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CHOOSING THE FORCING TERMS IN AN INEXACT NEWTON METHOD*
STANLEY C. EISENSTATt AND HOMER E WALKER

Abstract. An inexactNewtonmethod is a generalization ofNewton’s method for solving F(x) 0, F n
__

in,
in which, at the kth iteration, the step sk from the current approximate solution xk is required to satisfy a condition
F(x) + F’(xk) sk _< F(x)II for a "forcing term" r/ [0, 1). In typical applications, the choice of the

forcing terms is critical to the efficiency of the method and can affect robustness as well. Promising choices of the
forcing terms are given, their local convergence properties are analyzed, and their practical performance is shown on
a representative set of test problems.
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1. Introduction. Suppose that F" I" I is continuously differentiable in a neigh-
borhood of x, In for which F(x,) 0 and F’(x,) is nonsingular. Suppose further that F’
is Lipschitz continuous at x, with constant ., i.e.,

(1.1) IIF’(x)- F’(x,)ll .llx- x,

for x near x,, where denotes some norm on In and the induced norm on Inn.
An inexact Newton method (Dembo, Eisenstat, and Steihaug [4]) is an extension of clas-

sical Newton’s method for approximating x, formulated as follows"

Algorithm IN: Inexact Newton Method [4]
LET X0 BE GIVEN.

FOR k 0 STEP 1 UNTIL "CONVERGENCE" DO:

FIND some r/k s [0, 1) AND Sk THAT SATISFY

(1.2) IlF(xk) -t- F’(xk) skll < rlkllF(xk)ll.
SET Xk+l Xk -t- Sk.

Note that (1.2) expresses both a certain reduction in the norm of F(x) + F’(x) s, the local
linear model of F, and a certain accuracy in solving the Newton equation F (x)s F(xg),
the exact solution of which is the Newton step. In many applications, notably Newton iterative
or truncated Newton methods1, each r/k is specified first, and then an s is determined so that
(1.2) holds. The role of r/ is, then, to force IIF(x) + F’(x)sgll to be small in a particular
way; accordingly, r/ is often called aforcing term.

The local convergence of an inexact Newton method is controlled by the forcing terms.
Some specific illustrative results are the following (see Dembo, Eisenstat, and Steihaug [4])"
Under the present assumptions, if x0 is sufficiently close to x, and 0 < r/ < rlmax < for each
k, then {Xk} converges to x, q-linearly in the norm I1" I1,, defined by Ilvll, IIF’(x,)vll for
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V n, with asymptotic rate constant no greater than 0max. Furthermore, iflim 0k 0,
then the convergence is q-superlinear, and if Ok O(llF(xg)ll), then the convergence is
q-quadratic.2

In addition to controlling local convergence, there is another important issue associated
with the forcing terms. Away from a solution, F and its local linear model may disagree
considerably at a step that closely approximates the Newton step. Thus choosing Ok too small
may lead to oversolving the Newton equation, by which we mean imposing an accuracy on
an approximation of the Newton step that leads to significant disagreement between F and
its local linear model. Oversolving may result in little or no decrease in F and, therefore,
little or no progress toward a solution. Moreover, in applications such as Newton iterative
or truncated Newton methods, in which additional accuracy in solving the Newton equation
requires additional expense, it may entail pointless costs; a less accurate approximation of the
Newton step may be both cheaper and more effective.

Our purpose is to propose choices of the forcing terms that achieve desirably fast local
convergence and also tend to avoid oversolving. All of the proposed choices incorporate
information about F but are scale independent in that they do not change if F is multiplied by
a constant.

In 2, we outline the proposed choices and analyze the local convergence of Algorithm
IN that results from them; we also note some practical safeguards that improve performance.
In 3, we discuss numerical experiments. The algorithm used in the experiments is a special
case of Algorithm IN and is outlined in 3.1. The test problems are described in 3.2. An
example of oversolving is given in 3.3, with additional observations and examples in 3.4.
Summary test results are shown in 3.5. A summary discussion is given in 4.

Preliminaries. We define some useful constants and formulate several elementary results.
Set M max F’(x,)ll, F’ (x,)-lll }. For 3 > 0, define

g(x,) {x IIx -x, < },

and let 3, > 0 be sufficiently small that
1. F is continuously differentiabl.e and F’ is nonsingular on N, (x,),
2. F’(x)- 111 _< 2M for x N, (x,),
3. inequality (1.1) holds for x N, (x,),
4. 3, < 2/(,kM).
LEMM. 1.1. Ifx Na, (x,) and ifs is such that x+ =- x + s Na, (x,), then

IlF(x+)-F(x)-F’(x)sl. _< & (2llx-x,.l / )Ilsll.
Proof. Setting x(t) =- x + ts for 0 < < 1, we have

liE(x+) f(x) F’(x) sll F’(x(t)) s dt F’(x) s

_< . IIx x, / tllsll dt + .llx x, Ilsll

o

See, e.g., Dennis and Schnabel [6, 2.3 and 3.1 for definitions ofthe types ofconvergence referred to throughout
this paper.
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LEMMA 1.2. There is a Ix > 0 such that

1
-IIx- x, < IIF(x)ll < llx- x,

whenever x N,(x,).
Proof. With Lemma 1.1, we have

F(x)II < F’(x,) (x x,)II + F(x) F(x,) F’(x,) (x x,)ll

< MIIx -x, + llx -x, 2 < M + -- IIx -x,

and

F(x)ll > F’(x, (x x, F(x F(x, F’(x, (x x,. (1 .,)> IIx x, IIx x,
M

> IIx x, II.M 2

The lemma follows with/x max {M + A,/2, (1/M ,t,/2)-1 }. [-1

LEMMA 1.3. lfx N, (x,) and liE(x) + F’(x) sll _< ollF(x)llfor some s and [0, 1),
then Ilsll _< 4MllF(x)[I.

