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Introduction to Part 1

Methods for General Problems

Slide 2 Problem: F(z,)=0, F:R"— R".

Problem: rgg}l f(x), f:R™— R

Recast as V f(z.) = 0.

We will study iterative methods for finding some solution.

Theorems are rarely the strongest possible. Proofs will usually be off-line.

\_
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Topic 1
Methods for Problems in One Variable

a. Basic “pure” methods.
i.  The bisection method.
ii. Newton’'s method.

iii. The secant method.

b. Practical hybrid methods.

-

\_

a. Basic “pure” methods.

Bisection Method:
Given a, b, such that F(a) - F(b) < 0.

Until termination, do:

a+b
t c = .
Set ¢ 5

If F(c)-F(b) <0, a+ c; else b+ c.

If F' is continuous on the initial [ag, bo], then there is an z, € [ag, bo] such that
F(z.) =0 and
bo — Qg

ek — @] <
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Taylor series: 0 = F(z.) = F(z) + F'(z)(z« — ) + o(zx — x)

= z.~z— F'(z) 1F(x).

Newton’s Method:
Given an initial z.

Until termination, do:
T+ x—F'(z) " F(z)

If F'is Lipschitz continuously differentiable near x, such that F(z,) =0 and

F'(z4) # 0, then for xq sufficiently near z., z — . with

|1 — 4| < Clag, — 24|

\_

Secant Method:
Given initial z, z_.

Until termination, do:

F(z) — F(z_) ) -t Pl2)

T4 T —
+ ( T—T_

T_ 4T, T4

If Fis Lipschitz continuously differentiable near z, such that F(z,) =0 and
F'(z4) # 0, then for o, z_; sufficiently near z., xp — =, with

|Zk+1 — Tu| < Clop — @u| - [Th—1 — T .
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Comparison.

e Bisection:
— One F-evaluation per iteration.
— Guaranteed convergence (with strong assumption).

— Slow convergence (r-linear).

e Newton:
— One F-evaluation and one F'-evaluation per iteration.
— Only Jocal convergence in general (may diverge without a good
initial guess).

— Very fast local convergence (¢g-quadratic).

e Secant:
— One F-evaluation per iteration.
— Only local convergence in general.

— Fast local convergence (g-superlinear).

.

/
b. Practical Hybrid Methods.

We can construct “hybrid” methods that combine features to retain desirable
properties, eliminate undesirable ones.

Brent’s Algorithm [10, 11].

e Combines aspects of bisection and secant methods, with additional

features to safeguard against worst cases.

e “Enclosure” method, one F-evaluation per iteration (no F’-evaluations),
usually converges at least as fast as the secant method.

e Given a tolerance § > 0, terminates with an approximate solution within
24 of an actual solution.

e A good implementation is subroutine ZEROIN from Forsythe, Malcolm,
Moler [45], available through Netlib (www.netlib.org).

-
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Brent’s Algorithm.

e Initially: Have a, b such that F(a) - F(b) < 0, stopping tolerance § > 0.
e At each iteration: Have a, b, ¢ (initially ¢ = a) such that
>  F(b)- F(c) <0 = solution lies between b and ¢;
> |F(b)] <|F(c)| = bis the current approximate solution;
>  either a, b and c are distinct ora = c.
o lteration: If |b— ¢| < 24, stop with b = z,; else
> Try a new b given by
— linear interpolation (secant step) if a = ¢;
— inverse quadratic interpolation if a, b, and ¢ are distinct.
> Modify if necessary so the step is neither too short nor too long.

> Update a, b, and c.

\_

-

Summary.

e Different “pure” methods have different properties.
— Robustness: likelihood of convergence to a solution.
— Speed: rate of /ocal convergence.

— Expense per iteration: function and perhaps derivative evaluations; in
higher dimensions, arithmetic and storage as well.

e No need to stick to “pure” methods.

— We can combine/augment them with auxiliary procedures to obtain
features we like.

e For a particular application:
— Feasibility and robustness are overriding.

— Given these, we want an optimal balance of convergence speed and
cost per iteration.
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Topic 2

Newton’s Method for
Problems in Several Variables

a. Formulation and properties.

b. Stopping and scaling.

c. Finite-difference Newton's method.

\_

-

a. Formulation and properties.

Problem: F(z,)=0, F:R"— R"

Note:
z1 F(x)
T = |, F)= : :
Tn F,(x)
F'(z) = J@) =(%")e R

ASSUME THROUGHOUT: F is continuously differentiable.

