
SIAM REVIEW c© 2006 Society for Industrial and Applied Mathematics
Vol. 48, No. 4, pp. 700–721

Globalization Techniques for
Newton–Krylov Methods and
Applications to the Fully
Coupled Solution of the
Navier–Stokes Equations∗

Roger P. Pawlowski†

John N. Shadid†

Joseph P. Simonis‡

Homer F. Walker‡

Abstract. A Newton–Krylov method is an implementation of Newton’s method in which a Krylov
subspace method is used to solve approximately the linear subproblems that determine
Newton steps. To enhance robustness when good initial approximate solutions are not
available, these methods are usually globalized, i.e., augmented with auxiliary procedures
(globalizations) that improve the likelihood of convergence from a starting point that is
not near a solution. In recent years, globalized Newton–Krylov methods have been used
increasingly for the fully coupled solution of large-scale problems. In this paper, we review
several representative globalizations, discuss their properties, and report on a numerical
study aimed at evaluating their relative merits on large-scale two- and three-dimensional
problems involving the steady-state Navier–Stokes equations.

Key words. Newton’s method, inexact Newton methods, Newton iterative methods, Newton–Krylov
methods, globalized Newton methods, backtracking, line search, trust-region methods,
dogleg methods, fully coupled solution methods, Navier–Stokes equations

AMS subject classifications. 65H10, 65F10

DOI. 10.1137/S0036144504443511

1. Introduction. Krylov subspace methods constitute a broad and widely used
class of iterative linear algebra methods that includes, most notably, the classical
conjugate gradient method for symmetric positive-definite systems [23] and more re-

∗Received by the editors April 28, 2004; accepted for publication (in revised form) December 5,
2005; published electronically November 2, 2006.

http://www.siam.org/journals/sirev/48-4/44351.html
†Sandia National Laboratories, MS 0316, P.O. Box 5800, Albuquerque, NM 87185-0316 (rppawlo@

sandia.gov, jnshadi@sandia.gov). The work of these authors was partially supported by the U.S.
Department of Energy ASCI program and the U.S. Department of Energy Office of Science MICS
program at Sandia National Laboratories under contract DE-AC04-94AL85000.
‡Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609-

2280 (jpsimoni@wpi.edu, walker@wpi.edu). The work of these authors was partially supported by
Sandia National Laboratories under the ASCI program and by the Sandia National Laboratories
Computer Science Research Institute (contract 16099 with WPI). The work of the fourth author was
also supported in part by the Center for Simulation of Accidental Fires and Explosions funded at the
University of Utah by the U.S. Department of Energy under contracts LLNL B341493 and B524196.

700

GLOBALIZATION TECHNIQUES FOR NEWTON–KRYLOV METHODS 701

cently developed methods for nonsymmetric linear systems such as GMRES1 [40],
which are of particular interest here, and also Bi-CGSTAB [51], TFQMR [15], and
related methods. An extensive discussion of these methods is beyond the scope of this
work; we refer the reader to the surveys [16] and [20] and the books [19], [39], and [52].

A Newton–Krylov method (see, e.g., [3], [26], [28]) is an implementation of New-
ton’s method in which a Krylov subspace method is used to solve approximately the
linear systems that characterize steps of Newton’s method. Specifically, if we seek
a zero of a residual function F : Rn → R

n and if u ∈ Rn is a current approximate
solution, then a Krylov subspace method is applied to the Newton equation

F ′(u)s = −F (u),(1.1)

where F ′(u) ∈ Rn×n is the Jacobian (matrix) of F at u. A Newton–Krylov method
that uses a specific Krylov subspace method is often designated by appending the
name of the method to “Newton,” as in “Newton-GMRES” or “Newton-BiCGSTAB.”
(The term “truncated Newton method” is also widely used when the Krylov subspace
method is the conjugate gradient method; cf. [10] and [32].) Krylov subspace methods
have special advantages in the solution of (1.1). In particular, most of these methods,
including those named above, require only products of F ′(u) with vectors2 and thus
allow “matrix-free” Newton–Krylov implementations, in which these products are
evaluated or approximated without creating or storing F ′(u). (See, e.g., [28].)

A Newton–Krylov method is usually implemented as an inexact Newton method
[9], the basic form of which is as follows.

Algorithm IN. Inexact Newton method [9].

Let u0 be given.
For k = 0, 1, . . . (until convergence) do:

Choose ηk ∈ [0, 1) and sk such that
(1.2) ‖F (uk) + F ′(uk) sk‖ ≤ ηk‖F (uk)‖.

Set uk+1 = uk + sk.

In the Newton–Krylov context, one chooses for each k a forcing term ηk ∈ [0, 1)
(cf. [13]) and then applies the Krylov subspace method until an iterate sk satisfies the
inexact Newton condition (1.2). The forcing terms determine the local convergence
properties of the method: by choosing {ηk} appropriately, one can achieve desirably
fast rates of local convergence, up to the rate of exact Newton’s method (typically
quadratic) [9]. Additionally, by reducing the likelihood of oversolving, i.e., obtain-
ing unproductive accuracy in approximately solving (1.1), well-chosen forcing terms
may significantly improve the efficiency of the method and, in some applications, the
robustness as well ([13], [47], [50]).

Newton–Krylov methods, like all Newton-like methods, must usually be global-
ized, i.e., augmented with certain auxiliary procedures (globalizations) that increase
the likelihood of convergence when good initial approximate solutions are not avail-
able. Globalizations are typically structured to test whether a step gives satisfactory
progress toward a solution and, if necessary, to modify it to obtain a step that does
give satisfactory progress. There are two major categories of globalizations:3 back-
tracking (line-search, damping) methods, in which step lengths are adjusted (usually

1For convenience in what follows, we do not usually distinguish between GMRES and its restarted
version GMRES(m).

2Some Krylov subspace methods require products of F ′(u)T as well.
3See [11, Chap. 6] for a general discussion of classical globalizations.

702 R. P. PAWLOWSKI, J. N. SHADID, J. P. SIMONIS, AND H. F. WALKER

shortened) to obtain satisfactory steps; and trust-regionmethods, in which a step from
an approximate solution u is ideally chosen to minimize the norm of F (u)+F ′(u)s, the
local linear model of F , within a specified “trust region.” (More specifically, the trust-
region step is ideally arg min‖s‖≤δ‖F (u) + F ′(u)s‖, where δ > 0 is the trust-region
radius.) Both backtracking and trust-region methods have strong theoretical support;
see, e.g., [11] and [12]. Backtracking methods are relatively easy to implement; how-
ever, each step direction is restricted to be that of the initial trial step, which may
be a weak descent direction, especially if the Jacobian is ill-conditioned [50]. Trust-
region methods have the potential advantage of producing modified steps that may be
stronger descent directions than the initial trial step; however, their implementation
may be problematic. In general, it is not feasible to compute the ideal trust-region
step accurately, and popular ways of approximating this step require products of the
transpose of the Jacobian with vectors. These products may be difficult or impractical
to compute in some applications, especially in the Newton–Krylov context, in which
the Jacobian may not be known. Additionally, a step produced by a Newton–Krylov
method (or any iterative method) may not be well suited for use in these popular
approaches unless it solves (1.1) fairly accurately, and the necessary accuracy may be
difficult to determine a priori. We comment further on these issues in section 2.4.

The purpose of this paper is to review several representative globalizations of
Newton–Krylov methods, discuss their properties, and report on extensive numerical
experiments with Newton-GMRES implementations that demonstrate their relative
merits in large-scale applications involving the steady-state Navier–Stokes equations.
Our main goal is to provide an accessible introduction to the methods of interest and
a thorough study of their performance on an important class of large-scale problems.
We also offer pointers to publicly available, downloadable software implementations
used in our tests and report new experimental data on the numerical solution of
several three-dimensional benchmark problems. This work is meant to be a cohesive
study of a representative variety of practically effective techniques rather than an
exhaustive survey. We do not cover other robust solution techniques such as homotopy,
continuation, pseudotransient continuation, or mesh sequencing methods but refer the
reader to [54], [55], [1], [30], [6], [27], [28], and the references in those works.

In an earlier study [47], we considered a backtracking globalization from [12] and
showed in experiments that it significantly improves the robustness of a Newton-
GMRES method on the applications of interest here, especially when combined with
adaptively determined forcing terms from [13]. Here, we extend that study to include
the backtracking globalization of [12] and [47], a certain refinement of that globaliza-
tion, a line-search procedure from [31], and a dogleg trust-region implementation [37],
[11]. This dogleg implementation is feasible because our testing environment allows
evaluation of products of the transpose of the Jacobian with vectors. Further aspects
of the implementation and associated issues are discussed in section 2.4.