Proof. We have

Ilsll < IIF’(x)-llllF’(x) sll

< 2M(IIF(x)II + liE(x) + F’(x)sll)
_< 2M(1 / 0)llF(x)ll _< 4MIIF(x)ll.

LEMMA 1.4. There is a B > 0 such that if x N, (x,), s and [0, 1) are such that
I[F(x) + F’(x) s[[ _< r/[lF(x)[[, and x+ =-x + s N,(x,), then

IIF(x+)ll < (r/+ BIIF(x)ll)llF(x)ll.

Proof. With Lemmas 1.1-1.3, we have that

IIF(x+)ll < liE(x) + F’(x)sll + liE(x/) F(x) F’(x)sll

_< ollF(x)ll / .(2tzllF(x)ll-4- 2MIIF(x)ll). 4MIIF(x)ll

(0-4- BIIF(x)ll)llF(x)ll,

where B 8.M(/z + M).

2. The proposed choices. In the analysis in this section, we use the Lipschitz constant. in (1.1) and the constants M, ,,/x, and B introduced in the preliminaries in 1. We also let
d be such that 0 < < 3,/(1 + 4/zM) and note the following consequence of Lemmas 1.2
and 1.3.



CHOOSING THE FORCING TERMS 19

PROPOSITION 2.1. If x Na (x,) and F(x) + F’(x) s < r/II F(x)II for some s and

7 6 [0, 1), then x + s Na, (x,).
We assume for convenience that Algorithm IN continues indefinitely without termination

and that F(xk) 0 for all k. Note that if Xk N, (x,), then F’(xk) is nonsingular and,
therefore, suitable sk and Xk+l exist for any 7k 6 [0, 1). Our standing assumptions on F and
x, are those made in the first paragraph of 1.

Our first choice is the following.
Choice 1: Given 70 6 [0, 1), choose

F(xk) F(Xk- F’(xk-1 Sk- 111(2.1) 7k k 1, 2
F(xk-1)

or

F(xk)ll F(xk-1 + F’(xk- Sk-111
(2.2) Ok IIF(xk-1)ll

k 1, 2

Note that 7k given by either (2.1) or(2.2) directly reflects the agreement between F and its
local linear model at the previous step. The choice (2.2) may be more convenient to evaluate
than (2.1) in some circumstances. Since it is at least as small, local convergence will be at
least as fast as with (2.1); however, if it is significantly smaller, then it may be more difficult
to find a suitable step in some applications and perhaps risk greater oversolving as well.

THEOREM 2.2. Under the standing assumptions on F and x,, if xo is sufficiently near
x,, then {xk produced by Algorithm IN with Tk given by Choice 1 remains in N, (x,) and
converges to x, with

(2.3) IlXk/l x, </311x x, llllxk- x, ll, k 1, 2

for a constant independent ofk.
Remark. It follows immediately from (2.3) that the convergence is q-superlinear and

two-step q-quadratic. As in the case of the classical secant method, it also follows that the
convergence is of r-order (1 + f)/2; see, e.g., Stoer and Bulirsch [14, p. 293] for the
argument.

Proof. It suffices to prove the theorem with 7k given by (2.1).
Suppose that 70 6 [0, 1) is given. Let r be such that 70 < r < 1, and let e > 0 be

sufficiently small that 70 + Be < 5, [8,M(/x + M) + B] < r, and < //z. Note that if
x 6 N, (x,) and F(x)II _< , then x 6 N(x,) by Lemma 1.2.

Let xo N(x,) be sufficiently near x, that IIF(x0)ll _< . Since xo N(x,), we have
Xl N, (x,) by Proposition 2.1. Also, by Lemma 1.4,

(2.4)
IIF(xl)ll < (0o -+- BIIF(xo)ll)llF(xo)ll <_ (0o + Be)llF(xo)ll

<- F(xo) -< F(xo) _< ,
and, hence, Xl N8 (x,).

As an inductive hypothesis, suppose that, for some k > 1, we have xk 6 Na (x,), xk-1 6

N(x,), IIF(x)II _< , and IIF(xg-1)ll _< . Then Xk+l Na,(x,) by Proposition 2.1, and
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Lemmas 1.1-1.3 give

.<

F(Xk) F(Xk- F’(xk- Sk- 111
F(x-)

.(21lxt-1- x,]l + IISk-llll2)llSk-lll
IIF(x-)ll

2.(2/zllF(x-l)ll + 2MIIF(x-)ll) 4MIIF(x:-l)ll
F(xk-1)

8.M(/z + M)llF(xk-1)ll.

Then Lemma 1.4 implies

(2.5)

IIF(xk/l)ll (Ok + BIIF(xk)ll)llF(xk)ll

[8M(/x + M)llF(Xk-1)ll + nllF(x)ll]llF(x.)ll
< [8.M(/z + M) + B]llf(x)ll <_ rllf(x)ll.

