in which case [λ`, λ+] contains a minimizer of φ and, therefore, contains points that satisfy
both (2.8) and (2.9). Thus it is reasonable to terminate the first stage at this iteration and
either declare success, if both (2.8) and (2.9) hold with λ = λ+, or continue with a second
stage, in which we work directly toward finding a minimizer of φ.

If continuing, we proceed to iterate as before, but with ψ replaced by φ in the Updating
Algorithm above. One can verify that, throughout the second stage, φ(λ`) ≤ φ(λu) and,
provided φ′(λ`) is never zero, φ′(λ`)(λu − λ`) < 0 as well. It is easy to see that the iterates
cannot converge to λmax in the second stage. It is possible for the iterates to converge to
λmin in the second stage, but only if λ` has remained at λ` = 0 throughout the first stage.
If ever λmin ≤ λ` ≤ λmax during the first stage, then λ` and λu will lie in [λmin, λmax]
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throughout the second stage, and eventually both (2.8) and (2.9) will hold for some iterate
in (λmin, λmax).

It is noted in [34] that the first stage may never terminate, in which case the iterates
converge to a point at which (2.8) holds and (2.9) also holds with β = α. In this case, the
algorithm terminates when |λ` − λu| falls below a specified tolerance.

From the above observations, the possible outcomes can be conveniently summarized as
follows:

1. The iterates increase monotonically and reach λmax after a finite number of iterations;
with λ = λmax, (2.8) holds but (2.9) may not hold.

2. The iterates decrease monotonically and reach λmin after a finite number of iterations;
neither (2.8) nor (2.9) is guaranteed to hold with λ = λmin.

3. A value of λ ∈ (λmin, λmax) is reached for which (2.8) holds and (2.9) also holds with
β = α.

4. A value of λ ∈ (λmin, λmax) is reached for which both (2.8) and (2.9) hold.

Proof of Theorem 2.5

Throughout the proof, sk denotes for each k the initial inexact Newton step satisfying

‖F (uk) + F ′(uk) sk‖ ≤ ηk‖F (uk)‖,

where 0 ≤ ηk ≤ ηmax < 1. For convenience, we assume that D ∈ IRn×n is a symmetric,
positive-definite matrix for which 〈u, v〉 = uTDv for each u, v ∈ IRn. (Any inner product
on IRn can be represented in this way for a uniquely determined such D.) We take f(u) ≡
1
2‖F (u)‖2 as above and note that ∇f(u) = F ′(u)TDF (u).6

Clearly, ∇f is Lipschitz continuous on L(u0) since F ′ is. Also, since each λ determined
by the Moré–Thuente line search satisfies (2.9), it also satisfies the weaker condition

φ′(λ) ≥ βφ′(0). (A1.1)

Then, since f is bounded below by zero, it follows immediately from [12, Th. 6.3.3]7 that
either ∇f(uk) = 0 for some k, or

lim
k→∞

∇f(uk)T sk
‖sk‖2

= 0. (A1.2)

In the first case, F (uk) = 0 if F ′(uk) is nonsingular; in any event, the algorithm should
terminate at this iteration. Therefore, for the present purposes, we assume that (A1.2)
holds.

6Here, ∇f is the usual vector of first partial derivatives of f .
7It is assumed in Theorem 6.3.3 of [12] that∇f is Lipschitz continuous on all IRn, but, since {uk} ⊂ L(u0),

it is enough to assume this on L(u0).
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Writing

F ′(uk)sk = −F (uk) + rk, where ‖rk‖ ≤ ηk‖F (uk)‖ ≤ ηmax‖F (uk)‖, (A1.3)

we have
∇f(uk)T sk = F (uk)

TDF ′(uk)sk = F (uk)
TD[−F (uk) + rk]

≤ −‖F (uk)‖2 + ηmax‖F (uk)‖2

= −(1− ηmax)‖F (uk)‖2 < 0,

whence
∣

∣∇f(uk)T sk
∣

∣ ≥ (1− ηmax)‖F (uk)‖2. (A1.4)

Suppose that {ukj
} is a subsequence of {uk} such that each F ′(ukj

) is nonsingular. Then

‖skj
‖ ≤ ‖F ′(ukj

)−1‖ ‖F ′(ukj
)skj
‖

= ‖F ′(ukj
)−1‖ ‖ − F (ukj

) + rkj
‖

≤ ‖F ′(ukj
)−1‖(1 + ηmax)‖F (ukj

)‖,

(A1.5)

and we obtain from (A1.4) and (A1.5) that
∣

∣∇f(ukj
)T skj

∣

∣

‖skj
‖ ≥ (1− ηmax)

‖F ′(ukj
)−1‖(1 + ηmax)

‖F (ukj
)‖.

Since ‖ · ‖ and ‖ · ‖2 are equivalent, it follows from (A1.2) that the left-hand side of this
inequality goes to zero. Consequently, if {‖F ′(ukj

)−1‖} is bounded, then we must have
F (ukj

)→ 0 and, since {‖F (uk)‖} is monotone decreasing, F (uk)→ 0 as well.

Now let u∗ be a limit point of {uk} such that F ′(u∗) is nonsingular. Since u∗ is clearly
the limit of a subsequence {ukj

} such that each F ′(ukj
) is nonsingular and {‖F ′(ukj

)−1‖}
is bounded, we must have F (uk) → 0 and, in particular, F (u∗) = 0. Let δ > 0, MJ > 0,
MJ−1 > 0, and MF > 0 be such that whenever ‖u−u∗‖ ≤ δ, we have u ∈ L(u0), ‖F ′(u)‖ ≤
MJ , ‖F ′(u)−1‖ ≤MJ−1 , and ‖F (u)‖ ≤MF .

Suppose that, for some k, ‖uk − u∗‖ < δ and ‖uk+1 − u∗‖ < δ. Then, with (A1.3) and
reasoning as in (A1.5), we have

‖sk‖ ≤ ‖F ′(uk)−1‖(1 + ηmax)‖F (uk)‖ ≤MJ−1(1 + ηmax)‖F (uk)‖. (A1.6)

Also, since (2.8) holds, we have for uk+1 = uk + λsk that

1

2
‖F (uk+1)‖2 ≤

1

2
‖F (uk)‖2 + αF (uk)

TDF ′(uk)skλ

=
1

2
‖F (uk)‖2 + αF (uk)

TD (−F (uk) + rk)λ

≤ 1

2
‖F (uk)‖2 + α{−‖F (uk)‖2 + F (uk)

TDrk}λ

≤ 1

2
‖F (uk)‖2 − α(1− ηmax)‖F (uk)‖2λ,
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which yields

‖F (uk+1)‖ ≤ {1− 2α(1− ηmax)λ}1/2‖F (uk)‖. (A1.7)

Then necessarily

λ ≤ 1

2α(1− ηmax)
, (A1.8)

which, with (A1.6), gives

‖uk+1 − uk‖ = ‖λsk‖ ≤Mu‖F (uk)‖, Mu ≡
MJ−1(1 + ηmax)

2α(1− ηmax)
. (A1.9)

We also establish a positive lower bound on λ. With (A1.1), we have

(1− β)|φ′(0)| = (β − 1)φ′(0) ≤ φ′(λ)− φ′(0)

= F (uk + λsk)
TDF ′(uk + λsk)sk − F (uk)TDF ′(uk)sk

= {[F (uk + λsk)− F (uk)]T DF ′(uk + λsk)+

F (uk)
TD

[

F ′(uk + λsk)− F ′(uk)
]

}sk.

With (2.10) and our assumptions on δ, one verifies that

(1− β)|φ′(0)| ≤ {MJ(λ‖sk‖)MJ +MFγ(λ‖sk‖)} ‖sk‖

=
(

M2
J +MFγ

)

‖sk‖2λ,

which, with (A1.6), implies

λ ≥ (1− β)|φ′(0)|
(

M2
J +MFγ

)

M2
J−1(1 + ηmax)2‖F (uk)‖2

.

Since, with (A1.3),

φ′(0) = F (uk)
TDF ′(uk)sk = F (uk)

TD(−F (uk) + rk)

≤ −(1− ηmax)‖F (uk)‖2,

we have

|φ′(0)| ≥ (1− ηmax)‖F (uk)‖2,
and it follows that

λ ≥ ελ ≡
(1− β)(1− ηmax)

(

M2
J +MFγ

)

M2
J−1(1 + ηmax)2

> 0. (A1.10)

Remark. If we allow δ → 0, then this lower bound can approach

(1− β)(1− ηmax)
κ(F ′(u∗))(1 + ηmax)2

< 1,
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where κ(F ′(u∗)) = ‖F ′(u∗)‖ ‖F ′(u∗)−1‖, while for the upper bound (A1.8), we have 1/2α(1−
ηmax) > 1. However, this is not to say that (2.8) and (2.9)/(A1.1) ultimately hold with
λ = 1 as k →∞.