\_




Taylor series: 0 = F(z.) = F(z) + F'(z)(24 — ) + o(z4 — T)

= 2.~z — F'(z)" F(z).

Slide 13
Newton’s Method:
Given an initial z.
Until termination, do:
T+ x—F'(z) ' F(z)

\_

-

Somewhat more realistically . ..

Newton’s Method:
Given an initial z.
Iterate:
Decide whether to stop or continue.
Slide 14 Solve J(z)s = —F(x).
Update <« x + s.

Cost per iteration (in general, full-matrix case) . ..
e one F-evaluation, one J-evaluation,
e O(n?) arithmetic operations,

e O(n?) storage

\_
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“Solve” step: Often this is “approximately solve,” or “solve an approximate
equation.”

e May “perturb” J(z) to mollify ill-conditioning or (in optimization case)
indefiniteness; see [32, §5.5, §6.5].

e May replace J(x) with an approximate Jacobian, as in finite-difference
Newton’s method and quasi-Newton methods.

e May approximately solve with an iterative linear algebra method, as in
Newton iterative (truncated Newton) methods.

e Quadratic local convergence.

Theorem: Suppose F is Lipschitz continuously differentiable at x., and that
F(z,) =0 and J(x,) is nonsingular. Then for xq sufficiently near ., {x)}

produced by Newton'’s method is well-defined and converges to x., with
lzks1 — 24| < Cllzg — 2.

for a constant C' independent of k.
e lterates may diverge if xo is not near a solution.

e Convergence is typically mesh independent for discretized PDE problems
(see, e.g., [2], [1])-




Newton’s method is scale independent, as follows:

Suppose i = Az for A € R™ ". Set F(z) = F(A'%).

Then J(2) = F'(2) = F'(A~'2#)A~", and for

vy =z — J()" F(a), By =& — J(2) 7 F (),
Slide 17 we have
A
Tz  — T = Ax
{ 4
A1
Ty — £'+ = A.’IJ+

(But scaling may affect other algorithmic features.)

Considerations for optimization.

Problem: 12}% f(x), f:R"™— R

Recast as Vf(z.) = 0.
Slide 18
Apply Newton's method with F(z) = V f(z).

Note: J(z) = V2f(x) is symmetric, possibly positive definite.

Note: Iterates may diverge or converge to a point that is not a local minimizer.
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b. Stopping and scaling.

Stopping.

Make general comments and outline general criteria.
Problem-specific criteria are often superior in practice.
Questions (cf. [32]):

e Have we solved the problem?

e Have we bogged down?

e Have we run out of time, patience, or money?

- J

4 )

e Have we run out of time, patience, or money?

Test: Stop if the iteration number reaches some jitmax.

e Have we solved the problem?
Test: Stop if ||F'(z)|| < tolF.

Note: Near a solution, this gives a bound on the error

o=zl <7 (@) 71 (@) (@ =zl & |7 (@) HIF @)= F (@)l < 17 (@) [[tolp-

Caution: tolr must be carefully chosen to reflect the scale of F'. A scaled norm
may be most appropriate if the components of F' differ greatly in scale.

Useful variation ([64]): Stop if [[F'(@)[| < tol rell F(o)l| + tol ass-

- J
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e Have we bogged down?
Test: Stop if ||s]| < tol,.
Similar cautions about scaling apply. There is a similiar useful variation.

Note: For s = J(z) 1 F(x),

sl = 17 () [F(2) = F(w)] | 2 17 ()~ (@) (@ = @)l = [lo — 2. ]l.

So near a solution, this serves as a test on the error in the approximate solution.

-

\_

Scaling,.
Often, components of F' or z differ greatly in magnitude.

Despite the scale independence of “pure” Newton's method, this can create
difficulties, e.g.: in stopping tests, solving for the Newton step, certain
“globalization” procedures (later).

Often useful to rescale: Possibilities (see [32]) ...
e Choose different units for the components of F' or z to improve scaling.
e Apply diagonal scaling matrices and solve the rescaled problem:

— Choose D, = diag (d11,---,dnn) so that d;; is a “typical” value of
x;. Similarly choose Dp.

— Set # = D;'z, F(&) = D' F(D,#).
— Solve Fi(2) =0.
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c. Finite-difference Newton’s method.

Often, analytic evaluation of J(x) is undesirable or infeasible.

We can use instead a finite-difference approximation. See [32] for a theoretical
treatment. Focus on the practical aspects here.