Thus F(Xk/l) llF(x)ll and, hence, xk+l Ns(x,).
It follows from this induction that {Xk} C Ns(x,) C N, (x,). Furthermore, (2.4) and

(2.5) give IIF(x+l)ll _< rllF(x)ll for each k > 0; hence, F(xk) 0 and, by Lemma 1.2,
xk x, as well.

To show (2.3), we note that (2.4) and (2.5) give, for k > 1, IIF(xg)ll _< IIF(xk-1)ll and

IIF(xg+l)ll [8)M(/z + M)IIF(xg-1)II + nllF(xg)ll]llF(x)ll
< [8ZM(/z + M) + B]IIF(x,-1)IIIIF(x,)II.

With Lemma 1.2, this implies (2.3) with/ --/z3 [8ZM(/z + M) + B]. [3

One possible way to obtain faster local convergence while retaining the potential advan-
tages of (2.1) and (2.2) is to raise those expressions to powers greater than one. A particular
possibility that we considered in our numerical experiments is squaring those expressions. We
note without proof that this leads to local convergence with

IIx,+l x, max {llxk-1 x, 2, IIx, x, ll} IIx, x, ll, k 1, 2

which implies that xk -+ x, r-quadratically. However, this possibility was not as successful
in our experiments as the other choices proposed here, and we do not consider it further.

Our second choice is the following.
Choice 2: Given ?, [0, 1], cr (1, 2], and 00 e [0, 1), choose

(2.6) 0k ’ F(xk_l)II
k 1, 2

The choice (2.6) does not directly reflect the agreement between F and its local linear
model, as does Choice 1. However, the experiments in 3 show that it results in little oversolv-
ing in practice, and the following theorem shows that it offers attractive local convergence.
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THEOREM 2.3. Under the standing assumptions on F and x,, if xo is sufficiently near
x,, then {Xk produced by Algorithm IN with rig given by Choice 2 remains in N, (x,) and
converges to x,. If, < 1, then the convergence is ofq-order or. If), 1, then the convergence
is ofr-order t and ofq-order p for every p [1, u).

Proof. Suppose that ri0 6 [0, 1) is given and let 6 > 0 be sufficiently small that ri0 + B6 <
1/a

ri0’ and 6 < 3//z. Note that if x 6 N, (x,) and F(x) _< , then x 6 N(x,) by Lemma 1.2.
Let xo N(x,) be sufficiently near x, that IIF(xo)ll _< . As an inductive hypothesis,

suppose that, for some k > 0, we have xk N(x,), IIF(xk)ll < 6, and ri < ri0. Since

xk N(x,), we have X+l 6 Na, (x,) by Proposition 2.1. Also, by Lemma 1.4,

(2.7)
IIF(x+l)ll

_
(r/k + nllF(xg)ll)llF(x)ll

_l/ot<_ (rio / n)llr(x)ll <_ Oo I[V(x)ll.

1/orThen ]]F(X+l)ll < ri0 6 < 6, and it follows that x,+l Na(x,). Furthermore, (2.7) gives

rik+l ’(llF(x+l)ll/llF(x)ll)
_

’1o 1o.

It follows from this induction that {x} C N(x,) C N, (x,). Furthermore, (2.7) gives
_l/orIIF(x+l)ll < ’to IIF(x)ll for each k > 0; hence, F(xk) --> 0 and, by Lemma 1.2, xk --> x,

as well.
It remains to show the desired rates of convergence. Note that, for k > 0, (2.7) and (2.6)

give

(2.8)
F(x)ll + B F(x)ll F(x)ll.IIF(xk+l)l[

_
IIF(x-l)ll

First, suppose that , < 1 and set pk =- IlF(x)ll/llF(xk_l)l[ for k > 0. From (2.8) and
(2.7), we have Pk+l <-- J/Dk 2t- BIIF(xk)[[2- < ’Pg / BllF(xo)[[z- for k > 0, and it follows
inductively that

f)k+l <_ ’kpl "+" ’J BIIF(xo)[I2- <_ Pl + 1
\j=0

IIF(xo)ll2-

Thus {p} is uniformly bounded. Consequently, F(xk) --+ 0 with q-order t, and it follows
from Lemma 1.2 that Xk --+ x, with q-order ct as well.

Now, suppose that ?, 1. We first show that the convergence is of q-order p for
p 6 [1, c). For k > 0, (2.8) gives

(2.9)

IIF(x+)ll <
IIF(x)ll + nllF(x)ll IIF(x)ll
F(X-l)

IIF(x-)ll
IIF(x)ll + nllF(x)ll2_p] IiF(xg)llp"

IIF(xk-1)ll p

For each k > 0, set try, _= F(xk)II /II F(Xk_l)II p and recall that (2.7) gives F(xk)II
1/a

ri0 IIF(xk-1)ll, whence IIF(xg)ll < ’to IIF(x0)ll. Then for k > 0, (2.9) implies

1-p/ot Briko(2-p)/ot 2-p k(Tk+ <-- ri0 O’k + IlF(xo)ll < Crk + C,
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_l-pwhere q0 and C B F(x0)II 2.p, It follows inductively that

O.k+ < k ((7.1 _1_ kC),

and, hence,

IIF(x+l)ll _< (o1 "4- kC)IIF(x)ll p.

Since k (O. "4- kC) -’+ 0 as k x, we conclude that F(xk) 0 with q-order p and, by
Lemma 1.2, Xk x. with q-order p as well.