The test problems are two- and three-dimensional (2D, 3D) versions of three
benchmark flow problems, viz., the thermal convection, backward-facing step, and
lid-driven cavity problems. These problems are all large scale, with between 25,263
and 1,042,236 equations and unknowns in our tests; consequently, all numerical exper-
iments were necessarily run on parallel computers. An important aspect of this study
is describing the algorithmic features that were used, beyond the basic globalized
Newton–Krylov methods, to make the implementations effective on these platforms
in the problem regimes of interest.

In section 2 below, we discuss the numerical methods of interest and outline
their theoretical support. In section 3, we introduce the governing PDEs and the

GLOBALIZATION TECHNIQUES FOR NEWTON–KRYLOV METHODS 703

discretized equations. In section 4, the test problems and the computing environment
are described. We summarize the test results in section 5, comment further on failure
and robustness in section 6, and draw conclusions in section 7. For the proofs of some
of the theoretical results in section 2, the reader is referred to [34], which also contains
complete details of the test results.

2. The Numerical Methods. An important note is that the discussion of algo-
rithms and theoretical results in this section is valid in the general inexact Newton
setting and is not restricted to the Newton–Krylov context. In sections 2.1–2.2, the
norm ‖ · ‖ is arbitrary. In sections 2.3–2.4, it is assumed to be an inner-product norm
but is otherwise arbitrary.

2.1. The Forcing Terms. Although the focus of this study is on globalization
procedures, previous studies (see [13], [47], [50]) have shown that the forcing terms
may affect the robustness of a Newton–Krylov method, globalization notwithstanding.
Accordingly, we consider two choices of the forcing terms here to assess their effects
on the globalizations of interest. The first is a small constant, ηk = 10−4 for each
k, which should produce close approximations of exact Newton steps. The second is
an adaptive forcing term, called “Choice 1” in [13] and determined as follows: Select
η0 ∈ [0, 1) and set

ηk =

∣∣∣‖F (uk)‖ − ‖F (uk−1) + F ′(uk−1) sk−1‖
∣∣∣

‖F (uk−1)‖
, k = 1, 2,(2.1)

In keeping with practice elsewhere (see [13], [47], [36]), we follow (2.1) with the safe-
guard

ηk ← min
{
ηmax,max{ηk, η(1+

√
5)/2

k−1 }
}
whenever η(1+

√
5)/2

k−1 > 0.1,(2.2)

which is intended to prevent the forcing terms from becoming too small too quickly
away from a solution and also to keep them below a prescribed ηmax ∈ [0, 1). (In
our implementations, we used η0 = .01 and ηmax = .9.) The exponent (1 +

√
5)/2 is

related to a local convergence rate associated with these forcing terms; see the remark
following Theorem 2.3 below.

To state briefly the local convergence properties of Algorithm IN with these two
choices of the forcing terms, we formulate the following assumption:

Assumption 2.1.

(a) F : Rn → R
n is continuously differentiable in a neighborhood of u∗ ∈ Rn such

that F (u∗) = 0 and F ′(u∗) is nonsingular.
(b) F is Lipschitz continuously differentiable at u∗, i.e., there is a constant Γ for

which ‖F ′(u)− F ′(u∗)‖ ≤ Γ‖u− u∗‖ for all u sufficiently near u∗.
With this assumption, we have the results below from [9] and [13].
Theorem 2.2 (see [9, Thm. 2.3]). Suppose that Assumption 2.1(a) holds, and

let {uk} be a sequence produced by Algorithm IN with 0 ≤ ηk ≤ η∗ < 1 for each k. If
u0 is sufficiently near u∗, then {uk} converges to u∗ and, provided uk �= u∗ for all k,

lim sup
k→∞

‖uk+1 − u∗‖∗/‖uk − u∗‖∗ ≤ η∗,(2.3)

where ‖v‖∗ ≡ ‖F ′(u∗)v‖ for each v ∈ Rn.

704 R. P. PAWLOWSKI, J. N. SHADID, J. P. SIMONIS, AND H. F. WALKER

It follows that if ηk = 10−4 for each k, then, under Assumption 2.1(a), Algorithm
IN exhibits fast local q-linear convergence4 to a solution u∗; specifically, (2.3) holds
with η∗ = 10−4.

Theorem 2.3 (see [13, Thm. 2.2]). Suppose that Assumption 2.1 holds, and let
{uk} be a sequence produced by Algorithm IN with each ηk given by (2.1). If u0 is
sufficiently near u∗, then {uk} converges to u∗ with

‖uk+1 − u∗‖ ≤ γ ‖uk − u∗‖ ‖uk−1 − u∗‖, k = 1, 2, . . . ,(2.4)

for a constant γ independent of k.
As observed in [13], it follows from (2.4) that the convergence is q-superlinear,

two-step q-quadratic, and of r-order (1+
√
5)/2. Also, the conclusions of the theorem

still hold if each ηk is determined by (2.1) followed by the safeguard (2.2).

2.2. The Backtracking Methods. We consider the following general backtrack-
ing method from [12].

Algorithm INB. Inexact Newton backtracking method [12].

Let u0, ηmax ∈ [0, 1), t ∈ (0, 1), and 0 < θmin < θmax < 1 be given.
For k = 0, 1, . . . (until convergence) do:

Choose initial ηk ∈ [0, ηmax] and sk such that

‖F (uk) + F ′(uk) sk‖ ≤ ηk‖F (uk)‖.
While ‖F (uk + sk)‖ > [1− t(1− ηk)] ‖F (uk)‖ do:

Choose θ ∈ [θmin, θmax].
Update sk ← θsk and ηk ← 1− θ(1− ηk).

Set uk+1 = uk + sk.

In Algorithm INB, the backtracking globalization resides in the while-loop, in
which steps are tested and shortened as necessary until the acceptability condition

‖F (uk + sk)‖ ≤ [1− t(1− ηk)] ‖F (uk)‖(2.5)

holds. As noted in [12], if F is continuously differentiable, then this globalization
produces a step for which (2.5) holds after a finite number of passes through the
while-loop; furthermore, the inexact Newton condition (1.2) still holds for the final
sk and ηk. The condition (2.5) is a “sufficient-decrease” condition on ‖F (uk + sk)‖.
To illuminate it further, we follow [12] and [47] and define

aredk ≡ ‖F (uk)‖ − ‖F (uk + sk)‖,
predk ≡ ‖F (uk)‖ − ‖F (uk) + F ′(uk) sk‖;

(2.6)

these are, respectively, the actual reduction in ‖F‖ and the predicted reduction given
by the local linear model. It is easily verified that (1.2) is equivalent to predk ≥
(1 − ηk)‖F (uk)‖ and (2.5) is equivalent to aredk ≥ t(1 − ηk)‖F (uk)‖. Thus, if (1.2)
requires the predicted reduction to be at least (1−ηk)‖F (uk)‖, then (2.5) requires the
actual reduction to be at least the fraction t of that amount. In our implementation,
we used t = 10−4 so that, consistent with recommendations in [11], only a very modest
decrease in ‖F‖ is required for a step to be accepted.

Theoretical support for Algorithm INB is provided in [12] by the following result.

4For definitions of the kinds of convergence referred to here, see [11].

GLOBALIZATION TECHNIQUES FOR NEWTON–KRYLOV METHODS 705

Theorem 2.4 (see [12, Thm. 6.1]). Assume that F is continuously differentiable.
If {uk} produced by Algorithm INB has a limit point u∗ such that F ′(u∗) is nonsin-
gular, then F (u∗) = 0 and uk → u∗. Furthermore, the initial sk and ηk are accepted
without modification in the while-loop for all sufficiently large k.

A consequence of the theorem is that if {uk} converges to a solution u∗ such
that F ′(u∗) is nonsingular, then, under Assumption 2.1, the convergence is ultimately
governed by the initial ηk’s. In particular, if ηk = 10−4 for each k, then (2.3) holds
with η∗ = 10−4, and if each ηk is given by (2.1) followed by (2.2), then an inequality
(2.4) holds for sufficiently large k and a γ independent of k.

Restricting each step-length reduction factor θ to lie in [θmin, θmax] is known
as safeguarded backtracking. In our implementation, we used the common choices
θmin = 1

10 and θmax = 1
2 (cf. [11]). We also followed standard practice in choosing

θ ∈ [θmin, θmax] to minimize a low-degree polynomial that interpolates values of ‖F‖.
Specifically, in this study, we tested two possibilities. The first is that used in [47], viz.,
to determine θ ∈ [θmin, θmax] to minimize a quadratic polynomial p(t) that satisfies
p(0) = 1

2‖F (uk)‖2, p(1) =
1
2‖F (uk + sk)‖2, and p′(0) = d

dt
1
2‖F (uk + tsk)‖2

∣∣
t=0. The

second is a refinement of this idea from [11], as follows: On the first step-length
reduction, θ is chosen to minimize an interpolating quadratic polynomial as before.
On subsequent reductions, θ is chosen to minimize over [θmin, θmax] a cubic polynomial
p(t) for which p(0), p(1), and p′(0) have the same values as before and additionally
p(θ−1

prev) =
1
2‖F (uk+θ−1

prevsk)‖2, where θprev is the step-length reduction factor used in
the previous reduction and ‖F (uk + θ−1

prevsk)‖ has been retained from that reduction.
Formulas for the minimizers of these polynomials are given in [11, Chap. 6].