Having (A1.10), we obtain from (A1.7) that

‖F (uk+1)‖ ≤ ρ‖F (uk)‖, ρ ≡ {1− 2α(1− ηmax)ελ}1/2 .

Since ρ ∈ [0, 1), this yields

‖F (uk)‖ ≤
1

1− ρ [‖F (uk)‖ − ‖F (uk+1)‖]. (A1.11)

Suppose that {uk} does not converge to u∗. Then there is some δ1 ∈ (0, δ) for which
‖uk − u∗‖ > δ1 for infinitely many values of k. By taking δ1 smaller if necessary, we can
assume that ‖F (uk)‖ < M−1

u (δ − δ1) whenever ‖uk − u∗‖ ≤ δ1, with Mu defined in (A1.9).
Then with (A1.9) we have

‖uk+1 − u∗‖ ≤ ‖uk − u∗‖+ ‖uk+1 − uk‖ ≤ δ1 +Mu‖F (uk)‖ < δ

whenever ‖uk − u∗‖ ≤ δ1.

Choose δ2 ∈ (0, δ1) and suppose that ‖uk − u∗‖ < δ2. (Since u∗ is a limit point of {uk},
there are infinitely many such uk.) Let ` ≥ 1 be such that ‖uk+j − u∗‖ ≤ δ1 for j = 0, 1,
. . . , `− 1 and δ1 < ‖uk+` − u∗‖ < δ. Then with (A1.9) and (A1.11), we obtain

δ1 − δ2 < ‖uk+` − uk‖ ≤
`−1
∑

j=0

‖uk+j+1 − uk+j‖

≤ Mu

`−1
∑

j=0

‖F (uk+j)‖

≤ Mu

1− ρ

`−1
∑

j=0

[‖F (uk+j)‖ − ‖F (uk+j+1)‖]

=
Mu

1− ρ [‖F (uk)‖ − ‖F (uk+`)‖],

which yields

‖F (uk+`)‖ ≤ ‖F (uk)‖ −
(1− ρ)(δ1 − δ2)

Mu
. (A1.12)

Since there are infinitely many such (k, `)-pairs and since {‖F (uk)‖} is monotone decreas-
ing, it follows from (A1.12) that ‖F (uk)‖ → −∞. Since ‖F (uk)‖ ≥ 0 always, this is a
contradiction. Hence, {uk} must converge to u∗, and the proof is complete.

Proof of Lemma 2.6

In the following, we use the usual “little oh” convention, e.g., we write o(‖sk‖) to mean any
expression such that o(‖sk‖)/‖sk‖ → 0 as ‖sk‖ → 0. As in the proof of Theorem 2.5, we
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write F ′(uk)sk = −F (uk) + rk for each k, where ‖rk‖ ≤ ηk‖F (uk)‖, and we also assume
that D ∈ IRn×n is a symmetric, positive-definite matrix for which 〈u, v〉 = uTDv for each
u, v ∈ IRn. Then, with λ = 1, (2.8) becomes

1

2
‖F (uk + sk)‖2 ≤

1

2
‖F (uk)‖2 + αF (uk)

TDF ′(uk)sk. (A1.13)

We show below that (A1.13) holds for all sufficiently large k if (2.11) holds and only if (2.12)
holds.

For the left-hand side of (A1.13), we have

1
2‖F (uk + sk)‖2 = 1

2‖F (uk) + F ′(uk)sk + o(‖sk‖)‖2

= 1
2‖F (uk) + F ′(uk)sk‖2+

o(‖F (uk) + F ′(uk)sk‖ ‖sk‖) + o(‖sk‖2)
≤ η2k · 12‖F (uk)‖2 + o(‖F (uk)‖2)

(A1.14)

for all sufficiently large k. The last inequality in (A1.14) follows since ‖F (uk)+F ′(uk)sk‖ ≤
ηk‖F (uk)‖ for each k and, for sufficiently large k,

‖sk‖ ≤ ‖F ′(uk)−1 {−F (uk) + r + k} ‖
≤ ‖F ′(uk)−1‖(1 + ηk)‖F (uk)‖ ≤ 2M‖F (uk)‖,

(A1.15)

where M is a bound on ‖F ′(uk)−1‖ for all sufficiently large k. For the right-hand side of
(A1.13), we have

1
2‖F (uk)‖2 + αF (uk)

TDF ′(uk)sk = 1
2‖F (uk)‖2 − α‖F (uk)‖2+

αF (uk)
TDrk

≥ 1
2‖F (uk)‖2 − α(1 + ηk)‖F (uk)‖2

= [1− 2α(1 + ηk)]
1
2‖F (uk)‖2.

(A1.16)

It follows from (A1.14) and (A1.16) that, for all sufficiently large k, (A1.13) holds if

η2k ·
1

2
‖F (uk)‖2 + o(‖F (uk)‖2) ≤ [1− 2α(1 + ηk)]

1

2
‖F (uk)‖2,

which is equivalent to

2α(1 + ηk) + o(‖F (uk)‖2)/‖F (uk)‖2 ≤ 1− η2k = (1− ηk)(1 + ηk),

which is in turn equivalent to

α+ o(‖F (uk)‖2)/‖F (uk)‖2 ≤
1− ηk

2
.

Since F (uk)→ 0 and, hence, o(‖F (uk)‖2)/‖F (uk)‖2 → 0, this last inequality and, therefore,
(A1.13) hold for all sufficiently large k if (2.11) holds.
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Now suppose that (A1.13) holds for all sufficiently large k. Then for all sufficiently large
k, we have

0 ≤ 1
2‖F (uk + sk)‖2 ≤ 1

2‖F (uk)‖2 + αF (uk)
TDF ′(uk)sk

= 1
2‖F (uk)‖2 − α‖F (uk)‖2 + αF (uk)

TDrk

≤ [1− 2α(1− ηk)] 12‖F (uk)‖2.

It follows that α ≤ 1/ [2(1− ηk)] for all sufficiently large k, which implies (2.12).

To complete the proof, note that, with λ = 1, (2.9) becomes

∣

∣F (uk + sk)
TDF ′(uk + sk)sk

∣

∣ ≤ β
∣

∣F (uk)
TDF ′(uk)sk

∣

∣ (A1.17)

For all sufficiently large k, we have

∣

∣F (uk + sk)
TDF ′(uk + sk)sk

∣

∣ = |[F (uk) + F ′(uk)sk + o(‖sk‖)]T D
[F ′(uk) + o(‖sk‖)] s|

≤ |(F (uk) + F ′(uk)sk)
T DF ′(uk)s|+ o(‖sk‖2)

≤ ηk‖F (uk)‖ ‖ − F (uk) + rk‖+ o(‖sk‖2)
≤ ηk(1 + ηk)‖F (uk)‖2 + o(‖F (uk)‖2),

(A1.18)

where (A1.15) is used to replace o(‖sk‖2) with o(‖F (uk)‖2) in the last inequality. We also
have

F (uk)
TDF ′(uk)sk = −‖F (uk)‖2 + F (uk)

TDrk ≤ −(1− ηk)‖F (uk)‖2 ≤ 0,

whence

‖F (uk)‖2 ≤
|F (uk)TDF ′(uk)sk|

1− ηk
≤ |F (uk)

TDF ′(uk)sk|
1− ηmax

.

Then (A1.18) yields

∣

∣F (uk + sk)
TDF ′(uk + sk)sk

∣

∣ ≤ ηk(1 + ηk)

1− ηk
∣

∣F (uk)
TDF ′(uk)sk

∣

∣+

o(
∣

∣F (uk)
TDF ′(uk)sk

∣

∣

2
),

and it follows that (2.9) holds for all sufficiently large k if (2.13) is satisfied. This completes
the proof.