Still assuming , 1, we now show that Xk x. with r-order or. By Lemma 1.2, it
suffices to show that F(xk)II --> 0 with r-order or; we shall prove the somewhat stronger
result that rk F(xt)II/II F(xg_ 1)II --> 0 with r-order c.

It follows from the results above that rt -- 0. Then there is a k0 such that (2rk0+l) (6-1) +
2B F(Xko)II _< 1. For convenience, we re-index if necessary so that k0 0. Then (2rl)(6-1) +
2BIIF(xo)ll < 1, which implies D _= 1/(2rl) > 1. Set flk ---- Dzk for k > 0. Note that
fll 1/2. It suffices to show that fig --+ 0 with r-order c.

We claim that flk < fl,,-i for k 1, 2 from which it follows that flk 0 with
r-order a. The claim clearly holds for k 1. Suppose that it holds up to some k > 1. Then
Lemma 1.4 implies

IIF(x,+)ll < (rff + BIIF(xg)ll)IIF(x)ll,

whence

Wk+l _< Wff -[’- nWk.., rlllF(x0)ll.

From this, we obtain _
BIIF(xo)ll+ <D , + D

_
...6

(< D1-6 ]k-1 (6k-1 +’"+ 1)-t- nllF(xo)ll,l

< (D1-6 -1- BIIF(xo)ll/l)’

[(2rl)6- + 2BllF(xo)ll] ’ <

and the proof is complete.
It is possible to show local convergence for Algorithm IN when {r/ is given by Choice 2

with , > 1, provided r/0 is sufficiently small. However, Choice 2 with ?, > 1 was not
competitive in our experiments.

2.1. Practical safeguards. Although the forcing term choices given above are usually
effective in avoiding oversolving, we have observed in experiments that they occasionally
become too small far away from a solution. There is a particular danger of the Choice 1
forcing terms becoming too small; indeed, an r/ given by (2.1) or (2.2) can be undesirably
small because of either a very small step or coincidental very good agreement between F and
its local linear model. In our experiments, we observed relatively few occasions on which the
Choice 2 forcing terms became undesirably small; however, this did occur.
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We introduce safeguards here that are intended to prevent the forcingterms from becoming
too small too quickly. The rationale is that if large forcing terms are appropriate at some point,
then subsequent forcing terms should not be allowed to become much smaller until this has
beenjustified over several iterations. These are not claimed to be the most effective safeguards
that might be devised for general use or even for the test problems used in our experiments.
However, they were consistently effective in our tests, more so than several other possibilities
that we tried, and they serve to demonstrate the usefulness of safeguards.

For each choice, we restrict 0k to be no less than a certain minimum value, but only if that
minimum value is above a threshhold. The minimum value is determined by raising 0k-1 to a
power associated with the rate of convergence of the (unsafeguarded) choice. The threshhold
that we use here is. 1; this is clearly somewhat arbitrary but was effective in our experiments.
Note that, in each case, the minimum value eventually drops below the threshhold whenever
there is convergence to a solution. Thus the safeguards eventually become inactive whenever
there is convergence, and the asymptotic convergence is that for the unsafeguarded choice
given by the theorems above.

For Choice 1, the safeguard is the following:

Choice 1 safeguard: Modify 0k by Ok - max{0k, 0(l+/-)/2k- whenever 0(1+/)/2k- >. 1.

For perspective, recall from the remark after Theorem 2.2 that the convergence of (2.3) implies
convergence of r-order (1 + /)/2. For Choice 2, the safeguard is the following:

Choice 2 safeguard: Modify 0k by 0k -- max{0k "0k-1 whenever , k-1 > 1

Finally, we note that, away from a solution, it may be possible for each of the proposed
choices to be greater than one. Accordingly, it may be necessary in practice to impose an
additional safeguard to make sure that Ok [0, 1) for each k, as in the algorithm in 3.1 below
that was used in our experiments.

3. Numerical experiments. In this section, we report on numerical experiments with
the forcing term choices outlined in 2, modified with the safeguards given in 2.1. In the
experiments, for computational convenience, we always used Ok given by (2.2) for Choice 1.
For Choice 2, we used , 1, .9, .5 and ot 2, (1 + )/2. The latter value of c results in an
order ofconvergence roughly comparable to that for Choice 1; see Theorem 2.3 and the remark
after Theorem 2.2. For a broader comparison, we also included the following representative
forcing term choices:

1. the choice 0k 10-1, which requires modestly accurate approximations of Newton
steps and results in local q-linear convergence in the norm II,.

2. the choice 0k 10-4 used by Cai, Gropp, Keyes, and Tidriri [3], which requires
uniformly close approximations of Newton steps for all k and results in fast local
q-linear convergence in the norm II,.

3. the choice 0k 1/2k+l of Brown and Saad [2]. This choice results in local q-
superlinear convergence and allows relatively inaccurate approximations of Newton
steps for small k, when xk may not be near x.; however, it incorporates no information
about F.

4. the choice 0 min{1/(k + 2), IIF(xg)ll} of Dembo and Steihaug [5]. This choice
results in q-quadratic local convergence and also may allow relatively inaccurate
approximations of Newton steps for small k. It incorporates some information about
F; however, it does not reflect the agreement of F and its local linear model and, in
addition, depends on the scale of F.