2.3. The Moré–Thuente Line-Search Method. This line-search procedure from
[31] is intended for the unconstrained minimization of a general functional f : Rn →
R

1 and is adapted to the present setting by taking f(u) ≡ 1
2 ‖F (u)‖2. It differs from

the backtracking globalizations of section 2.2 primarily in being more directly focused
on approximately minimizing ‖F‖ in a given search direction and by allowing steps
that are longer than the initial trial step if such steps seem warranted by potential
further decrease in ‖F‖. To set the context, we embed it within an inexact Newton
method as follows.

Algorithm INMTL. Inexact Newton Moré–Thuente line-search

method.

Let u0 and ηmax ∈ [0, 1) be given.
For k = 0, 1, . . . (until convergence) do:

Choose ηk ∈ [0, ηmax] and initial sk such that

‖F (uk) + F ′(uk) sk‖ ≤ ηk‖F (uk)‖.
Apply the Moré–Thuente line search [31] to
determine a final sk.

Set uk+1 = uk + sk.

To describe the Moré–Thuente line search, we define for a particular k

φ(λ) ≡ f(uk + λsk) =
1
2
‖F (uk + λsk)‖2.(2.7)

We assume for this discussion that F is continuously differentiable, which implies that
f and φ are as well. Since the initial sk is an inexact Newton step from uk, it is also
a descent direction for ‖ · ‖ and f in that φ′(0) < 0 (see [4, Prop. 3.3], [12, Lem. 7.1]).

706 R. P. PAWLOWSKI, J. N. SHADID, J. P. SIMONIS, AND H. F. WALKER

The goal of the line search is to find a λ > 0 satisfying the two inequalities

φ(λ) ≤ φ(0) + αφ′(0)λ,(2.8)

|φ′(λ)| ≤ β|φ′(0)|,(2.9)

where α and β are given parameters in (0, 1). Once such a λ has been determined
by the line search, the initial sk is updated by sk ← λsk to determine the final
sk. Inequalities (2.8) and (2.9) are sometimes known as the (strong) Wolfe conditions
[31, Chap. 3]. (The weak Wolfe conditions, sometimes known as the Goldstein–Armijo
conditions [11, Chap. 6], consist of (2.8) and the inequality φ′(λ) ≥ βφ′(0).) Inequality
(2.8) is a sufficient-decrease condition on ‖F (uk + λsk)‖; cf. (2.5). Since φ′(0) < 0
and 0 < α < 1, (2.8) holds for sufficiently small λ > 0. Inequality (2.9) does not hold
for small λ > 0, and its primary function is to prevent steps from being too short to
give adequate progress toward a solution. Additionally, (2.9) is sometimes called a
curvature condition since it implies φ′(λ)− φ′(0) ≥ (1− β)|φ′(0)| > 0, from which it
follows that the average curvature of φ on (0, λ) is positive [31]. Such conditions are
used in optimization to ensure that certain quasi-Newton updates inherit positive-
definiteness (see, e.g., [33]).

In our context, φ(λ) ≥ 0 for all λ, and one easily verifies that there is at least
one λ > 0 that satisfies both (2.8) and (2.9) provided β ≥ α, which is usually the
case in practice. (In our implementation, we used the typical values α = 10−4 and
β = .9999.) If β < α, then there may be no λ > 0 that satisfies both (2.8) and (2.9).
However, if the set of λ satisfying (2.8) contains a local minimizer of φ, then this set
contains solutions of (2.9) as well, and small values of β may serve to restrict solutions
of (2.8)–(2.9) to be near this minimizer.

The line search generates iterates that lie within “intervals of uncertainty” and
are additionally constrained to be within [λmin, λmax] for specified 0 < λmin < λmax.
In typical practice, fixed λmin and λmax are used for all k. (We used λmin = 10−12

and λmax = 106 in our implementation.) The procedures for updating the intervals of
uncertainty and determining successive line-search iterates within them are complex
and are explained in detail in [31] (see also [34]). The possible outcomes of the line
search, as explained in [31], are as follows:

1. The iterates increase monotonically and reach λmax after a finite number of
iterations; with λ = λmax, (2.8) holds but (2.9) may not hold.

2. The iterates decrease monotonically and reach λmin after a finite number of
iterations; neither (2.8) nor (2.9) is guaranteed to hold with λ = λmin.

3. A value of λ ∈ (λmin, λmax) is reached for which (2.8) holds and (2.9) also
holds with β = α.

4. A value of λ ∈ (λmin, λmax) is reached for which both (2.8) and (2.9) hold.
Note that if one of the first two outcomes occurs, then both (2.8) and (2.9) may hold,
but this is not guaranteed. Note also that if (2.9) holds with β = α, then it also holds
with β ≥ α. Thus if β ≥ α, then the third and fourth outcomes become one.

Our global convergence result for Algorithm INMTL is Theorem 2.5 below. The
proof is given in [34, App. 1].

Theorem 2.5. Suppose that u0 is given and that F is Lipschitz continuously
differentiable on L(u0) ≡ {u : ‖F (u)‖ ≤ ‖F (u0)‖}, i.e., F is differentiable on L(u0)
and there is a Γ ≥ 0 such that ‖F ′(v)−F ′(u)‖ ≤ Γ‖v−u‖ for all u ∈ L(u0) and nearby
v ∈ L(u0). Assume that {uk} is produced by Algorithm INMTL and, for each k, the
λ determined by the Moré–Thuente line search satisfies (2.8) and (2.9). If {uk} has a
subsequence {ukj} such that F ′(ukj) is nonsingular for each j and {‖F ′(ukj)−1‖} is

GLOBALIZATION TECHNIQUES FOR NEWTON–KRYLOV METHODS 707

bounded, then F (uk)→ 0. If {uk} has a limit point u∗ such that F ′(u∗) is nonsingular,
then F (u∗) = 0 and uk → u∗.

In contrast to Theorem 2.4 above and Theorem 2.7 below, Theorem 2.5 provides
no assurance that initial inexact Newton steps are ultimately accepted without mod-
ification as the iterates near a solution. Indeed, such an assurance cannot be made
without further assumptions. For example, one must require α < 1/2 to ensure that
exact Newton steps are acceptable without modification near a solution (see, e.g., [11,
Thm. 6.3.4]). The following lemma generalizes this observation to the inexact Newton
context; see [34, App. 1] for a proof.

Lemma 2.6. Suppose that {uk} produced by Algorithm INMTL converges to u∗
for which Assumption 2.1(a) holds. Then (2.8) holds with λ = 1 for all sufficiently
large k if

α < (1− lim sup
k→∞

ηk)/2(2.10)

and only if

α ≤ 1
/
[2(1− lim inf

k→∞
ηk)] .(2.11)

Additionally, (2.9) holds with λ = 1 for all sufficiently large k if

β > lim sup
k→∞

ηk(1 + lim sup
k→∞

ηk)
/
(1− lim sup

k→∞
ηk) .(2.12)

If something is known about lim supk→∞ ηk, then (2.10) and (2.12) may provide
useful guidance in specifying α and β. However, if lim supk→∞ ηk ≥

√
2− 1, then the

bound on the right-hand side of (2.12) is not less than 1, and (2.12) is not helpful.
Lemma 2.6 can be used to advantage with the forcing terms considered here. With

the adaptive Choice 1 forcing terms, it is easy to show that lim supk→∞ ηk = 0 under
the assumptions of the lemma. Thus, in this case, the lemma implies that, for any
α ∈ (0, 1

2) and β ∈ (0, 1), initial inexact Newton steps are ultimately accepted without
modification and an inequality (2.4) holds for sufficiently large k and a γ independent
of k. With ηk = 10−4 for each k, it follows from the lemma that, under the scarcely
more restrictive conditions 0 < α < (1 − 10−4)/2 and 10−4(1 + 10−4)/(1 − 10−4) <
β < 1, initial inexact Newton steps are again ultimately accepted and the convergence
obeys (2.3) with η∗ = 10−4. The values α = 10−4 and β = .9999 used in our
implementation generously satisfy (2.10) and (2.12) in either case.