A2 The dogleg method: proof of Theorem 2.7

Let {uk} be produced by Algorithm INDL. For convenience, we assume that F (uk) 6= 0
for all k and also that, as in the proof of Theorem 2.5 in §A1.1.2 above, D ∈ IRn×n is
a symmetric, positive-definite matrix for which 〈u, v〉 = uTDv for each u, v ∈ IRn. A
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straightforward but tedious calculation yields

‖sCPk ‖ =
〈

F (uk), F
′(uk)F ′(uk)TDF (uk)

〉

‖F ′(uk)F ′(uk)TDF (uk)‖2
‖F ′(uk)TDF (uk)‖,

=
‖F ′(uk)TDF (uk)‖22

‖F ′(uk)F ′(uk)TDF (uk)‖2
‖F ′(uk)TDF (uk)‖,

(A2.19)

ηCPk ≡ ‖F (uk) + F ′(uk) sCPk ‖
‖F (uk)‖

=

√

1− 〈F (uk), F ′(uk)F ′(uk)TDF (uk)〉2
‖F (uk)‖2‖F ′(uk)F ′(uk)TDF (uk)‖2

=

√

1− ‖F ′(uk)TDF (uk)‖42
‖F (uk)‖2‖F ′(uk)F ′(uk)TDF (uk)‖2

,

(A2.20)

provided none of the denominators is zero.

Let u∗ be a limit point of {uk}, and suppose u∗ is not a stationary point of ‖F‖. Then
F (u∗) 6= 0, and we claim that, in addition, F ′(u∗)TDF (u∗) 6= 0 and F ′(u∗)F ′(u∗)TDF (u∗) 6=
0. Indeed, one sees that

F ′(u∗)
TDF (u∗) = ∇s

(

1

2
‖F (u∗) + F ′(u∗) s‖2

)
∣

∣

∣

∣

s=0

,

which must be non-zero since u∗ is not a stationary point of ‖F‖. Then

〈

F (u∗), F
′(u∗)F

′(u∗)
TDF (u∗)

〉

= ‖F ′(u∗)TDF (u∗)‖22 6= 0,

which implies that F ′(u∗)F ′(u∗)TDF (u∗) 6= 0.

It follows from these observations and (A2.19)-(A2.20) that there is a neighborhood N∗
of u∗ and boundsM and ηCPmax < 1 such that ‖sCPk ‖ ≤M and ηCPk ≤ ηCPmax whenever uk ∈ N∗.
Then for uk ∈ N∗ and sk determined by Algorithm DL, there are three cases, as follows:

Case 1. sk = sINk . In this case, ‖F (uk) + F ′(uk) sk‖ ≤ ηk‖F (uk)‖ ≤ ηmax‖F (uk)‖.

Case 2. sk lies on ΓDLk between sCPk and sINk . In this case, it follows from norm convexity
that

‖F (uk) + F ′(uk) sk‖ ≤ max{ηCPk , ηk}‖F (uk)‖ ≤ max{ηCPmax, ηmax}‖F (uk)‖.

Case 3. sk lies on ΓDLk between 0 and sCPk . In this case, δmin ≤ δ = ‖sk‖ ≤ ‖sCPk ‖. Since
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the local linear model norm is monotone decreasing along this segment of ΓDLk , we have

‖F (uk) + F ′(uk) sk‖ ≤ ‖F (uk) + F ′(uk)

(

δmin

‖sCPk ‖
sCPk

)

‖

≤
(

1− δmin

‖sCPk ‖

)

‖F (uk)‖+
δmin

‖sCPk ‖
‖F (uk) + F ′(uk) s

CP
k ‖

=

[

1− δmin

‖sCPk ‖
(1− ηCPk )

]

‖F (uk)‖

≤
[

1− δmin
M

(1− ηCPmax)
]

‖F (uk)‖.

One concludes that, whenever uk ∈ N∗, we have ‖F (uk)+F ′(uk) sk‖ ≤ η̄‖F (uk)‖, where

η̄ ≡ max{ηmax, ηCPmax, 1−
δmin
M

(1− ηCPmax)} < 1, (A2.21)

and therefore, with predk defined as in (2.6),

predk
‖F (uk)‖

=
‖F (uk)‖ − ‖F (uk) + F ′(uk) sk‖

‖F (uk)‖
≥ (1− η̄) > 0. (A2.22)

Since uk ∈ N∗ for infinitely many values of k, (A2.22) implies that
∑∞

k=0 predk/‖F (uk)‖
diverges, and it follows from [13, Cor. 3.6] that F (u∗) = 0. This is a contradiction; therefore,
u∗ must be a stationary point of ‖F‖.

Suppose now that F ′(u∗) is nonsingular. Then, since u∗ is a stationary point of ‖F‖,
we must have F (u∗) = 0. In addition, it follows immediately from (A2.19) that there is
again a neighborhood N∗ of u∗ and a bound M such that ‖sCPk ‖ ≤ M whenever uk ∈ N∗.
Furthermore, we have for some c > 0 that

lim inf
u→u∗,u6=u∗

‖F ′(u)TDF (u)‖42
‖F (u)‖2‖F ′(u)F ′(u)TDF (u)‖2 ≥ c lim inf

u→u∗,u6=u∗

‖F ′(u)TDF (u)‖42
‖F (u)‖42

> 0.

Consequently, we can assume that N∗ is chosen so that there is again a bound ηCPmax < 1 for
which ηCPk ≤ ηCPmax whenever uk ∈ N∗.

Repeating the earlier argument, one verifies that (A2.22) again holds with η̄ given by
(A2.21), and we have as before that

∑∞
k=0 predk/‖F (uk)‖ diverges. Since F ′(u∗) is nonsin-

gular, it follows from [13, Cor. 3.6] that uk → u∗.

To complete the proof, we write F ′(uk) sk = −F (uk) + rk with ‖rk‖ ≤ ηk‖F (uk)‖ and
note that

‖sINk ‖ = ‖F ′(uk)−1[−F (uk) + rk]‖ ≤ ‖F ′(uk)−1‖ (1 + ηk) ‖F (uk)‖

≤ 2 ‖F ′(uk)−1‖ ‖F (uk)‖,
provided F ′(uk) is nonsingular. Since uk → u∗ with F (u∗) = 0 and F ′(u∗) nonsingular,
it follows that sINk → 0 as k → ∞. In particular, for all sufficiently large k, we have
‖sINk ‖ ≤ δmin and, therefore, sk = sINk .
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A3 Test Details and Results

The following tables provide full details of the test results underlying the summary results
in §5. In the table headings, “Cubic” and “Quadratic” refer, respectively, to the algorithms
designated as “Backtracking, Quadratic/Cubic” and “Backtracking, Quadratic Only” in §5.
Other aspects of the table headings should be clear. The column headings in each table are
as follows:

S/F A flag indicating success or failure. “0” indicates that a solution
was successfully found; “-1” indicates a failure to find a solution.

INS The total number of inexact Newton steps carried out.

FE The number of function evaluations performed.

LS The number of inexact Newton steps for which a backtrack
or line search was invoked (backtracking/line-search methods only).

f-LS The number of backtracks or line searches that failed to find a
suitable step (backtracking/line-search methods only). In these
cases, the original inexact Newton step was taken.

Bkt The total number of step reductions used by the backtracking or
line-search methods (backtracking/line-search methods only).

0:C The number of dogleg steps between zero and the
Cauchy point (dogleg method only).

C:IN The number of dogleg steps between the Cauchy point and the
inexact Newton step (dogleg method only).

IN The number of dogleg steps that were the inexact Newton step
(dogleg method only).

GMRES The total number of GMRES iterations.

‖F‖ The final 2-norm of the residual vector. One of several termination
criteria in our algorithm is that ‖F (uk)‖ ≤ 10−2‖F (u0)‖2 for
some xk.

Time The run time (in seconds) required to reach a solution.