3.1. The algorithm. A globalized inexact Newton algorithm was necessary because ini-
tial approximate solutions were not always near a solution. We used Algorithm INB of
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Eisenstat and Walker [7, 6]. This is an inexact Newton method globalized by backtracking,
which we write here as follows.

Algorithm INB: Inexact Newton Backtracking Method [7]
LET x0, r/max (E [0, 1), (0, 1), AND 0 < 0min < tgmax < 1 BE GIVEN.
FOR k 0 STEP 1 UNTIL "CONVERGENCE" DO:

CHOOSE AN initial r/g [0, r/max] AND Sk SUCH THAT

IIF(xk) + F’(xk)sgll r/gllF(xg)ll.

WHILE IIF(xg + sg)ll > [1 t(1 r/g)]llF(xg)ll DO:

CHOOSE 0 (E [0min, 0max].
UPDATE Sg OSg AND

SET Xk+l Xk -[- Sk.

Note that Algorithm INB requires r/g [0, r/max] for each initial r/g. For the safeguarded
choices in 2, this necessitates the additional safeguard r/g - min{r/k, r/max}.

Theorem 6.1 of Eisenstat and Walker [7] states that if {xg generated by Algorithm INB
has a limit point x, such that F’(x,) is invertible, then F(x,) 0 and xg x,. Furthermore,
in this case,.the initial r/k and sg are accepted without modification for all sufficiently large k;
it follows in particular that the asymptotic convergence to x, is determined by the initial r/g’s.

In implementing Algorithm INB, we first chose each initial r/g (with r/0 1/2 for Choices
1 and 2) and then determined an initial sg by approximately solving the Newton equation using
GMRES(m), the restartedGMRES method ofSaad and Schultz 12], with restart value rn 20.
Products of F’(xg) with vectors were evaluated analytically in some cases and approximated
by finite differences of F-values in others; see 3.2. When finite-difference approximations
were used, a second-order central difference was used to evaluate the initial residual at the
beginning of each cycle of 20 GMRES steps, and subsequently first-order forward differences
were used within the cycle. This selective second-order differencing gave essentially the same
accuracy as if central differences had been used throughout, but atmuch lower cost (see Turner
and Walker 16]).

The parameters used were r/max .9, 10-4, 0min 1/10, and 0max 1/2. The
norm was the Euclidean norm I1=, In the while-loop, each 0 was chosen to minimize over
[tgmin, (gmax] the quadratic p(O) for which p(0) g(0), p’(O) g’(O), and p(1) g(1), where
g(O) IIF(xg + 0s)ll. Convergence was declared when either IIF(xk)ll2 <_ 10-1211F(xo)l12
or IIsll= _< 10-1. These tight stopping tolerances allowed asymptotic convergence behavior
to become evident.3 Failure was declared when one of the following occurred: (1) k reached
200 without convergence, (2) an initial sg was not found in 1000 GMRES(20) iterations, or
(3) ten iterations of the while-loop failed to produce an acceptable step. All computing was
done in double precision on Sun Microsystems workstations using the Sun Fortran compiler.

3.2. The test problems. The test set consisted of four PDE problems and two integral
equation problems. The PDE problems are all elliptic boundary value problems posed on
if2 [0, 1] x [0, 1]

_
2.

3.2.1. A PDE problem. The problem is

Au + u 0in f2, u 0 on 0f2.

3In some applications, less stringent convergence tolerances are commonly used. As a result, asymptotic conver-
gence behavior may not be very important, and it may be appropriate to use forcing terms that are not asymptotically
increasingly demanding, such as constant forcing terms that give adequately fast q-linear convergence.
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This problem has multiple solutions, but only one that is positive everywhere (McKenna
[10], Schaaf [13]). These properties appear to be shared by the discretized problem, and
finding the everywhere-positive solution can be difficult without a good initial approximate
solution. Discretization was by the usual centered differences on a 100 x 100 uniform grid,
so that n 104. The discretized problem was preconditioned on the right using a fast
Poisson solver from FISHPACK (Swartztrauber and Sweet [15]). Products of F’ with vectors
were evaluated analytically. The initial approximate solution was a discretization of uo(x) =-
XXl(1 Xl)X2(1 x2), which should lead to the everywhere-positive solution for large
Two test cases were considered: tc 100 and tc 1000. For the latter value, the initial
approximate solution is farther from the solution and the problem is harder.

3.2.2. The (modified) Bratu problem. The problem is

0u
Au / X-x + ,keu 0 in f2, u 0 on 0f2.

The actual Bratu (or Gelfand) problem has x 0; see, e.g., Glowinski, Keller, and Reinhart
[8] or the description by Glowinski and Keller in the collection of nonlinear model problems
assembled by Mor6 11, pp. 733-737]. As tc and . grow, solving the Newton equations for the
discretized problem becomes harder forGMRES(20). Discretization andpreconditioning were
as in 3.2.1. Products of F’ with vectors were evaluated analytically. The initial approximate
solution was zero. Two test cases were considered: tc . 10 and tc ) 20.