2.4. The Dogleg Method. The traditional dogleg method (cf. [37], [11]) deter-
mines, at the kth Newton iterate uk, a step along the dogleg curve ΓDL

k . This is
the piecewise linear curve connecting 0, the “Cauchy point” sCP

k (defined to be the
minimizer of the local linear model norm in the steepest descent direction), and the
Newton step sN

k = −F ′(uk)−1F (uk). The dogleg curve has the desirable properties
that, as a point s traverses the curve from 0 to sCP

k to sN
k , ‖s‖ is monotone increas-

ing and ‖F (uk) + F ′(uk) s‖ is monotone decreasing (see, e.g., [11]). Consequently,
if δ > 0 is a given trust-region radius, then there is a unique sk ∈ ΓDL

k such that
sk = arg mins∈ΓDL

k ,‖s‖≤δ‖F (uk)+F ′(uk) s‖, and this sk is characterized as follows: If
‖sN
k ‖ ≤ δ, then sk = sN

k ; otherwise, sk is the unique point on the dogleg curve satis-
fying ‖sk‖ = δ. If sk so chosen is acceptable, then the next iterate is uk+1 = uk + sk;
if not, then δ is reduced and a new sk is similarly determined.

708 R. P. PAWLOWSKI, J. N. SHADID, J. P. SIMONIS, AND H. F. WALKER

In this study, we use a straightforward adaptation of the traditional method,
outlined in general form below, that is suitable for implementation as a Newton–
Krylov method. In this adaptation, each Newton step sN

k is replaced by an inexact
Newton step sIN

k , and the corresponding dogleg curve Γ
DL
k connects 0, the Cauchy

point sCP
k , and sIN

k . We note that the computation of s
CP
k requires the product of

F ′(uk)T with a vector. As indicated in section 1, these products can be evaluated by
our test codes. However, they may not be readily available in other circumstances,
especially those involving “matrix-free” Newton–Krylov implementations in which the
Jacobian is not created. A Newton-GMRES dogleg adaptation that does not require
these products is described in [3]; in this, each Cauchy point sCP

k is replaced by an
approximation determined using quantities generated by GMRES.

Algorithm INDL. Inexact Newton dogleg method.

Let u0, ηmax ∈ [0, 1), t ∈ (0, 1), 0 < θmin < θmax < 1, and
0 < δmin ≤ δ be given.

For k = 0, 1, . . . (until convergence) do:
Choose ηk ∈ [0, ηmax] and sIN

k such that
‖F (uk) + F ′(uk) sIN

k ‖ ≤ ηk‖F (uk)‖.
Evaluate sCP

k and determine sk ∈ ΓDL
k .

While aredk < t · predk do:
If δ = δmin, stop; else choose θ ∈ [θmin, θmax].
Update δ ← max{θδ, δmin}.
Redetermine sk ∈ ΓDL

k .
Set uk+1 = uk + sk and update δ.

The procedure for determining each sk ∈ ΓDL
k is as follows:

• If ‖sIN
k ‖ ≤ δ, then sk = sIN

k .
• Otherwise, if ‖sCP

k ‖ ≥ δ, then sk = (δ/‖sCP
k ‖) sCP

k .
• Otherwise, sk = (1 − τ)sCP

k + τsIN
k , where τ ∈ (0, 1) is uniquely determined

so that ‖sk‖ = δ.
This procedure always determines sk uniquely and is standard for dogleg implemen-
tations. However, there are several issues that arise as a consequence of using sIN

k in
place of sN

k . First, for any ηk ∈ (0, ηmax], no matter how small, ‖F (uk) + F ′(uk) s‖
may not be monotone decreasing as s traverses ΓDL

k from sCP
k to sIN

k ; consequently,
sk may not minimize the local linear model norm along ΓDL

k within the trust region.
However, if ηk is small, then this nonmonotonicity can occur only in a small neighbor-
hood of sIN

k and is not a serious concern. Second, unless ηk is sufficiently small, ‖s‖
may not be monotone increasing as s traverses ΓDL

k from sCP
k to sIN

k ; in this case, if
‖sCP
k ‖ > δ, then ΓDL

k may have up to three points of intersection with the trust-region
boundary: one between 0 and sCP

k and one or two between sCP
k and sIN

k . Thus sk
may not be uniquely characterized by the property ‖sk‖ = δ. Third, and perhaps of
greatest concern, if ηk is sufficiently large to allow

ηk‖F (uk)‖ ≥ ‖F (uk) + F ′(uk) sIN
k ‖ ≥ ‖F (uk) + F ′(uk) sCP

k ‖
and ‖sIN

k ‖ ≤ δ ≤ ‖sCP
k ‖, then the procedure specifies sk = sIN

k , even though the step
(δ/‖sCP

k ‖)sCP
k may (depending on δ, sCP

k , and sIN
k) give greater reduction of the local

linear model norm along ΓDL
k within the trust region. Although Algorithm INDL was

effective in our tests (see section 5), these issues remain a potential cause for concern.
In recent work [35], we have explored alternative strategies that may mitigate them.

In the while-loop, aredk and predk are defined as in (2.6). In our implementation,
we used t = 10−4 as in the case of Algorithm INB. In updating δ within the while-loop,

GLOBALIZATION TECHNIQUES FOR NEWTON–KRYLOV METHODS 709

we used a simple reduction δ ← .25δ. (Alternatives based on minimizing interpolating
polynomials are outlined in [11].) In the final update of δ following the while-loop,
we used a procedure similar to that in [11], in which the trust region is shrunk if
‖F (uk + sk)‖ and ‖F (uk) + F ′(uk) sk‖ do not agree well, expanded if they agree
especially well, and left unchanged otherwise. The specific procedure, in which 0 <
ρs < ρe < 1, 0 < βs < 1 < βe, and δmax > δmin, is as follows:

• If aredk/predk < ρs and ‖sIN
k ‖ < δ, then δ ← max{‖sIN

k ‖, δmin}.
• Otherwise, if aredk/predk < ρs, then δ ← max{βsδ, δmin}.
• Otherwise, if aredk/predk > ρe and ‖sk‖ = δ, then δ ← min{βeδ, δmax}.

In our implementation, we used ρs = 0.1, ρe = 0.75, βs = .25, βe = 4.0, δmin = 10−6,
and δmax = 1010. The initial δ was determined after the computation of sIN

0 as follows:
If ‖sIN

0 ‖ < δmin, then δ = 2δmin; otherwise, δ = ‖sIN
0 ‖.

We conclude this subsection with a convergence theorem for the general Algorithm
INDL. The proof is given in [34, App. 1]; the theorem also follows from [35, Thm. 2.1].
The theorem affirms a notable property of Algorithm INDL shared with other trust-
region methods, viz., that every limit point of {uk} produced by the algorithm must
be a stationary point of ‖F‖.5 (It is possible for line-search methods to produce
iterates that converge to nonstationary points at which the Jacobian is singular; see
[37] and [5].) Additionally, as in the case of Theorem 2.4, a particular consequence of
the theorem is that if {uk} converges to a solution u∗ such that F ′(u∗) is nonsingular,
then the convergence is ultimately governed by the ηk’s. Thus, as before, if ηk = 10−4

for each k, then (2.3) holds with η∗ = 10−4, and if each ηk is given by (2.1) followed
by (2.2), then (2.4) holds for sufficiently large k and a γ independent of k.

Theorem 2.7. Assume that F is continuously differentiable. If u∗ is a limit
point of {uk} produced by Algorithm INDL, then u∗ is a stationary point of ‖F‖.
If additionally F ′(u∗) is nonsingular, then F (u∗) = 0 and uk → u∗; furthermore,
sk = sIN

k for all sufficiently large k.

3. The Discretized Equations. In this section, the governing transport PDEs of
interest are presented briefly. These equations describe the conservation of momentum
and mass along with the thermal energy equation for a variable density low Mach
number flow. The physical transport mechanisms include diffusion, convection, a
volumetric continuity constraint, external surface forces set by pressure boundary
conditions, and buoyancy forces that are incorporated in our examples by using a
Boussinesq approximation [7].

The transport equations are (3.1)–(3.3) below. In these, the unknown quantities
are the fluid velocity vector u, the hydrodynamic pressure P , and the temperature T :

Momentum: ρu · ∇u+∇P −∇ · {µ(∇u+∇uT)} − ρg = 0,(3.1)
Total Mass: ∇ · u = 0,(3.2)

Energy: ρCpu · ∇T −∇ · κ∇T = 0.(3.3)

In (3.1)–(3.3), ρ, µ, g, κ, and Cp are, respectively, the density, the dynamic viscosity,
the gravity vector, the thermal conductivity, and the specific heat at constant pressure.
More information on this system of equations can be found in [46].

To complete the system, boundary conditions are imposed on (3.1)–(3.3) by taking
combinations of Dirichlet conditions on u, P , and T and specified stress and heat flux
conditions. In section 4.1, we discuss the specific boundary conditions for each test
problem.

5A vector u ∈ Rn is a stationary point of ‖F‖ if ‖F (u)‖ ≤ ‖F (u) + F ′(u) s‖ for every s ∈ Rn.