In the case of the “Full Step” method, the “NA” listings in the “LS”, “f-LS”, and “Bkt”
columns indicate that the corresponding values were not computed.
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Thermal Convection 2D

Cubic Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Ra 1.0e03 0 6 7 0 0 0 1106 2.83e− 15 85
Ra 1.0e04 0 9 10 0 0 0 1209 1.57e− 14 87
Ra 1.0e05 0 14 16 1 0 1 801 2.42e− 09 57
Ra 1.0e06 0 41 65 19 0 23 2259 3.21e− 10 160

Cubic Constant
S/F INS FE LS f −LS Bkt GMRES ||F || Time

Ra 1.0e03 0 4 5 0 0 0 870 3.28e− 12 64
Ra 1.0e04 0 6 7 0 0 0 1349 6.8e− 11 97
Ra 1.0e05 0 8 10 1 0 1 2106 6.21e− 14 154
Ra 1.0e06 0 11 24 6 0 12 3353 7.44e− 12 247

Quadratic Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Ra 1.0e03 0 6 7 0 0 0 1106 2.83e− 15 80
Ra 1.0e04 0 9 10 0 0 0 1209 1.57e− 14 87
Ra 1.0e05 0 14 16 1 0 1 801 2.42e− 09 57
Ra 1.0e06 0 44 68 20 0 23 2595 1.55e− 10 183

Quadratic Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Ra 1.0e03 0 4 5 0 0 0 870 3.28e− 12 65
Ra 1.0e04 0 6 7 0 0 0 1349 6.8e− 11 98
Ra 1.0e05 0 8 10 1 0 1 2106 6.21e− 14 152
Ra 1.0e06 0 14 30 9 0 15 4228 4.15e− 13 306

Moré–Thuente Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Ra 1.0e03 0 6 19 0 0 0 1106 2.83e− 15 81
Ra 1.0e04 0 9 28 0 0 0 1209 1.57e− 14 91
Ra 1.0e05 0 13 44 1 0 2 917 2.87e− 08 76
Ra 1.0e06 0 37 156 18 0 22 2436 6.6e− 13 212

Moré–Thuente Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Ra 1.0e03 0 4 13 0 0 0 870 3.28e− 12 63
Ra 1.0e04 0 6 19 0 0 0 1349 6.8e− 11 94
Ra 1.0e05 0 8 31 2 0 3 2321 5.13e− 14 160
Ra 1.0e06 0 11 62 7 0 14 3450 5.7e− 11 245

Dogleg Choice 1
S/F INS FE 0:C C:IN IN GMRES ||F || Time

Ra 1.0e3 0 5 6 0 0 5 1764 1.31e− 13 111
Ra 1.0e4 0 13 14 0 0 13 3077 2.17e− 12 199
Ra 1.0e5 0 20 23 0 3 17 4338 2.46e− 10 280
Ra 1.0e6 0 44 59 0 25 19 4893 1.76e− 12 317
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Dogleg Constant
S/F INS FE 0:C C:IN IN GMRES ||F || Time

Ra 1.0e03 0 4 5 0 0 4 870 3.28e− 12 62
Ra 1.0e04 0 6 7 0 0 6 1349 6.8e− 11 93
Ra 1.0e05 0 8 11 0 4 4 2913 7.89e− 14 203
Ra 1.0e06 −1 200 267 0 200 0 102181 0.595 7116

Full Step Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Ra 1.0e03 0 6 7 NA NA NA 1106 2.83e− 15 77
Ra 1.0e04 0 9 10 NA NA NA 1209 1.57e− 14 85
Ra 1.0e05 0 25 26 NA NA NA 1408 3.99e− 14 112
Ra 1.0e06 −1 100 101 NA NA NA 3859 6.6e+ 05 327

Full Step Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Ra 1.0e03 0 4 5 NA NA NA 870 3.28e− 12 62
Ra 1.0e04 0 6 7 NA NA NA 1349 6.8e− 11 93
Ra 1.0e05 0 11 12 NA NA NA 2665 9.98e− 11 186
Ra 1.0e06 −1 50 51 NA NA NA 14397 5.09e+ 04 1021

Backward Facing Step 2D

Cubic Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 10 11 0 0 0 459 4.44e− 14 18
Re 200 0 12 14 1 0 1 535 1.59e− 13 22
Re 300 0 14 17 2 0 2 650 1.62e− 17 28
Re 400 0 51 77 25 0 25 1348 2.17e− 15 58
Re 500 0 60 90 29 0 29 1573 1.93e− 12 71
Re 600 0 81 126 43 0 44 2459 9.91e− 14 102
Re 700 0 124 207 82 0 82 4635 8e− 16 193
Re 750 −1 200 660 199 0 459 2379 0.000244 160
Re 800 0 162 294 130 0 131 5905 1.33e− 13 238

Cubic Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 6 7 0 0 0 595 1.09e− 14 24
Re 200 0 9 10 0 0 0 1047 1.25e− 15 49
Re 300 0 9 11 1 0 1 1095 5.05e− 16 53
Re 400 0 11 16 4 0 4 1441 1.08e− 13 67
Re 500 0 9 12 2 0 2 1145 2.73e− 15 53
Re 600 0 11 16 4 0 4 1506 7.14e− 15 78
Re 700 0 12 18 5 0 5 1745 1.67e− 13 88
Re 750 0 29 61 22 0 31 4729 1.4e− 15 263
Re 800 0 31 66 25 0 34 5227 3.74e− 13 285
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Quadratic Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 10 11 0 0 0 459 4.44e− 14 18
Re 200 0 12 14 1 0 1 535 1.59e− 13 22
Re 300 0 14 17 2 0 2 650 1.62e− 17 30
Re 400 0 51 77 25 0 25 1348 2.17e− 15 59
Re 500 0 60 90 29 0 29 1573 1.93e− 12 68
Re 600 0 98 161 61 0 62 3193 1.39e− 15 131
Re 700 0 124 207 82 0 82 4635 8e− 16 184
Re 750 0 142 240 93 0 97 5116 4.76e− 15 204
Re 800 0 130 218 85 0 87 4837 4.04e− 11 193

Quadratic Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 6 7 0 0 0 595 1.09e− 14 24
Re 200 0 9 10 0 0 0 1047 1.25e− 15 46
Re 300 0 9 11 1 0 1 1095 5.05e− 16 49
Re 400 0 11 16 4 0 4 1441 1.08e− 13 68
Re 500 0 9 12 2 0 2 1145 2.73e− 15 54
Re 600 0 11 16 4 0 4 1506 7.14e− 15 72
Re 700 0 12 18 5 0 5 1745 1.67e− 13 87
Re 750 −1 200 936 198 0 735 38510 5.51e− 05 2283
Re 800 0 44 104 37 0 59 7634 1.17e− 16 421

Moré–Thuente Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 10 31 0 0 0 459 4.44e− 14 23
Re 200 0 11 36 1 0 1 581 2.96e− 17 29
Re 300 0 18 67 6 0 6 721 3.82e− 14 40
Re 400 0 38 151 18 0 18 1067 1.58e− 13 71
Re 500 0 69 290 39 0 41 1650 2.73e− 13 121
Re 600 0 80 333 45 0 46 2363 1.5e− 15 154
Re 700 0 87 370 52 0 54 3043 2.49e− 16 184
Re 750 0 111 480 67 0 73 4091 4.07e− 13 242
Re 800 −1 200 1743 199 0 571 4721 0.000265 473

Moré–Thuente Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 6 19 0 0 0 595 1.09e− 14 24
Re 200 0 7 24 1 0 1 754 1.16e− 13 32
Re 300 0 9 30 1 0 1 1090 1.08e− 13 48
Re 400 0 8 29 2 0 2 981 8.02e− 14 44
Re 500 0 9 32 2 0 2 1158 4.49e− 16 53
Re 600 0 10 37 3 0 3 1362 1.72e− 15 64
Re 700 0 11 42 4 0 4 1593 4.13e− 15 78
Re 750 0 11 42 4 0 4 1584 7.8e− 15 78
Re 800 0 13 56 6 0 8 1955 1.61e− 13 98
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Dogleg Choice 1
S/F INS FE 0:C C:IN IN GMRES ||F || Time

Re 100 0 8 9 0 0 8 408 4.45e− 14 15
Re 200 0 11 12 0 0 11 461 5.68e− 13 19
Re 300 0 17 19 0 2 15 728 5.61e− 14 28
Re 400 0 20 23 0 4 16 833 8.79e− 14 31
Re 500 0 28 31 0 5 23 1024 2.68e− 13 39
Re 600 0 83 96 0 63 20 3388 4.69e− 12 117
Re 700 0 92 106 0 70 22 4276 6.58e− 16 147
Re 750 0 105 117 0 81 24 4950 1.94e− 11 164
Re 800 0 125 146 0 104 21 6883 7.09e− 14 232

Dogleg Constant
S/F INS FE 0:C C:IN IN GMRES ||F || Time

Re 100 0 6 7 0 0 6 595 1.09e− 14 23
Re 200 0 9 10 0 0 9 1047 1.25e− 15 44
Re 300 0 8 10 0 2 6 894 5.88e− 13 36
Re 400 0 16 18 0 6 10 2095 1.28e− 15 92
Re 500 0 18 22 0 11 7 2580 2.72e− 14 120
Re 600 0 15 21 0 6 9 2122 4.61e− 16 98
Re 700 0 21 27 0 14 7 3246 1.58e− 16 158
Re 750 0 20 27 0 13 7 3127 1.6e− 13 153
Re 800 0 23 33 0 17 6 3710 1.83e− 13 185