3.2.3. The driven cavity problem. The problem is

(1/Re)A2ap -+-A Ap 0 in
0xl 0x2 0x2

ap=O and g onOf2,
On

where g(xl, x2) 1 if X2 and g(xl, x2) 0 if 0 < x2 < 1. This is a widely used
test problem; see, e.g., Brown and Saad [2] or Glowinski, Keller, and Reinhart [8]. The
numerical problem becomes harder as the Reynolds number Re increases. Discretization
was by piecewise-linear finite elements on a uniform 63 x 63 grid4, so that n 3969.
The discretized problem was preconditioned on the right using a fast biharmonic solver of
BjCrstad ]. Products of F’ with vectors were approximated with finite differences. The initial
approximate solution was zero. Two test cases were.considered: Re 100 and Re 500.

3.2.4. The porous medium equation. The problem considered here is

A(u2)+dx(u3)+f=0 in

with u 1 on the bottom and left sides of f2 and u 0 on the top and right sides. This is
more or less a steady-state special case of a general problem considered by van Duijn and de
Graaf 17]. Discretization was by the usual centered differences on a 64 x 64 uniform grid, so
that n 4096. The discretized problem was preconditioned on the right using the tridiagonal
part of the Jacobian. Products of F’ with vectors were evaluated analytically. The function

f was a point source of magnitude 50 at the lower left grid point. The initial approximate
solution was a discretization of uo(x) =- 1 XlX2 on the interior grid points, which tended to
require more backtracking for negative d and to cause more oversolving for positive d. Two
test cases were considered: d 50 and d -50.

4We thank P. N. Brown for providing the code for this.
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3.2.5. An integral equation. The problem, from Kelley and Northrup [9], is

l f01 1
cu(x): - cos(yu(x))u(y) dy + - sin 1 c 0, x [0, 1].

Clearly, u (x) 1 is always a solution, and there exist other solutions for at least some values
of c. The discretized problem was determined by approximating integrals using 20-point
Gaussian quadrature5 over 20 subintervals, of [0, 1], so that n 400. No preconditioning
was necessary. Products of F’ with vectors were approximated with finite differences. The
initial approximate solution was a discretization of u0(x) --- 1 + c cos 9zrx. One test case was
considered: c c 1.25.

3.2.6. TheChandrasekhar H-equation. The problem is

u(x) --0, x [O, 1],
1 Lu(x)

where

C fo XU()
Lu(x) =-- - x + d.

This problem arises in radiative transfer problems; see, e.g., the description by Kelley in the
Mor6 problem collection 11, pp. 737-739]. The continuous problem is singular at c 1, and
so is the discretized problem considered here with discretization as in 3.2.5. The discretized
problem becomes more difficult to solve as c ---> but is still tractable at c 1. As in 3.2.5,
no preconditioning was necessary. Products of F’ with vectors were approximated with finite
differences. The initial approximate solution was zero. Three test cases were considered:
c .5, c .999, and c 1.

3.3. An example of oversolving. Algorithm INB with the Dembo-Steihaug [5] choice
r/k min{ 1/(k + 2), F(xk)ll2} was applied to the driven cavity problem withRe 500. The
results are shown in Fig. 3.1, in which the logarithms of the norms of F and its local linear
model are plotted as dotted and solid curves, respectively, versus the numbers of GMRES(20)
iterations. (Most of the F-values used for Figs. 3.1-3.4 would not normally be available but
were computed for these illustrations.) Triangles indicate the start of new inexact Newton
steps. In this example, r/k IIF(x)ll= for each k > 0; the safeguard value 0k 1/(k + 2)
was never invoked for k > 0.

In Fig. 3.1, gaps between the solid and dotted curves indicate oversolving. Note that once
oversolving begins, there is virtually no further reduction in F II until the beginning of the
next inexact Newton step; thus further GMRES(20) iterations represent wasted effort. Note
also the vertical discontinuity in the dotted curve at the end of the fourth inexact Newton step
(after 45 GMRES(20) iterations); this indicates a reduction of the initial inexact Newton step
through backtracking.

To show the benefits gained by reducing oversolving, we applied Algorithm INB with r/k
given by the safeguarded Choice 1 to the same problem. The results are shown in Fig. 3.2. Note
that oversolving is almost eliminated and there are no step reductions through backtracking.
Also, the total number of GMRES(20) iterations is 221, compared to 327 in the previous case.
However, the number of inexact Newton steps is 12, compared to 10 previously.

5We thank C. T. Kelley for providing the code for this.
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FIG. 3.1. Illustration of oversolving with Ok min{ 1/(k + 2), IIF(xk)ll2} on the driven cavity problem with
Re 500. The horizontal axis indicates the number ofGMRES(20) iterations. The solid curve is loglo IIF / Ftsll2;
the dotted curve is loglo FIl.. Triangles indicate new inexact Newton steps.
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FIG. 3.2. Illustration of reduction of oversolving with the safeguarded Choice forcing terms on the driven
cavity problem with Re 500. The horizontal axis indicates the number ofGMRES(20) iterations. The solid curve
is loglo IIF / Ftsll2; the dotted curve is loglo IIFII2. Triangles indicate new inexact Newton steps: "A" indicates
given by (2.2); "V" indicates the safeguard value.
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FI6. 3.3. Illustration of the performance ofAlgorithm INB with selective second-order differencing and safe-
guarded Choice 2forcing terms, ot 2, F .9, on the driven cavity problem with Re 500. The horizontal axis
indicates the number ofGMRES(20) iterations. The solid curve is log10 liE / F’sll2; the dotted curve is log10 IIFII2.
Triangles indicate new inexact Newton steps: "A" indicates Ok given by (2.6); "V" indicates the safeguard value.