710 R. P. PAWLOWSKI, J. N. SHADID, J. P. SIMONIS, AND H. F. WALKER

To obtain an algebraic system of equations F (u) = 0, a stabilized finite-element
formulation of (3.1)–(3.3) is employed. This formulation, which follows [25] and [48],
allows equal order interpolation of velocity and pressure and also provides stabilization
of the convection operators to limit oscillations due to high grid Reynolds and Péclet
number effects. To form F ′, the finite-element equations are linearized. The discrete
form of these linearized terms is then determined by expanding the unknowns u, P ,
and T and the weighting function Φ in terms of a linear finite-element basis. The
resulting Newton equation (1.1) is a fully coupled nonsymmetric linear system.

4. The Test Problems and Algorithm Evaluation Framework.

4.1. The Test Problems. The three test problems described below are standard
benchmark problems used in the verification of fluid flow codes and solution algorithms
[47]. In the numerical tests, we employed both 2D and 3D forms of these problems.

4.1.1. The Thermal Convection Problem [8]. This problem describes the flow
of a fluid driven by thermal convection in a differentially heated square box in the
presence of gravity. It requires the solution of (3.1)–(3.3) on the unit square in R2

or the unit cube in R3. When the equations and boundary conditions are suitably
nondimensionalized, two nondimensional parameters appear: the Rayleigh number Ra
and the Prandtl number Pr. As Ra increases for fixed Pr, the nonlinear effects of the
convection terms increase and the solution becomes increasingly difficult to obtain.
In this study, we took Pr = 1 and varied Ra. The boundary conditions are no-slip
on all surfaces and specified temperature values T = Tcold and T = Thot on the x = 0
and x = 1 surfaces, respectively. The other surfaces are insulated, i.e., zero Neumann
conditions. All solutions in two dimensions were computed on a 100 × 100 equally
spaced mesh, which resulted in 40,804 unknowns for the discretized problem. In three
dimensions, solutions were computed on a 32× 32× 32 equally spaced grid, resulting
in 179,685 unknowns for the discretized problem. Figure 4.1 depicts representative
solutions of the problem.

4.1.2. The Backward-Facing Step Problem [17]. This problem involves the
simulation of flow through a rectangular channel that is initially constricted and sub-
sequently expands over a reentrant backward-facing step. It requires the solution of

Fig. 4.1 Thermal convection problem. Left: 2D model; color contour plot of temperature with
streamlines (Ra = 105). Right: 3D model; side-wall color contour plot of temperature,
temperature isosurface colored by velocity vector magnitude, and streamlines (Ra = 103).

GLOBALIZATION TECHNIQUES FOR NEWTON–KRYLOV METHODS 711

Fig. 4.2 Backward-facing step problem. Left: 2D model; color contour plot of velocity vector mag-
nitude with streamlines (Re = 500). Right: 3D model; isosurfaces of positive (orange) and
negative (blue) x-velocity with a color contour plot and isolines on a central slice plane
(Re = 200).

(3.1)–(3.2). The nondimensional parameter is the Reynolds number Re. As Re is in-
creased, the nonlinear convection components of the equations become more dominant
and the problem becomes more difficult. As the fluid flows downstream, it produces
a recirculation zone on the lower channel wall and, for sufficiently high Reynolds
numbers, a second recirculation zone farther downstream on the upper wall.

In our 2D problem, the flow was computed only in the expanded portion of the
channel, which had a 1× 30 aspect ratio. Flow entering from the constricted portion
was simulated by introducing a parabolic velocity profile, u = (24y(0.5− y), 0)T , in
the upper half of the inlet boundary and imposing zero velocity on the lower half.
The remaining boundary conditions were no-slip on the solid surfaces and zero-stress
on the outflow boundary. The discretization was a 20 × 400 unequally spaced mesh
(with a finer mesh near the step), which resulted in 25,263 unknowns.

In three dimensions, we computed the flow over the entire domain, with the
step placed one-fourth of the distance along the channel. The height-length and
height-width ratios for the constricted portion of the channel were 1× 20 and 1× 8,
respectively. For the expanded portion, these ratios were 1×30 and 1×4, respectively.
The inlet velocity was set at u = (U0, 0, 0)T ; the remaining boundary conditions were
as in the 2D problem. To provide an example of a larger-scale problem, we used a
finer discretization on this problem than on the others, viz., a 20×400×30 unequally
spaced mesh. (As in the 2D case, the mesh was refined near the step.) This resulted
in 1,042,236 unknowns. Figure 4.2 depicts representative solutions of the problem.

4.1.3. The Lid-Driven Cavity Problem [18], [43]. The third test problem ad-
dresses a confined flow in the unit square in R2 or the unit cube in R3 driven by a
moving upper boundary with velocity U0. As in the previous problem, the equations
are (3.1)–(3.2), and the nondimensional parameter is the Reynolds number Re. All
surfaces use no-slip boundary conditions. The problem becomes more difficult as Re
increases, with increasingly prominent regions of countercirculation appearing in the
corners of the domain.

For the 2D tests, we took Re up to 10,000. For the 3D tests, we used only
values of Re up to 1,000 since there is evidence that the stability of the solution is
questionable for Re > 700. The 2D problem was discretized on a 100 × 100 equally
spaced grid, which resulted in 30,603 unknowns for the discretized problem. In three
dimensions, the discretization was a 32 × 32 × 32 equally spaced grid, resulting in
143,748 unknowns. Figure 4.3 depicts representative solutions of the problem.

712 R. P. PAWLOWSKI, J. N. SHADID, J. P. SIMONIS, AND H. F. WALKER

Fig. 4.3 Lid-driven cavity problem. Left: 2D model; color contour plot of velocity vector magnitude
with streamlines (Re = 5000). Right: 3D model; isosurfaces of positive (red) and negative
(blue) x-velocities with a color contour plot of y-velocity on a central slice plane and a few
streamlines (Re = 200).

4.2. The Algorithm Evaluation Framework. For our tests, we used implemen-
tations of the algorithms in section 2 provided by the NOX nonlinear solver package
[29]. NOX is a C++ object-oriented library designed for the efficient solution of non-
linear systems. It offers various globalized Newton-based solvers, including those in
section 2, and other techniques such as tensor and Broyden methods. The GMRES im-
plementation and preconditioners for the linear subproblems were from the AztecOO
package [22], an extension of the Aztec library [49], which provides an easy-to-use
framework for the efficient parallel solution of linear systems through an extensive
suite of Krylov solvers and preconditioners. We give more details below about the
particular GMRES algorithm and preconditioners used in our tests.

The parallel finite-element reacting flow code MPSalsa [46] was used to set up the
finite-element discretization described in section 3 and to invoke the solvers, calling
the Chaco [21] graph partitioning tool to partition the finite-element mesh into sub-
domains and assign subdomains to processors. For a detailed description of parallel
finite-element data structures and a discussion of the strong link between partitioning
quality and parallel efficiency, see [45].

In our tests, we used the restarted GMRES implementation in AztecOO with
a restart value (maximum Krylov subspace size) of 200 and a maximum number of
GMRES iterations equal to 600 (i.e., three restarts). Products of the Jacobian F ′ or,
when needed, its transpose with vectors were evaluated by analytically evaluating F ′

as indicated in section 3 and subsequently using the stored value of F ′ or its transpose
to perform the necessary matrix-vector multiplications. (However, products of F ′ with
vectors needed by the Moré–Thuente line-search iterations were, in most instances,
approximated with finite differences of F -values. See section 5 for details.)

In large-scale PDE applications such as those of interest here, preconditioning is
a very important factor in GMRES performance and is the key to scalability on mas-
sively parallel machines. The preconditioners available in AztecOO include numerous
algebraic and polynomial preconditioners and also additive-Schwarz domain decom-
position preconditioners, which use incomplete LU factorizations for subdomain solves
and allow variable levels of overlap. In our experiments, we used an additive-Schwarz
preconditioner with one level of overlap and an ILUT(fill-in,drop) incomplete factor-
ization [38] for each subdomain solve. We used fill-in = 1 and drop = 0, resulting in
no additional fill-in and no entries dropped due to small magnitude.

GLOBALIZATION TECHNIQUES FOR NEWTON–KRYLOV METHODS 713

In all of our tests, we imposed left-sided diagonal scaling. In this scaling, at
the kth step and for i = 1, . . . , n, Fi(uk) was scaled by the inverse of the sum of
the absolute values of the entries in the ith row of F ′(uk). This scaling was very
important to success in many cases. It was used not only in the GMRES solve but
also throughout the algorithm by incorporating it as a diagonal scaling matrix in the
inner product.

Successful termination of the Newton–Krylov iterations was declared if ‖F (uk)‖ ≤
εF ‖F (u0)‖, where εF = 10−2 in our tests, and the step-length criterion 1

n ||Wsk||2 < 1
was also satisfied, where n is the total number of unknowns and W is a diagonal
weighting matrix with entries Wii = 1/(εr|u(i)

k |+ εa), in which u
(i)
k is the ith compo-

nent of uk and εr = 10−3 and εa = 10−8 in our tests. (We also enforced safeguards to
prevent this step-length criterion from being prematurely satisfied; see [29].) In our
experience, this second criterion is typically more stringent and is necessary to ensure
that finer physical details of the flow and transport are adequately resolved. The
weighting matrix assures that all variables are treated equitably in deciding when to
terminate. This weight-matrix definition is similar to one used to dynamically control
time-step sizes that is standard in general purpose ODE packages such as LSODE [24].
Finally, all tests on the 2D problems were done using 8 processors; tests on the 3D
thermal convection and lid-driven cavity problems were done using 30 processors; and
tests on the 3D backward-facing step problem were done using 100 processors. In all
tests, the number of processors corresponded to the number of subdomains used in
the additive-Schwarz preconditioners.