Full Step Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 10 11 NA NA NA 459 4.44e− 14 20
Re 200 0 14 15 NA NA NA 561 8.12e− 17 24
Re 300 0 19 20 NA NA NA 616 6.46e− 16 29
Re 400 0 38 39 NA NA NA 822 1.16e− 13 40
Re 500 −1 200 201 NA NA NA 17158 0.658 856
Re 600 −1 200 201 NA NA NA 12391 86.1 610
Re 700 −1 200 201 NA NA NA 21379 2.08 1096
Re 750 −1 200 201 NA NA NA 13867 5.39 653
Re 800 −1 200 201 NA NA NA 14333 1.17 705

Full Step Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 6 7 NA NA NA 595 1.09e− 14 26
Re 200 0 9 10 NA NA NA 1047 1.25e− 15 45
Re 300 −1 200 201 NA NA NA 33846 9.27 1840
Re 400 −1 200 201 NA NA NA 25806 84.5 1344
Re 500 −1 200 201 NA NA NA 36936 0.533 2031
Re 600 −1 200 201 NA NA NA 28595 1.95 1527
Re 700 −1 200 201 NA NA NA 34524 5.88 1844
Re 750 −1 200 201 NA NA NA 57827 0.221 3303
Re 800 −1 200 201 NA NA NA 2583 0.126 166
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Lid Driven Cavity 2D

Cubic Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 1000 0 24 27 2 0 2 799 6.77e− 11 44
Re 2000 0 33 42 8 0 8 1632 4.61e− 13 88
Re 3000 0 52 66 13 0 13 2138 8.31e− 13 118
Re 4000 0 57 73 14 0 15 2230 1.74e− 07 118
Re 5000 0 58 79 18 0 20 2808 6.23e− 10 162
Re 6000 0 75 106 28 0 30 3471 3.45e− 10 184
Re 7000 0 94 148 50 0 53 4984 6.47e− 12 264
Re 8000 0 106 165 55 0 58 5535 6.47e− 11 314
Re 9000 0 150 260 106 0 109 7695 5.73e− 12 421
Re 10000 0 160 279 115 0 118 8581 6.89e− 06 442

Cubic Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 1000 0 12 18 5 0 5 1621 1.79e− 13 100
Re 2000 −1 300 1861 246 22 1559 77599 5.51e+ 14 5601
Re 3000 −1 300 1851 287 15 1550 127980 3.77e+ 13 9122
Re 4000 −1 300 3521 293 65 3220 77090 2.02e+ 14 5550
Re 5000 −1 300 4900 298 0 4599 170847 88 12261
Re 6000 −1 300 2624 299 0 2323 175767 294 12523
Re 7000 −1 300 2676 298 0 2375 172883 146 12337
Re 8000 −1 300 4273 299 0 3972 172634 196 12327
Re 9000 −1 300 2129 299 0 1828 177490 480 12733
Re 10000 −1 300 2158 299 0 1857 174191 499 12330

Quadratic Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 1000 0 24 27 2 0 2 799 6.77e− 11 45
Re 2000 0 33 42 8 0 8 1632 4.61e− 13 90
Re 3000 0 52 66 13 0 13 2138 8.31e− 13 125
Re 4000 0 52 66 12 0 13 2611 3.44e− 12 139
Re 5000 0 60 78 16 0 17 2722 4.55e− 06 140
Re 6000 0 76 110 32 0 33 3303 1.62e− 09 191
Re 7000 0 101 164 61 0 62 5119 2.73e− 09 264
Re 8000 0 140 248 106 0 107 6881 4.98e− 09 357
Re 9000 0 143 242 97 0 98 7833 4.54e− 10 426
Re 10000 0 163 284 119 0 120 8950 2.34e− 08 476
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Quadratic Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 1000 0 12 18 5 0 5 1621 1.79e− 13 102
Re 2000 −1 300 1738 298 0 1437 53931 15.6 3759
Re 3000 −1 300 1746 298 0 1445 110022 63.3 7819
Re 4000 −1 300 1712 298 0 1411 85748 42.8 5646
Re 5000 −1 300 1693 298 0 1392 170958 147 12184
Re 6000 −1 300 1979 299 0 1678 174141 520 12333
Re 7000 −1 300 1579 299 0 1278 174954 284 12312
Re 8000 −1 300 1605 299 0 1304 119613 244 8245
Re 9000 −1 300 1732 299 0 1431 176946 997 12524
Re 10000 −1 300 1878 299 0 1577 169707 2.39e+ 03 11982

Moré–Thuente Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 1000 0 18 63 4 0 4 923 1.72e− 10 62
Re 2000 0 31 112 9 0 9 1341 8.87e− 07 94
Re 3000 0 42 159 15 0 16 1759 5.36e− 08 126
Re 4000 0 50 187 17 0 18 2361 7.72e− 10 164
Re 5000 0 57 214 20 0 21 2789 4.47e− 07 188
Re 6000 0 72 285 32 0 34 3572 4.21e− 10 249
Re 7000 0 82 337 43 0 45 3912 7.72e− 06 272
Re 8000 0 91 396 59 0 61 4636 3.42e− 10 333
Re 9000 0 106 461 68 0 71 5609 8.75e− 09 397
Re 10000 0 119 528 83 0 85 5996 4.34e− 05 416

Moré–Thuente Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 1000 0 11 40 3 0 3 1475 1.13e− 13 86
Re 2000 −1 300 3261 298 0 1180 53161 14 3916
Re 3000 −1 300 1794 272 0 447 129272 3.9e+ 13 8848
Re 4000 −1 300 1676 212 1 387 48967 2.07e+ 13 3422
Re 5000 −1 300 1632 204 0 366 37935 4.66e+ 13 2759
Re 6000 −1 300 3837 298 0 1468 171041 108 11966
Re 7000 −1 300 3737 299 0 1418 173699 298 12147
Re 8000 −1 300 3661 298 0 1380 176236 255 12301
Re 9000 −1 300 3651 299 0 1375 176592 746 12347
Re 10000 −1 300 2751 300 0 925 178988 324 12333
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Dogleg Choice 1
S/F INS FE 0:C C:IN IN GMRES ||F || Time

Re 1000 0 22 24 0 2 20 1298 2.52e− 12 68
Re 2000 0 35 37 0 6 29 1792 1.72e− 07 87
Re 3000 0 40 46 0 13 27 2519 1.3e− 12 125
Re 4000 0 69 86 0 35 34 3392 3e− 09 164
Re 5000 0 93 121 0 57 36 4562 1.25e− 09 226
Re 6000 0 99 136 0 70 29 5709 7.24e− 09 280
Re 7000 0 102 136 0 60 42 6629 7.46e− 12 334
Re 8000 0 128 178 0 98 30 9421 4.31e− 09 488
Re 9000 0 121 150 0 84 37 7434 1.59e− 10 384
Re 10000 0 132 170 0 103 29 8546 1.16e− 09 453

Dogleg Constant
S/F INS FE 0:C C:IN IN GMRES ||F || Time

Re 1000 0 19 27 0 13 6 2672 1.38e− 11 153
Re 2000 −1 300 493 0 299 1 50053 6.87 3124
Re 3000 −1 300 347 0 299 1 56876 21.2 3806
Re 4000 −1 300 402 0 299 1 113365 37.1 7397
Re 5000 −1 300 353 0 299 1 101634 29.9 6572
Re 6000 −1 300 373 0 299 1 70575 38.1 4642
Re 7000 −1 300 420 0 299 1 145341 60.7 9575
Re 8000 −1 300 391 0 299 1 174586 194 11617
Re 9000 −1 300 407 0 299 1 146727 74 9653
Re 10000 −1 300 429 0 299 1 141779 81.5 9294