3.4. Additional observations and examples. In an algorithm such as the implementa-
tion of Algorithm INB used here, choosing a very small forcing term may risk more than
needless expense in obtaining an unnecessarily accurate solution of the Newton equation.
First, if oversolving results, then disagreement between F and its local linear model may re-
quire significant work from the globalization procedure or even cause it to fail. In the example
in 3.3, the choice 0k min{ 1/(k + 2), IIF(xk)ll2} required one backtracking, while the safe-
guarded Choice 1 did not. We observed a more dramatic example involving the PDE problem
of 3.2.1 with tc 1000. With the safeguarded Choice 1, the iterates from Algorithm INB
converged to the everywhere-positive solution in 40 GMRES(20) iterations; two backtracks
were required. With the choice r/k min{1/(k + 2), IIF(x)ll2}, 164 GMRES(20) iterations
and 11 backtracks were necessary; furthermore, convergence was to a solution other than the
everywhere-positive solution. Such convergence to a "wrong:’ solution may or may not be
undesirable per se, but it does indicate the potentially serious effects of disagreement between
F and its local linear model.

Second, unless special care is taken, a very small forcing term may require more residual
reduction than an iterative linear solver such as GMRES can accurately deliver, especially
when products of F’ with vectors .are approximated with finite differences. Recall from 3.1
that our implementation of Algorithm INB uses selective second-order differencing to obtain
essentially the same accuracy as if second-order differences were used throughout. Using the
safeguarded Choice 2 forcing terms with ct 2 and F .9, we applied this implementation
to the driven cavity problem with Re 500; the results are shown in Fig. 3.3. There is
no evidence of inaccuracy in GMRES(20), and 218 iterations were required for successful
termination. However, when the implementation was changed to use only first-order forward
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FIG. 3.4. Illustration of the performance ofAlgorithm INB with first-order differencing throughout and safe-
guarded Choice 2forcing terms, ot 2, / .9, on the driven cavity problem with Re 500. The horizontal axis
indicates the number ofGMRES(20) iterations. The solid curve is loglo IIF + Ftsll2; the dotted curve is loglo ItFII2.
Triangles indicate new inexact Newton steps: "A" indicates rlk, given by (2.6); "V" indicates the safeguard value.

differences throughout, we obtained the results in Fig. 3.4. Note the increase in the linear
residual norm curve (the solid curve) just after iteration 200. The linear residual norm values
used for this curve were evaluated directly at the beginning of each GMRES(20) cycle and
then maintained recursively within the cycle; the observed increase occurs after the direct
evaluation at iteration 200 and indicates that the recursively maintained values have become
inaccurate. We note also that the number of GMRES(20) iterations required for termination
has increased to 232.

3.5. Summary test results. In Table 3.1, we summarize the results of applying Algo-
rithm INB to all test problem cases described in 3.2. In Table 3.2, we summarize the results
over the PDE problem cases only. The results for the PDE problems are broken out in a
separate table not only because these problems constitute an important problem class but also
because the characteristic performance of Algorithm INB on these problems differed from
that on the integral equations. On the integral equations, and on the H-equation in particular,
GMRES(20) was so effective that the effects of different forcing term choices tended to be ob-
scured. In most cases, only one to three GMRES(20) iterations were required for each inexact
Newton step, and the linear residual norm was often reduced by several orders of magnitude
in a single iteration. On the PDE problems, many more GMRES(20) iterations were typically
required for each inexact Newton step, with only modest linear residual norm reduction per
GMRES(20) iteration. Thus the PDE problems gave a somewhat more refined view of the
effects of different forcing term choices.

The first three columns of Tables 3.1 and 3.2 give geometric means of the numbers
of linear iterations (GMRES(20) iterations), inexact Newton steps, and "function evalua-
tion equivalents," where, for each test case, we define the number of "function evaluation
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TABLE 3.1
Summary test results over all problems. GMLI, GMINS, and GMFEE are geometric means of the numbers of

linear iterations, inexactNewton steps, and "function evaluation equivalents’ respectively. NB, NW, andNFAIL are
the total numbers ofbacktracks, instances of convergence to a "wrong" solution, andfailures, respectively. Results
marked were over successful runs only.

r/k choice GMLI GMINS GMFEE NB NW NFAIL

10-1 65.5* 12.00" 82.3* 2* 1"
10-4 90.2* 7.21" 103.3" 1" 0* 2
1/2k+l 70.3* 9.24* 85.4* 6* 1"
min{1/(k 4- 2), IlF(xk)ll2} 72.2 8.72 86.5 18 2 0
Choice 51.7 9.14 65.3 5 0 0
Choice 2, ct 2, , 51.8 8.38 64.3 6 0 0
Choice 2, ct 2, , .9 52.5 7.89 64.7 8 0 0
Choice 2, c 2, ?’ .5 66.8 7.93 79.4 13 0

Choice 2, ot 1_45, , 50.0 9.05 63.2 4 0 0

Choice 2, ( L., , .9 51.5 8.91 64.9 6 0 0

Choice 2, c 1+_5, , .5 59.4* 7.67* 70.9* 4* 1"

TABLE 3.2
Summary test results over the PDEproblems. GMLI, GMINS, andGMFEE are geometric means ofthe numbers

oflinear iterations, inexactNewton steps, and "function evaluation equivalents]’ respectively. NB, NW, and NFAIL
are the total numbers of backtracks, instances of convergenceto a "wrong" solution, and failures, respectively.
Results marked were over successful runs only.