5. Results. We performed extensive numerical tests involving the application of
the methods in section 2 to the benchmark problems in section 4. For comparison,
we also tested a nonglobalized method, i.e., a method taking full, unmodified inexact
Newton steps. For each method, we used both small constant (10−4) forcing terms
and adaptive (Choice 1) forcing terms, as discussed in section 2.1. In every test case,
the initial approximate solution was the zero vector.

We first consider the robustness of the methods. Table 5.1 shows the numbers of
method failures on the test problems for the following parameter values:

2D and 3D thermal convection: Ra = 103, 104, 105, 106,
2D and 3D backward-facing step: Re = 100, 200, . . . , 700, 750, 800,

2D lid-driven cavity: Re = 1,000, 2,000, . . . , 10,000,
3D lid-driven cavity: Re = 100, 200, . . . , 1,000.

In Table 5.1 and in what follows, “INB-Q” refers to Algorithm INB with each θ ∈
[θmin, θmax] determined by minimizing a quadratic interpolating polynomial. “INB-

Table 5.1 Failure totals: The 2nd, 4th, and 6th columns show numbers of failures with the adaptive
forcing terms, with numbers of failures for the constant forcing terms in square brackets;
the 3rd, 5th, and 7th columns show total numbers of failures.

Method 2D problems 3D problems All problems

INB-Q 0 [10] 10 0 [0] 0 0 [10] 10

INB-QC 1 [9] 10 0 [0] 0 1 [9] 10

INMTL 1 [9] 10 1 [2] 3 2 [11] 13

INDL 0 [10] 10 0 [0] 0 0 [10] 10

INFS 15 [18] 33 4 [10] 14 19 [28] 47

714 R. P. PAWLOWSKI, J. N. SHADID, J. P. SIMONIS, AND H. F. WALKER

Fig. 5.1 Thermal convection problem timings (in seconds): 2D (left) and 3D (right).

QC” refers to the method that minimizes an interpolating quadratic on the first
step-length reduction and then minimizes interpolating cubics on all subsequent step-
length reductions (see section 2.2). “INFS” designates the nonglobalized method that
takes full, unmodified inexact Newton steps.

The results in Table 5.1 indicate that, overall, each of the globalizations signifi-
cantly improved robustness in these experiments. The INB methods and the INDL
method suffered fewer failures overall than the INMTL method, but by only a modest
margin. More significantly, the adaptive forcing terms considerably improved the ro-
bustness of all methods, including the INFS method; for the globalized methods, the
improvement was dramatic. This outcome is consistent with the study in [47], which
included results for other adaptive and constant forcing terms in addition to those
considered here. Overall, the combination of adaptive forcing terms and globalization
was very effective on these problems, although it did not lead to success in every case.

The more detailed results graphed in Figures 5.1–5.3, in which failure is indicated
by a negative bar, show that the robustness benefit of globalization varied considerably
among the test cases. For example, it was striking for the 2D backward-facing step
problem, for which there were only two cases in which a globalized method failed. In
contrast, it was only marginal with small constant forcing terms on the 2D lid-driven
cavity problem; in these tests, all of the globalized methods failed for Re > 1,000. No
globalization was always superior to the others in these tests. For example, the INB
and INMTL methods succeeded in every case of the 2D thermal convection problem,
while the INDL method failed in one instance; however, the INDL method was the
only method to succeed in every case of the 2D backward-facing step problem. We
discuss Figures 5.1–5.3 further at the end of this section.

A remark is in order concerning the INMTL method. Each line-search iteration
requires evaluating φ defined by (2.7) and also φ′, and the latter evaluation requires
multiplication of a vector by F ′ evaluated at a new point. For all of the test problems
except one, these F ′-products were satisfactorily approximated using finite differences
of F -values. The exception was the 3D backward-facing step problem, in which errors
in the finite-difference approximations at times caused the algorithm to fail. For this
problem, it was necessary to evaluate each of these products analytically, at the cost
of a fresh Jacobian evaluation and a matrix-vector multiplication, in order to obtain
the level of success shown in Table 5.1 and Figure 5.2.

We next consider the efficiency of the methods. Table 5.2 shows various statistics
for a selected set of test cases. This set includes all cases considered in the robustness
study in which all of the globalized methods succeeded. Additionally, since at least
one globalized method failed on the 2D lid-driven cavity problem for each Re > 1,000,

GLOBALIZATION TECHNIQUES FOR NEWTON–KRYLOV METHODS 715

Fig. 5.2 Backward-facing step problem timings (in seconds): 2D (top) and 3D (bottom).

Fig. 5.3 Lid-driven cavity problem timings (in seconds): 2D (top) and 3D (bottom).

716 R. P. PAWLOWSKI, J. N. SHADID, J. P. SIMONIS, AND H. F. WALKER

Table 5.2 Efficiency study: The columns show results with the adaptive forcing terms, with values
for the constant forcing terms in square brackets.

Inexact Backtracks per Total Total GMRES Normalized
Method Newton per inexact function GMRES iterations time

steps Newton step evals. iterations per inexact
Newton step

INB-Q 16.0 [9.23] 0.13 [0.18] 19.2 [11.7] 997.1 [1502] 62.2 [163] 0.77 [1]

INB-QC 16.0 [9.20] 0.13 [0.20] 19.2 [11.8] 989.6 [1498] 61.9 [163] 0.77 [1.02]

INMTL 15.2 [8.67] 0.17 [0.17] 43.4 [25.1] 979.7 [1408] 64.3 [162] 0.90 [0.96]

INDL 17.0 [10.7] NA [NA] 18.9 [12.6] 1454 [1799] 85.3 [168] 0.83 [1.01]

it includes cases of this problem with 100 ≤ Re ≤ 1,000. (We did not include the
nonglobalized INFS method in this study because its high incidence of failure would
have made the test set undesirably small.) The specific cases considered are

2D thermal convection: Ra = 103, 104, 105,
3D thermal convection: Ra = 103, 104, 105, 106,

2D and 3D backward-facing step: Re = 100, 200, . . . , 700,
2D and 3D lid-driven cavity: Re = 100, 200, . . . , 1,000.

In Table 5.2, all table values are geometric means, except for numbers of backtracks
per inexact Newton step, which are arithmetic means. Mean run times are relative
to that of the INB-Q method with constant forcing terms.

Table 5.2 indicates that, for each choice of the forcing terms, the globalized meth-
ods performed rather similarly on this test set. There are some differences in perfor-
mance; in particular, the INMTL method required more function evaluations than the
other methods, while the INDL method required more GMRES iterations. However,
in view of the modest size of the test set, these differences may not have much sig-
nificance. In contrast, notable differences are seen with each method when different
forcing terms were used. Compared to the small constant forcing terms, the adap-
tive forcing terms resulted in greatly reduced mean numbers of GMRES iterations
per inexact Newton step and significantly reduced mean numbers of total GMRES
iterations. On the other hand, the small constant forcing terms required significantly
fewer inexact Newton steps on average. In the balance, the adaptive forcing terms
yielded considerably better run times than the small constant forcing terms (although
only slight improvement with the INMTL method).

The bar graphs in Figures 5.1–5.3 show run times and method failures (indicated
by a negative bar) for all problems considered in the robustness study (Table 5.1)
and for all methods except the INB-QC method, which performed very similarly to
the INB-Q method. Methods using the small constant forcing terms are shown in
shades of blue; methods using the adaptive forcing terms are shown in shades of red.
The results for the thermal convection problem in Figure 5.1 show failures at only the
largest Rayleigh number Ra of 106. At this Ra, the nonglobalized INFS method always
failed; in the 2D case, the INDL method with constant forcing terms also failed. For
the backward-facing step problem, Figure 5.2 shows many more failures. At low values
of the Reynolds number Re, all methods succeeded. As the problems became more
difficult with increasing Re, the INFS method began to fail in both the 2D and 3D
cases, first with the small constant forcing terms and, for higher Re, with the adaptive
forcing terms as well. At the two largest Re values, failures of the globalized methods
were observed. The only methods that converged over the entire Re range were the

GLOBALIZATION TECHNIQUES FOR NEWTON–KRYLOV METHODS 717

INB-Q method with adaptive forcing terms and the INDL method with both adaptive
and small constant forcing terms. The 2D lid-driven cavity problem (Figure 5.3, top)
was more difficult to solve. No method succeeded with small constant forcing terms
beyond Re = 1,000; however, all globalized methods in combination with adaptive
forcing terms attained convergence over the entire range. In the 3D cases (Figure 5.3,
bottom), the methods exhibited excellent convergence, with only the INFS method
with small constant forcing terms failing for higher Re.