Full Step Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 1000 0 20 21 NA NA NA 787 2.02e− 13 49
Re 2000 −1 300 301 NA NA NA 3930 6.01e+ 05 392
Re 3000 −1 300 301 NA NA NA 19901 6.4e+ 04 1278
Re 4000 −1 300 301 NA NA NA 7688 2.32e+ 05 607
Re 5000 −1 300 301 NA NA NA 15935 1.14e+ 05 1003
Re 6000 −1 300 301 NA NA NA 22103 2.53e+ 05 1429
Re 7000 −1 300 301 NA NA NA 16456 3.05e+ 05 1046
Re 8000 −1 300 301 NA NA NA 29532 2.51e+ 05 1855
Re 9000 −1 300 301 NA NA NA 14323 2.69e+ 06 996
Re 10000 −1 300 301 NA NA NA 26305 4.02e+ 06 1725
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Full Step Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 1000 −1 300 301 NA NA NA 24845 4.27e+ 05 1635
Re 2000 −1 300 301 NA NA NA 11135 2.21e+ 05 779
Re 3000 −1 300 301 NA NA NA 15520 2.96e+ 05 1030
Re 4000 −1 300 301 NA NA NA 13091 1.27e+ 05 929
Re 5000 −1 300 301 NA NA NA 21049 9.14e+ 04 1406
Re 6000 −1 300 301 NA NA NA 37531 8.73e+ 04 2404
Re 7000 −1 300 301 NA NA NA 24886 6.34e+ 05 1580
Re 8000 −1 300 301 NA NA NA 29118 2.1e+ 06 1870
Re 9000 −1 300 301 NA NA NA 23179 1.86e+ 06 1565
Re 10000 −1 300 301 NA NA NA 12180 1.65e+ 05 874

Lid Driven Cavity 2D (Low Reynolds Numbers)

Cubic Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 8 9 0 0 0 597 3.79e− 15 32
Re 200 0 9 10 0 0 0 485 1.87e− 10 27
Re 300 0 10 12 1 0 1 608 1.68e− 14 35
Re 400 0 12 15 2 0 2 621 6.32e− 14 35
Re 500 0 16 18 1 0 1 703 3.69e− 13 40
Re 600 0 16 19 2 0 2 671 1.56e− 13 42
Re 700 0 16 19 2 0 2 671 1.29e− 12 40
Re 800 0 20 23 2 0 2 757 1.59e− 11 44
Re 900 0 17 21 3 0 3 573 1.76e− 07 32
Re 1000 0 24 27 2 0 2 799 6.77e− 11 49

Cubic Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 6 7 0 0 0 714 3.2e− 15 40
Re 200 0 7 8 0 0 0 867 7.28e− 15 49
Re 300 0 7 8 0 0 0 871 1.01e− 12 53
Re 400 0 8 9 0 0 0 1016 4.88e− 14 59
Re 500 0 9 11 1 0 1 1125 1.78e− 13 64
Re 600 0 9 11 1 0 1 1126 3.18e− 12 65
Re 700 0 17 27 7 0 9 2332 8.78e− 14 139
Re 800 0 10 12 1 0 1 1322 7.36e− 14 77
Re 900 0 10 12 1 0 1 1267 6.9e− 13 72
Re 1000 0 12 18 5 0 5 1621 1.79e− 13 95
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Quadratic Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 8 9 0 0 0 597 3.79e− 15 35
Re 200 0 9 10 0 0 0 485 1.87e− 10 27
Re 300 0 10 12 1 0 1 608 1.68e− 14 32
Re 400 0 12 15 2 0 2 621 6.32e− 14 38
Re 500 0 16 18 1 0 1 703 3.69e− 13 40
Re 600 0 16 19 2 0 2 671 1.56e− 13 39
Re 700 0 16 19 2 0 2 671 1.29e− 12 42
Re 800 0 20 23 2 0 2 757 1.59e− 11 44
Re 900 0 17 21 3 0 3 573 1.76e− 07 32
Re 1000 0 24 27 2 0 2 799 6.77e− 11 46

Quadratic Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 6 7 0 0 0 714 3.2e− 15 40
Re 200 0 7 8 0 0 0 867 7.28e− 15 49
Re 300 0 7 8 0 0 0 871 1.01e− 12 49
Re 400 0 8 9 0 0 0 1016 4.88e− 14 58
Re 500 0 9 11 1 0 1 1125 1.78e− 13 69
Re 600 0 9 11 1 0 1 1126 3.18e− 12 65
Re 700 0 14 22 6 0 7 1881 1.53e− 12 110
Re 800 0 10 12 1 0 1 1322 7.36e− 14 82
Re 900 0 10 12 1 0 1 1267 6.9e− 13 73
Re 1000 0 12 18 5 0 5 1621 1.79e− 13 103

Moré–Thuente Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 8 25 0 0 0 597 3.75e− 15 36
Re 200 0 9 28 0 0 0 485 1.87e− 10 32
Re 300 0 9 30 1 0 1 560 1.52e− 10 36
Re 400 0 11 38 2 0 2 642 5.74e− 14 42
Re 500 0 12 41 2 0 2 612 7.94e− 13 42
Re 600 0 12 39 1 0 1 596 4.49e− 12 41
Re 700 0 14 45 1 0 1 594 1.7e− 09 43
Re 800 0 14 47 2 0 2 485 1.04e− 06 37
Re 900 0 17 56 2 0 2 819 2.16e− 13 57
Re 1000 0 18 63 4 0 4 923 1.72e− 10 61
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Moré–Thuente Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 6 19 0 0 0 714 3.06e− 15 40
Re 200 0 7 22 0 0 0 867 7.28e− 15 49
Re 300 0 7 22 0 0 0 871 1.01e− 12 49
Re 400 0 8 27 1 0 1 1006 6.08e− 12 57
Re 500 0 9 30 1 0 1 1118 7.85e− 14 63
Re 600 0 9 30 1 0 1 1123 1.21e− 12 64
Re 700 0 9 32 2 0 2 1124 2.42e− 12 64
Re 800 0 9 32 2 0 2 1172 4.89e− 12 68
Re 900 0 10 37 3 0 3 1292 3.78e− 13 75
Re 1000 0 11 40 3 0 3 1475 1.13e− 13 87

Dogleg Choice 1
S/F INS FE 0:C C:IN IN GMRES ||F || Time

Re 100 0 7 8 0 0 7 710 1.15e− 14 37
Re 200 0 10 11 0 0 10 838 7.62e− 15 44
Re 300 0 9 10 0 0 9 531 5.08e− 07 26
Re 400 0 12 13 0 0 12 801 2.04e− 13 43
Re 500 0 12 13 0 0 12 766 1.41e− 12 41
Re 600 0 15 16 0 0 15 755 2.83e− 09 38
Re 700 0 20 21 0 2 18 1295 1.56e− 13 67
Re 800 0 19 21 0 2 17 997 1.11e− 09 52
Re 900 0 18 19 0 0 18 722 1.39e− 07 38
Re 1000 0 22 24 0 2 20 1298 2.52e− 12 68

Dogleg Constant
S/F INS FE 0:C C:IN IN GMRES ||F || Time

Re 100 0 6 7 0 0 6 714 3.06e− 15 39
Re 200 0 7 8 0 0 7 867 7.28e− 15 48
Re 300 0 7 8 0 0 7 871 1.01e− 12 48
Re 400 0 8 9 0 0 8 1016 4.89e− 14 57
Re 500 0 9 11 0 1 8 1126 8.53e− 13 63
Re 600 0 10 12 0 2 8 1231 6.99e− 14 68
Re 700 0 17 20 0 8 9 2330 5.78e− 14 133
Re 800 0 11 14 0 3 8 1451 7.28e− 14 82
Re 900 0 13 18 0 7 6 1756 2.31e− 13 100
Re 1000 0 19 27 0 13 6 2672 1.38e− 11 155

57



A3 Test Details and Results REFERENCES

Thermal Convection 3D

Cubic Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Ra 1.0e03 0 5 6 0 0 0 298 2.22e− 12 161
Ra 1.0e04 0 8 10 1 0 1 469 1.92e− 15 257
Ra 1.0e05 0 19 25 3 0 5 584 5.1e− 15 478
Ra 1.0e06 0 58 97 27 0 38 3291 6.32e− 14 1818

Cubic Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Ra 1.0e03 0 5 6 0 0 0 504 1.23e− 16 214
Ra 1.0e04 0 6 8 1 0 1 697 1.09e− 15 274
Ra 1.0e05 0 10 17 4 0 6 1120 5.66e− 15 453
Ra 1.0e06 0 20 57 14 0 36 2377 4.43e− 14 955

Quadratic Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Ra 1.0e03 0 5 6 0 0 0 298 2.22e− 12 161
Ra 1.0e04 0 8 10 1 0 1 469 1.92e− 15 252
Ra 1.0e05 0 18 24 4 0 5 640 6.66e− 15 478
Ra 1.0e06 0 58 93 28 0 34 3153 5.57e− 14 1779

Quadratic Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Ra 1.0e03 0 5 6 0 0 0 504 1.23e− 16 212
Ra 1.0e04 0 6 8 1 0 1 697 1.09e− 15 278
Ra 1.0e05 0 11 19 5 0 7 1248 7.57e− 15 499
Ra 1.0e06 0 26 64 20 0 37 3156 4.32e− 14 1259