r/ choice GMLI GMINS GMFEE NB NW

10-1 102.2" 11.89" 117.8* 0* 0*

10-4 152.4" 6.68* 163.7" 1" 0*

1/2g+l 104.2" 8.95* 118.4" 3* 0*

min{1/(k 4- 2), IIF(xk)ll2} 117.6 8.22 130.3 15

Choice 83.5 8.94 96.4 3 0

Choice 2, ct 2, , 81.7 8.18 93.8 4 0

Choice 2, a 2, , .9 83.3 7.57 95.2 6 0

Choice 2, c 2, , .5 98.4 7.57 110.4 10 0

Choice 2, t 2---, ’ 79.6 8.80 91.9 2 0

Choice 2, c 12-, , .9 83.0 8.70 95.9 4 0

Choice 2, c 1-25, F .5 91.9" 6.98* 101.3" 0* 0*

NFAIL

0

0

0

0

0

0

0

equivalents" to be the sum of the numbers of linear iterations, backtracks, and inexact Newton
steps. The number oflinear iterations is the same as the number ofproducts of F’ with vectors;
ifthese products were always approximated by first-order forward differences, then the number
of "function evaluation equivalents" would be equal to the number of function evaluations.
This number provides a rough relative measure of overall work for the test problems used
here. It would be a less suitable measure, e.g., if there were additional costs associated with
beginning a new inexact Newton step, such as initializing a new preconditioner. The fourth
column gives numbers of backtracks over all test cases, i.e., numbers of step-reductions in the
while-loop in Algorithm INB. The fifth column gives numbers of instances of convergence to
a "wrong" solution, i.e., convergence to a solution other than the everywhere-positive solution
in the PDE problem of 3.2.1 or to a solution other than u 1 in the integral equation problem
of 3.2.5. As noted previously, convergence to a "wrong" solution illustrates the potentially
serious effects of disagreement between F and its local linear model. The sixth column gives
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the number of failures over all test cases. If failure occurred in a test case, then that case
was not included in the statistics for columns 1-5; consequently, those statistics are not fully
comparable to those for which all runs were successful.

One sees from Tables 3.1 and 3.2 that the best overall performances were from Choice 1
and from Choice 2 with , .9 and , 1. Taking , .5 in Choice 2 resulted in significantly
less efficiency with ct 2; in addition, it led to increased numbers of backtracks with ct 2
and to one failure and one instance ofconvergence to a "wrong" solution with c (1 /)/2,
which suggest less robustness when , is as small as .5. The other choices included in the tests
were notably less effective.

Among Choice 1 and Choice 2 with , .9 and , 1, Choice 2 with , 1 and
c (1 + /)/2 placed first in every category except mean numbers of inexact Newton
steps; thus this choice might be judged the winner. However, its margin of superiority was
slight: for example, in "function evaluation equivalents," the best and worst means for these
choices differ by less than 4% over all problems and by less than 5% over the PDE problems.
Furthermore, there was considerable variance in the relative performance and ranking of these
choices among the individual test cases.

The results for Choice 2 illustrate that more aggressive choices of the forcing terms, i.e.,
choices that are smaller or result in faster asymptotic convergence, may decrease the number
of inexact Newton steps up to a point but, through oversolving, may also lead to more linear
iterations, more backtracking, and less robustness. Less aggressive choices, on the other hand,
may reduce the number of linear iterations up to a point and improve robustness but may also
result in increased numbers of inexact Newton steps.

4. Summary discussion. We have outlined forcing term choices that result in desirably
fast local convergence and also tend to avoid oversolving the Newton equation, i.e., imposing
an accuracy on an approximation of the Newton step that leads to significant disagreement
between F and its local linear model. The choices, along with theoretical support and practical
safeguards, are given in 2. Practical performance on a representative set of test problems is
discussed in 3.

Choice 1 directly reflects the agreement between F and its local linear model at the pre-
vious step. It results in a certain q-superlinear local convergence; see Theorem 2.2 and the
following remark for precise statements. Choice 2 does not directly reflect the agreement
between F and its local linear model; however, it performed effectively in our tests. Further-
more, it can give up to q-quadratic local convergence (see Theorem 2.3), and the parameters
ot and appearing in it allow flexibility that may be useful in applications.

The best performances in our tests were from Choice 1 and from Choice 2 with F .9
and , 1. (With Choice 2, the values c 2 and c (1 + v/)/2 were used in the tests.
The latter value was chosen to give convergence roughly comparable to that for Choice 1.) Of
these choices, Choice 2 with ?, 1 and ot (1 + v/)/2 could be considered most effective
in these tests, but only by a small margin; any of these choices might be best for a particular
application.

The numerical results in 3 illustrate that, in.a globalized Newton iterative or truncated
Newton method such as the implementation ofAlgorithm INB used here, oversolving resulting
from inappropriately small forcing terms not only may incur unnecessary expense in solving
the Newton equation but also may place significant demands on the globalization and even
cause it to fail. In addition, unless special care is taken, very small forcing terms may call for
more residual reduction than the iterative linear solver can accurately obtain, especially when
finite differences are used to approximate products of F’ with vectors. Conversely, choosing
larger forcing terms may reduce oversolving and avoid inaccuracy in the iterative linear solver
but increase the number of the inexact Newton steps required for convergence.
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