6. Additional Remarks onFailure andRobustness. In practice, globalized New-
ton–Krylov methods can fail in a number of ways, and there are a variety of factors
that contribute to success or failure. We describe below several general failure modes
and comment on the extent to which these were observed in our tests.

• Fatal near-stagnation. The method achieves sufficient residual norm reduc-
tion at each step to continue but not enough in toto to succeed before reaching
the maximum allowable number of steps. This mode accounted for most of
the failures in our tests: 26 of 33 failures for the backtracking/line-search
methods and all 10 failures for the dogleg method. In our tests, we specified
generous maximum allowable numbers of steps: 300 for the 2D lid-driven
cavity problem and 200 in all other cases. In no failure case did it seem likely
that increasing these numbers would have led to success.
• Globalization failure. The globalization fails to determine an acceptable step
at some Newton–Krylov iteration. For example, a backtracking routine might
fail to produce an acceptable step within the maximum allowable number of
step-length reductions. In our tests, such failures accounted for 7 of 33 failures
for the backtracking and line-search methods.
• Divergence. The iterates fail to converge. This is likely to be manifested in
unbounded growth of the iterates, which we observed in some of our tests
involving the Newton-GMRES method with no globalization. We did not
observe this in any of our tests with the globalized methods. However, it can
occur with globalized methods, as can other forms of divergence [12, p. 400].
• Component failure. Failure occurs with one or more “components” of the
algorithm, such as the Krylov solver, the preconditioner, or the function eval-
uation routine. We saw no failures of this type in our tests.

Many ancillary factors may affect the robustness of a globalized Newton–Krylov
method on problems such as those of interest here. The following are several that we
have found to be influential.

• The nonlinear nature of the continuous PDE problem. Nonlinear PDE sys-
tems often have characteristic parameters, such as the Reynolds number, the
Rayleigh number, and the Prandtl number in our test problems. These pa-
rameters may strongly affect problem difficulty (see section 4.1), and the lim-
its of practical solvability may occur near critical parameter values at which
a steady-state solution becomes unstable.
• The discretization of the PDE problem. Failure of the spatial discretization to
adequately reflect the underlying physics of the continuous problem can cause
convergence difficulties for globalized Newton–Krylov methods. For example,
in the case of strong convection (large Reynolds numbers) in our prototype
problems, common spatial discretizations, such as centered finite-difference or
Galerkin finite-element methods, become unstable when the computational
mesh is too coarse, exhibiting nonphysical spatial oscillations and produc-
ing ill-conditioned Jacobian matrices [14]. This ill-conditioning is likely to

718 R. P. PAWLOWSKI, J. N. SHADID, J. P. SIMONIS, AND H. F. WALKER

result in poor convergence of the Krylov solver and, in turn, the Newton–
Krylov method. (Schemes such as the stabilized finite-element method used
in our tests attempt to suppress spurious oscillations on coarser grids and
also produce Jacobians that are better conditioned.) Additionally, ill-chosen
spatial discretizations can produce spurious nonphysical solutions (see [44],
[53]), and Newton–Krylov iterates may converge to these from an unfortunate
initial guess.
• The convergence of the Krylov solver and preconditioning. Effective precondi-
tioning (see, e.g., [39] and [2]) is essential for good Krylov solver performance
on large, complex nonlinear discretized PDE systems. Among various issues
that make the linear subproblems challenging, a particular concern is the
ill-conditioning that results from using very fine mesh spacing or very large
aspect-ratio cells or elements, and suitable preconditioning is necessary to
address this. Also, as indicated in section 4.2, appropriate preconditioning
is central to the scalability of the Krylov solver and, therefore, the Newton–
Krylov method on massively parallel platforms.
• Scaling. Proper scaling of variables can be an important contributor to
method success. In our tests, we found it effective to implement scaling consis-
tently throughout the algorithm by incorporating it into a certain weighted
norm defined by row-sums of the Jacobian matrix (see section 4.2). This
technique significantly improved the robustness of all methods in our tests.
• Accuracy. Finally, the accuracy of computations within the algorithm is im-
portant. As noted in section 5, finite-difference approximations of Jacobian-
vector products within the Moré–Thuente line search were insufficiently ac-
curate for good success in one case; analytic evaluations were necessary. Also,
in preliminary experimentation, we found that high-accuracy Jacobian eval-
uations used in producing matrix-vector products in GMRES solves resulted
in much better method performance than certain cheaper but less accurate
alternatives that were available in our codes. These high-accuracy evaluations
were used in obtaining the results reported in section 5.

7. Conclusions. We have considered several representative globalizations in-
tended to improve the robustness of a Newton–Krylov method: two variants of a
backtracking method (with step-length reduction by quadratic and quadratic/cubic
minimization) from [12], a line-search procedure from [31], and a dogleg implementa-
tion of a trust-region method (see [37], [11]). These methods all have strong global
convergence properties, as indicated by the theoretical results outlined in section 2.

We extensively tested Newton-GMRES implementations of these methods on
large-scale benchmark problems involving the steady-state 2D and 3D Navier–Stokes
equations; the results are given in section 5. Each of the globalizations considered
here significantly improved robustness in our tests. Overall, the backtracking methods
and the dogleg method were most robust, with the backtracking methods producing
slightly better run times. (The two backtracking step-length reduction strategies pro-
duced very similar results.) The line-search procedure of [31] performed almost as
well. These overall results notwithstanding, no method was better than the others
in every test, and the only methods to succeed in every case were the backtracking
method (with quadratic minimization only) and the dogleg method, with each using
adaptive forcing terms.

The use of adaptive forcing terms resulted in major improvements in the robust-
ness of all methods, including the method with no globalization. For the globalized

GLOBALIZATION TECHNIQUES FOR NEWTON–KRYLOV METHODS 719

methods, the improvement was dramatic. Using adaptive forcing terms also con-
tributed significantly to the efficiency of the globalized methods.

Among the globalizations considered here, the backtracking method may be a
first choice for implementation because of its simplicity as well as its effectiveness
in our tests. In our backtracking tests, we saw no reason to prefer the step-length
reduction strategy using both cubic and quadratic minimization over the simpler
strategy that uses only quadratic minimization. We stress, though, that no method
was uniformly superior in our experiments. Additionally, our test set was limited to a
particular class of problems, and results on other types of problems may differ. Ideally,
one would have several globalizations available to determine which works best in a
particular application. Similarly, while the adaptive forcing terms greatly improved
the performance of the globalized methods in these experiments, no particular choice
of the forcing terms is best for all problems. (Indeed, the small constant value of 10−4

was the most effective forcing term among a number of alternatives in a 3D chemical
vapor deposition reactor simulation described in [47].) Thus it would be ideal to have
available several forcing term choices as well as several globalizations to determine
the most effective combination.

Finally, as noted in additional remarks on failure and robustness in section 6,
there are many factors other than the globalization and forcing terms that may affect
the performance of a Newton–Krylov method on problems such as those of interest
here, and these should be considered in formulating problems and algorithms to solve
them. Additionally, there are other robust solution techniques, such as homotopy,
continuation, pseudotransient continuation, and mesh-sequencing, that should be kept
in mind as possible alternatives to globalized Newton–Krylov methods. In particular,
if the goal is to traverse or map out a complex nonlinear solution set as problem
parameters vary, then the most appropriate methods may be continuation methods,
which can follow stable and unstable solution branches and track critical points as
parameters are varied. If the goal is to find a stable steady-state solution within
a complex nonlinear landscape, then pseudotransient continuation can also be used.
We note that, for large-scale problems, Newton–Krylov methods are often used as
nonlinear solvers within these methods (cf. [42], [41], [53]).

REFERENCES

[1] E. Allgower and K. Georg, Continuation and path following, Acta Numer., 1993 (2) (1993),
pp. 1–64.

[2] M. Benzi, Preconditioning techniques for large linear systems: A survey, J. Comput. Phys.,
182 (2002), pp. 418–477.

[3] P. N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM
J. Sci. Statist. Comput., 11 (1990), pp. 450–481.

[4] P. N. Brown and Y. Saad, Convergence theory of nonlinear Newton–Krylov algorithms, SIAM
J. Optim., 4 (1994), pp. 297–330.

[5] R. H. Byrd, M. Marazzi, and J. Nocedal, On the convergence of Newton iterations to
non-stationary points, Math. Program., 99 (2004), pp. 127–148.

[6] K. A. Cliffe, A. Spence, and S. J. Tavener, The numerical analysis of bifurcation problems
with application to fluid mechanics, Acta Numer., 2000 (9) (2000), pp. 39–131.