Moré–Thuente Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Ra 1.0e03 0 5 16 0 0 0 298 2.22e− 12 177
Ra 1.0e04 0 9 30 1 0 1 636 6.56e− 16 347
Ra 1.0e05 0 18 67 5 0 6 702 1.49e− 08 576
Ra 1.0e06 0 48 213 23 0 34 2710 5.74e− 14 1774

Moré–Thuente Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Ra 1.0e03 0 5 16 0 0 0 504 1.23e− 16 211
Ra 1.0e04 0 7 24 1 0 1 813 7.12e− 16 323
Ra 1.0e05 0 10 43 4 0 6 1117 5.56e− 15 466
Ra 1.0e06 0 21 134 15 0 35 2501 4.19e− 14 1079

Dogleg Choice 1
S/F INS FE 0:C C:IN IN GMRES ||F || Time

Ra 1.0e3 0 6 7 0 0 6 486 1.16e− 16 119
Ra 1.0e4 0 14 17 0 4 10 854 1.09e− 15 242
Ra 1.0e5 0 25 31 0 9 16 1354 5.64e− 15 404
Ra 1.0e6 0 109 142 0 88 21 7081 4.34e− 14 1872
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Dogleg Constant
S/F INS FE 0:C C:IN IN GMRES ||F || Time

Ra 1.0e03 0 5 6 0 0 5 504 1.23e− 16 124
Ra 1.0e04 0 7 9 0 2 5 817 1.09e− 15 213
Ra 1.0e05 0 10 13 0 5 5 1194 6.45e− 15 266
Ra 1.0e06 0 45 59 0 41 4 5965 5.83e− 14 1331

Full Step Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Ra 1.0e03 0 5 6 NA NA NA 298 2.22e− 12 157
Ra 1.0e04 0 12 13 NA NA NA 446 1.13e− 15 319
Ra 1.0e05 0 20 21 NA NA NA 585 7.82e− 15 501
Ra 1.0e06 −1 200 201 NA NA NA 1842 1.31e+ 104 4086

Full Step Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Ra 1.0e03 0 5 6 NA NA NA 504 1.23e− 16 208
Ra 1.0e04 0 8 9 NA NA NA 871 6.8e− 16 350
Ra 1.0e05 0 12 13 NA NA NA 1236 8.1e− 15 515
Ra 1.0e06 −1 200 201 NA NA NA 4561 1.37e+ 65 4792

Lid Driven Cavity 3D

Cubic Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 7 8 0 0 0 266 2.63e− 14 104
Re 200 0 12 13 0 0 0 393 7.27e− 15 169
Re 300 0 10 11 0 0 0 455 1.23e− 14 160
Re 400 0 13 14 0 0 0 495 1.23e− 14 195
Re 500 0 13 14 0 0 0 515 1.53e− 14 206
Re 600 0 16 17 0 0 0 413 1.33e− 11 206
Re 700 0 17 20 2 0 2 819 8.14e− 13 283
Re 800 0 17 19 1 0 1 720 3.97e− 14 272
Re 900 0 22 27 4 0 4 1253 3.68e− 14 401
Re 1000 0 24 28 3 0 3 756 5.06e− 14 340
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Cubic Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 6 7 0 0 0 495 2.59e− 15 131
Re 200 0 7 8 0 0 0 625 7.12e− 15 164
Re 300 0 8 9 0 0 0 751 1.1e− 14 194
Re 400 0 9 10 0 0 0 864 1.17e− 14 224
Re 500 0 9 10 0 0 0 927 2.87e− 14 235
Re 600 0 11 12 0 0 0 1151 3.36e− 14 290
Re 700 0 10 12 1 0 1 1176 4.03e− 14 292
Re 800 0 11 13 1 0 1 1365 5.53e− 14 340
Re 900 0 13 16 2 0 2 1648 5.67e− 14 404
Re 1000 0 17 26 8 0 8 2160 5.07e− 14 529

Quadratic Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 7 8 0 0 0 266 2.63e− 14 105
Re 200 0 12 13 0 0 0 393 7.27e− 15 168
Re 300 0 10 11 0 0 0 455 1.23e− 14 162
Re 400 0 13 14 0 0 0 495 1.23e− 14 196
Re 500 0 13 14 0 0 0 515 1.53e− 14 203
Re 600 0 16 17 0 0 0 413 1.33e− 11 207
Re 700 0 17 20 2 0 2 819 8.14e− 13 280
Re 800 0 17 19 1 0 1 720 3.97e− 14 274
Re 900 0 22 27 4 0 4 1253 3.68e− 14 401
Re 1000 0 24 28 3 0 3 756 5.06e− 14 354

Quadratic Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 6 7 0 0 0 495 2.59e− 15 132
Re 200 0 7 8 0 0 0 625 7.12e− 15 168
Re 300 0 8 9 0 0 0 751 1.1e− 14 196
Re 400 0 9 10 0 0 0 864 1.17e− 14 224
Re 500 0 9 10 0 0 0 927 2.87e− 14 235
Re 600 0 11 12 0 0 0 1151 3.36e− 14 290
Re 700 0 10 12 1 0 1 1176 4.03e− 14 288
Re 800 0 11 13 1 0 1 1365 5.53e− 14 338
Re 900 0 13 16 2 0 2 1648 5.67e− 14 409
Re 1000 0 17 26 8 0 8 2160 5.07e− 14 528
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Moré–Thuente Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 7 22 0 0 0 266 2.63e− 14 124
Re 200 0 12 37 0 0 0 393 7.28e− 15 204
Re 300 0 10 31 0 0 0 455 1.23e− 14 191
Re 400 0 13 40 0 0 0 495 1.29e− 14 233
Re 500 0 13 40 0 0 0 517 1.54e− 14 237
Re 600 0 18 59 2 0 2 850 1.83e− 14 349
Re 700 0 18 61 3 0 3 946 5.17e− 13 363
Re 800 0 19 64 3 0 3 1176 4.81e− 14 417
Re 900 0 19 64 3 0 3 1046 6.42e− 14 400
Re 1000 0 16 53 2 0 2 813 6.41e− 14 332

Moré–Thuente Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 6 19 0 0 0 495 2.58e− 15 135
Re 200 0 7 22 0 0 0 625 7.15e− 15 165
Re 300 0 8 25 0 0 0 751 1.1e− 14 194
Re 400 0 9 28 0 0 0 864 1.15e− 14 224
Re 500 0 9 28 0 0 0 927 2.86e− 14 236
Re 600 0 11 36 1 0 1 1211 2.43e− 14 304
Re 700 0 10 33 1 0 1 1170 4.55e− 14 290
Re 800 0 11 36 1 0 1 1322 4.37e− 14 325
Re 900 0 12 41 2 0 2 1484 3.69e− 14 365
Re 1000 0 13 46 3 0 3 1815 4.65e− 14 441

Dogleg Choice 1
S/F INS FE 0:C C:IN IN GMRES ||F || Time

Re 100 0 10 11 0 1 9 537 1.76e− 15 105
Re 200 0 10 11 0 1 9 604 5.58e− 15 112
Re 300 0 14 15 0 1 13 651 1.1e− 14 138
Re 400 0 16 18 0 3 13 743 9.01e− 13 157
Re 500 0 17 19 0 2 15 924 2.04e− 14 180
Re 600 0 21 24 0 4 17 1019 1.86e− 14 210
Re 700 0 20 22 0 2 18 971 3.28e− 14 203
Re 800 0 20 21 0 4 16 1061 4.13e− 14 211
Re 900 0 25 27 0 4 21 1250 4.59e− 14 257
Re 1000 0 24 25 0 3 21 1029 4.05e− 14 234
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Dogleg Constant
S/F INS FE 0:C C:IN IN GMRES ||F || Time

Re 100 0 7 8 0 1 6 587 2.2e− 15 98
Re 200 0 8 9 0 1 7 720 4.73e− 15 117
Re 300 0 8 9 0 1 7 754 1.27e− 14 119
Re 400 0 9 10 0 2 7 877 1.4e− 14 137
Re 500 0 9 10 0 1 8 929 2.34e− 14 141
Re 600 0 10 11 0 3 7 1099 2.37e− 14 169
Re 700 0 10 11 0 3 7 1192 4.52e− 14 200
Re 800 0 12 13 0 3 9 1462 5.55e− 14 206
Re 900 0 12 13 0 2 10 1506 3.64e− 14 247
Re 1000 0 23 27 0 15 8 4669 5.27e− 14 901