[7] I. G. Currie, Fundamental Mechanics of Fluids, McGraw-Hill, New York, 1974.
[8] G. D. V. Davis and C. P. Jones, Natural convection in a square cavity: A comparison exercise,

Internat. J. Numer. Methods Fluids, 3 (1983), pp. 227–248.
[9] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.

Anal., 19 (1982), pp. 400–408.
[10] R. S. Dembo and T. Steihaug, Truncated Newton algorithms for large-scale optimization,

Math. Programming, 26 (1983), pp. 190–212.

720 R. P. PAWLOWSKI, J. N. SHADID, J. P. SIMONIS, AND H. F. WALKER

[11] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice Hall Ser. Comput. Math., Prentice-Hall, Englewood
Cliffs, NJ, 1983.

[12] S. C. Eisenstat and H. F. Walker, Globally convergent inexact Newton methods, SIAM J.
Optim., 4 (1994), pp. 393–422.

[13] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method,
SIAM J. Sci. Comput., 17 (1996), pp. 16–32.

[14] C. A. J. Fletcher, Computational Techniques for Fluid Dynamics, Comput. Phys. 2, Springer-
Verlag, Berlin, Heidelberg, 1988.

[15] R. W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear
systems, SIAM J. Sci. Comput., 14 (1993), pp. 470–482.

[16] R. W. Freund, G. H. Golub, and N. M. Nachtigal, Iterative solution of linear systems,
Acta Numer., 1992 (1) (1992), pp. 57–100.

[17] D. K. Gartling, A test problem for outflow boundary conditions—flow over a backward facing
step, Internat. J. Numer. Methods Fluids, 11 (1990), pp. 953–967.

[18] U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible flow using the
Navier–Stokes equations and a multigrid method, J. Comput. Phys., 48 (1982), pp. 387–
411.

[19] G. H. Golub and C. V. Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press,
Baltimore, MD, 1996.

[20] M. H. Gutknecht, Lanczos-type solvers for nonsymmetric linear systems of equations, Acta
Numer., 1997 (6) (1997), pp. 271–397.

[21] B. Hendrickson and R. Leland, The Chaco User’s Guide–Version 1.0, Tech. Report Sand93-
2339, Sandia National Laboratories, Albuquerque, NM, 1993.

[22] M. Heroux, AztecOO: Object-Oriented Aztec Linear Solver Package, http://software.sandia.
gov/trilinos/packages/aztecoo/index.html.

[23] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Research Nat. Bur. Standards, 49 (1952), pp. 409–435.

[24] A. C. Hindmarsh, LSODE and LSODEI: Two new initial value ordinary differential equation
solvers, ACM Signum Newsletter, 15 (1980), pp. 10–11.

[25] T. J. R. Hughes, L. P. Franca, and G. M. Hulbert, A new finite element formulation
for computational fluid dynamics: VII. The Galerkin/Least-Squares method for advective-
diffusive equations, Comput. Methods Appl. Mech. Engrg., 73 (1989), pp. 173–189.

[26] C. T. Kelley, Solving Nonlinear Equations with Newton’s Method, Fundam. Algorithms 1,
SIAM, Philadelphia, 2003.

[27] C. T. Kelley and D. E. Keyes, Convergence analysis of pseudo-transient continuation, SIAM
J. Numer. Anal., 35 (1998), pp. 508–523.

[28] D. A. Knoll and D. E. Keyes, Jacobian-free Newton–Krylov methods: A survey of approaches
and applications, J. Comput. Phys., 193 (2004), pp. 357–397.

[29] T. G. Kolda and R. P. Pawlowski, NOX Nonlinear Solver Project, http://software.sandia.
gov/nox.

[30] M. Kubicek and M. Marek, Computational Methods in Bifurcation Theory and Dissipative
Structures, Springer Ser. Comput. Phys., Springer-Verlag, New York, 1983.

[31] J. J. Moré and D. J. Thuente, Line search algorithms with guaranteed sufficient decrease,
ACM Trans. Math. Soft., 20 (1984), pp. 286–307.

[32] S. G. Nash, Truncated Newton Methods, Ph.D. thesis, Computer Science Department, Stanford
University, Stanford, CA, 1982.

[33] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Ser. Oper. Res., Springer-
Verlag, New York, 1999.

[34] R. P. Pawlowski, J. N. Shadid, J. P. Simonis, and H. F. Walker, Globalization Tech-
niques for Newton–Krylov Methods and Applications to the Fully-Coupled Solution of the
Navier–Stokes Equations, Tech. Report Sand2004-1777, Sandia National Laboratories, Al-
buquerque, NM, 2003.

[35] R. P. Pawlowski, J. N. Shadid, J. P. Simonis, and H. F. Walker, Inexact Newton dogleg
methods, Tech. Report MS-03-02-18, WPI Math. Sciences Dept., Worcester, MA, 2005.
Submitted to SIAM J. Numer. Anal.

[36] M. Pernice and H. F. Walker, NITSOL: A Newton iterative solver for nonlinear systems,
SIAM J. Sci. Comput., 19 (1998), pp. 302–318.

[37] M. J. D. Powell, A hybrid method for nonlinear equations, in Numerical Methods for Nonlin-
ear Algebraic Equations, P. Rabinowitz, ed., Gordon and Breach, London, 1970, pp. 87–114.

[38] Y. Saad, ILUT: A dual threshold incomplete ILU factorization, Numer. Linear Algebra Appl.,
1 (1994), pp. 387–402.

http://software.sandia.gov/trilinos/packages/aztecoo/index.html
http://software.sandia.gov/trilinos/packages/aztecoo/index.html
http://software.sandia.gov//nox
http://software.sandia.gov/trilinos/packages/nox/index.html

GLOBALIZATION TECHNIQUES FOR NEWTON–KRYLOV METHODS 721

[39] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, MA, 1996.
[40] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[41] A. Salinger, E. Burroughs, R. Pawlowski, E. Phipps, and L. Romero, Bifurcation analysis

algorithms and software for large-scale applications, Internat. J. Bifur. Chaos, 15 (2005),
pp. 1015–1032.

[42] A. G. Salinger, R. B. Lehoucq, R. P. Pawlowski, and J. N. Shadid, Computational bifur-
cation and stability studies of the 8:1 thermal cavity problem, Internat. J. Numer. Methods
Fluids, 40 (2002), pp. 1059–1073.

[43] R. Schreiber and H. B. Keller, Driven cavity flows by efficient numerical techniques, J.
Comput. Phys., 49 (1983), pp. 310–333.

[44] R. Schreiber and H. B. Keller, Spurious solutions in driven cavity calculations, J. Comput.
Phys., 49 (1983), pp. 165–172.

[45] J. N. Shadid, S. A. Hutchinson, G. L. Hennigan, H. K. Moffat, K. D. Devine, and
A. G. Salinger, Efficient parallel computation of unstructured finite element reacting
flow solutions, Parallel Comput., 23 (1997), pp. 1307–1325.

[46] J. N. Shadid, H. K. Moffat, S. A. Hutchinson, G. L. Hennigan, K. D. Devine, and A. G.
Salinger, MPSalsa: A Finite Element Computer Program for Reacting Flow Problems,
Part 1: Theoretical Development, Tech. Report Sand95-2752, Sandia National Laborato-
ries, Albuquerque, NM, 1996.

[47] J. N. Shadid, R. S. Tuminaro, and H. F. Walker, An inexact Newton method for fully-
coupled solution of the Navier–Stokes equations with heat and mass transport, J. Comput.
Phys., 137 (1997), pp. 155–185.

[48] T. E. Tezduyar, Stabilized finite element formulations for incompressible flow computations,
Adv. Appl. Mech., 28 (1992), pp. 1–44.

[49] R. S. Tuminaro, M. Heroux, S. A. Hutchinson, and J. N. Shadid, Aztec User’s Guide—
Version 2.1, Tech. Report Sand99-8801J, Sandia National Laboratories, Albuquerque, NM,
1999.

[50] R. S. Tuminaro, H. F. Walker, and J. N. Shadid, On backtracking failure in Newton–
GMRES methods with a demonstration for the Navier–Stokes equations, J. Comput. Phys.,
180 (2002), pp. 549–558.

[51] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631–644.

[52] H. A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Uni-
versity Press, Cambridge, UK, 2003.

[53] H. F. Walker, An adaptation of Krylov subspace methods to path following problems, SIAM
J. Sci. Comput., 21 (1999), pp. 1191–1198.

[54] L. T. Watson, Globally convergent homotopy algorithms for nonlinear systems of equations,
Nonlinear Dynamics, 1 (1990), pp. 143–191.

[55] L. T. Watson, M. Sosonkina, R. C. Melville, A. P. Morgan, and H. F. Walker, HOM-
PACK90: A suite of Fortran 90 codes for globally convergent homotopy algorithms, ACM
Trans. Math. Soft., 23 (1997), pp. 514–549.