Full Step Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 7 8 NA NA NA 266 2.63e− 14 103
Re 200 0 12 13 NA NA NA 393 7.27e− 15 173
Re 300 0 10 11 NA NA NA 455 1.23e− 14 162
Re 400 0 13 14 NA NA NA 495 1.23e− 14 196
Re 500 0 13 14 NA NA NA 515 1.53e− 14 204
Re 600 0 16 17 NA NA NA 413 1.33e− 11 206
Re 700 0 18 19 NA NA NA 736 3.92e− 14 278
Re 800 0 27 28 NA NA NA 629 3.52e− 14 339
Re 900 0 32 33 NA NA NA 775 3.66e− 14 410
Re 1000 0 35 36 NA NA NA 819 5.69e− 14 446

Full Step Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 6 7 NA NA NA 495 2.59e− 15 131
Re 200 0 7 8 NA NA NA 625 7.12e− 15 162
Re 300 0 8 9 NA NA NA 751 1.1e− 14 192
Re 400 0 9 10 NA NA NA 864 1.17e− 14 227
Re 500 0 9 10 NA NA NA 927 2.87e− 14 236
Re 600 0 11 12 NA NA NA 1151 3.36e− 14 297
Re 700 −1 200 201 NA NA NA 924 116 1908
Re 800 −1 200 201 NA NA NA 1048 154 1924
Re 900 −1 200 201 NA NA NA 792 3.48e+ 09 1884
Re 1000 −1 200 201 NA NA NA 1021 771 1934
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Backward Facing Step 3D

Cubic Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 12 13 0 0 0 2929 1.99e− 11 415
Re 200 0 12 14 1 0 1 3467 6.56e− 10 468
Re 300 0 14 16 1 0 1 4022 6.4e− 11 539
Re 400 0 15 17 1 0 1 4269 4.44e− 12 587
Re 500 0 15 17 1 0 1 4442 3.66e− 11 597
Re 600 0 17 19 1 0 1 5286 4.2e− 12 699
Re 700 0 17 20 2 0 2 4267 1.11e− 09 586
Re 750 0 18 21 2 0 2 4401 2.76e− 10 614
Re 800 0 18 21 2 0 2 4049 5.92e− 10 580

Cubic Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 6 7 0 0 0 3511 7e− 12 527
Re 200 0 7 8 0 0 0 4096 8.52e− 12 506
Re 300 0 8 9 0 0 0 4800 3.87e− 12 616
Re 400 0 10 11 0 0 0 6000 6.06e− 12 832
Re 500 0 14 16 1 0 1 8399 1.64e− 11 1111
Re 600 0 34 87 24 0 52 20400 1.89e− 10 2689
Re 700 0 10 13 2 0 2 6000 2.18e− 10 827
Re 750 0 10 13 2 0 2 6000 6.85e− 11 809
Re 800 0 11 14 2 0 2 6600 2.83e− 10 863

Quadratic Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 12 13 0 0 0 2929 1.99e− 11 409
Re 200 0 12 14 1 0 1 3467 6.56e− 10 464
Re 300 0 14 16 1 0 1 4022 6.4e− 11 554
Re 400 0 15 17 1 0 1 4269 4.44e− 12 572
Re 500 0 15 17 1 0 1 4442 3.66e− 11 595
Re 600 0 17 19 1 0 1 5286 4.2e− 12 689
Re 700 0 17 20 2 0 2 4267 1.11e− 09 588
Re 750 0 18 21 2 0 2 4401 2.76e− 10 624
Re 800 0 18 21 2 0 2 4049 5.92e− 10 577
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Quadratic Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 6 7 0 0 0 3511 7e− 12 413
Re 200 0 7 8 0 0 0 4096 8.52e− 12 481
Re 300 0 8 9 0 0 0 4800 3.87e− 12 560
Re 400 0 10 11 0 0 0 6000 6.06e− 12 703
Re 500 0 14 16 1 0 1 8399 1.64e− 11 989
Re 600 0 32 63 20 0 30 19200 1.53e− 11 2279
Re 700 0 10 13 2 0 2 6000 2.18e− 10 706
Re 750 0 10 13 2 0 2 6000 6.85e− 11 701
Re 800 0 11 14 2 0 2 6600 2.83e− 10 773

Moré–Thuente Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 12 13 0 0 0 2929 1.99e− 11 489
Re 200 0 15 17 1 0 1 2678 1.97e− 09 527
Re 300 0 11 13 1 0 1 3501 2.37e− 11 537
Re 400 0 19 23 3 0 3 3200 3.56e− 10 615
Re 500 0 14 17 2 0 2 3937 2.87e− 10 614
Re 600 0 16 20 3 0 3 3901 2.33e− 10 598
Re 700 0 23 32 8 0 8 3672 1.46e− 09 745
Re 750 0 26 37 10 0 10 4072 9.92e− 11 815
Re 800 0 26 38 9 1 10 4095 9.95e− 10 854

Moré–Thuente Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 6 7 0 0 0 3511 7e− 12 508
Re 200 0 7 8 0 0 0 4096 8.52e− 12 603
Re 300 0 8 9 0 0 0 4800 3.87e− 12 712
Re 400 0 10 11 0 0 0 6000 6.06e− 12 881
Re 500 0 11 13 1 0 1 6600 3.23e− 11 975
Re 600 0 14 19 4 0 4 8400 3.44e− 13 1235
Re 700 0 15 22 6 0 6 9000 1.29e− 10 1330
Re 750 −1 200 256 41 6 49 9687 9.46 3595
Re 800 −1 200 327 117 3 123 75645 2.59 12083
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Dogleg Choice1
S/F INS FE 0:C C:IN IN GMRES ||F || Time

Re 100 0 9 10 0 0 9 2592 2.7e− 10 376
Re 200 0 10 11 0 1 9 3183 2.56e− 11 426
Re 300 0 12 13 0 5 7 4270 6.98e− 11 562
Re 400 0 16 17 0 9 7 6391 3.34e− 11 832
Re 500 0 22 23 0 15 7 11317 6.65e− 12 1396
Re 600 0 29 30 0 21 8 15565 6.39e− 11 1921
Re 700 0 37 38 0 29 8 20954 3.37e− 11 2553
Re 750 0 41 42 0 33 8 22985 1.42e− 10 2806
Re 800 0 44 45 0 38 6 25391 8.97e− 10 3113

Dogleg Constant
S/F INS FE 0:C C:IN IN GMRES ||F || Time

Re 100 0 6 7 0 0 6 3511 7.0e− 12 464
Re 200 0 7 8 0 2 5 4194 2.94e− 11 549
Re 300 0 10 11 0 5 5 6000 1.38e− 11 783
Re 400 0 15 16 0 9 6 9000 3.54e− 11 1172
Re 500 0 20 21 0 15 5 12000 3.62e− 11 1575
Re 600 0 27 28 0 21 6 16200 1.23e− 11 2209
Re 700 0 35 36 0 29 6 21000 1.69e− 10 2753
Re 750 0 39 40 0 33 6 23400 9.99e− 11 3091
Re 800 0 45 46 0 38 7 27000 5.62e− 11 3489

Full Step Choice 1
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 12 13 NA NA NA 2929 1.99e− 11 414
Re 200 0 14 15 NA NA NA 2677 1.1e− 09 405
Re 300 0 16 17 NA NA NA 3026 4.05e− 10 465
Re 400 0 15 16 NA NA NA 3195 1.76e− 09 467
Re 500 0 18 19 NA NA NA 4108 2.48e− 11 598
Re 600 0 22 23 NA NA NA 3717 3.16e− 10 587
Re 700 −1 200 201 NA NA NA 4579 3.29 2535
Re 750 −1 200 201 NA NA NA 3068 2.36 2738
Re 800 −1 200 201 NA NA NA 6203 3.04 2567
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Full Step Constant
S/F INS FE LS f−LS Bkt GMRES ||F || Time

Re 100 0 6 7 NA NA NA 3511 7e− 12 429
Re 200 0 7 8 NA NA NA 4096 8.52e− 12 492
Re 300 0 8 9 NA NA NA 4800 3.87e− 12 574
Re 400 0 10 11 NA NA NA 6000 6.06e− 12 713
Re 500 −1 200 201 NA NA NA 17149 229 3627
Re 600 −1 200 201 NA NA NA 4899 36.2 2492
Re 700 −1 200 201 NA NA NA 7003 55.6 2660
Re 750 −1 200 201 NA NA NA 14166 23.8 3280
Re 800 −1 200 201 NA NA NA 13953 18.8 3361
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