Approximate J(x) using ...

o forward differences
1

J(z)e; = 5 [F'(x + de;) — F(z)] + O(9), ji=1,...,n,

e central differences

J(x)e; = % [F(z + 8¢;) — F(z — d¢;)] + O(%),  j=1,....n.

\_

-

Choosing ¢ .

e The goal is to choose § to roughly balance truncation and floating point error.

o Fairly well-justified choices can be made for scalar functions. The
justifications weaken with vector functions. Nothing is foolproof.

Choices used in [84] that approximately minimize bounds on the relative error
in the difference approximations are ...

> J= [(1 + H.Z‘”)Gp]l/z for forward differences,
> §= [(1 + H,’L’“)CF]l/S for central differences,

where e denotes the relative error in F-evaluations (“function precision™).

Main underlying assumption: F' and its derivatives up to orders two,
respectively three, have about the same scale.
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Typically, if F' has k accurate digits,
— forward differences give ~ k/2 accurate digits,

— central differences give ~ 2k/3 accurate digits.

A crude, often-used heuristic is ...
> & =€'/? for forward differences,
> § = €'/3 for central differences,

where € is machine epsilon.

In practice, the convergence of finite-difference Newton iterates is usually (but
not always) very nearly the same as that of Newton iterates.

For many sparse (especially banded) Jacobians, one can greatly reduce
F-evaluations with the Curtis-Powell-Reid trick [26].

-

Special considerations for optimization.

If derivatives of f are unavailable, then it may be necessary to evaluate
F =V f itself using finite-differences.

Accuracy may be an important issue.

o Finite-difference approximations of J must use relatively inaccurate
F-values.

e Since Vf = 0 at an optimizer, finite-difference evaluation of F' and J may
suffer increasing loss of accuracy through cancellation.

It may be necessary to use central differences, especially near an optimizer.
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Topic 3

Globally Convergent Modifications
of Newton’s Method

a. Criteria for global convergence.

b. Backtracking methods.

c.  Trust region methods.

-

a. Ciriteria for global convergence.

We will explore criteria on a sequence of iterates that make it likely that it
will converge to a solution.

Later, we'll see how to modify Newton steps (or closely related steps) so that
these criteria are satisfied.

Important notes:

e There is no way to ensure that iterates will always converge to a solution
of every problem.

e The goal is to enhance the likelihood of convergence to some solution,

not to any distinguished solution such as a global optimizer.

\_
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Suppose we have {z}.
Ideally: We want conditions on {z} that imply ;, — . such that F(z.) = 0.
Reasonable: Require ||F(zg11)|| < ||F (zx)]|-

This is not enough!

Examples: Take F(z) = 1 — 22 and zo = 0. Define ...

o 2y =21 +2 *D fork=1,2,....

See: z, — 1, F(zx) /4 0. (Steps too short!)

oz =—xp 1+ (=) 127kfork=1,2, ...

See: F(zy) — 0 but {z;} has limit points £1 = no limit. (Steps too long!)

\_

)

-

Criteria based on actual/predicted norm reduction.

Given z € IR™ and a step s € IR", define
e ared = ||F(z)|| — ||F(x + s)||, the actual reduction of || F||;

o pred = ||F(z)|| — ||F(z) + J(x)s||, the predicted reduction of ||F||,

pred/||F(z)l|, if F(z) #0

1, if F(z)=0" the relative predicted reduction.

e relpred = {

Note: pred is the reduction in ||F|| “predicted” by F(z) + J(x)s, the
local linear model of F' at x.

\_
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Theorem [37, Cor. 3.6]: Suppose {z} is such that for each k and
Sk = Tk+1 — Tk,
aredy, >t - pred;, >0
for some t € (0,1) independent of k. If Y. relpred; = oo, then F(z)) — 0.
If also {x}} has a limit point x, such that J(x.) is nonsingular, then
F(z.) =0 and z, — x..

Proof (easy part): Suppose F(zj) 4 0. Note that {||F(z)||} is monotone
decreasing. Then there is an € > 0 such that ||F(z)|| > € for all k, and

k
IF@o)ll > [IF (o)l = |F(zrs2)ll = D ared;
k k =0
> t-Zpredj:t-ZrelpredeF(:cj)H
Jj=0 =0
k
> t-e-Zrelpredj
7=0

It follows that }~°% ; relpred; < co.

\_

-

Under the assumptions of the theorem, if Y77 relpred; = oo, then exactly
one of the following holds:

® ||zl = oo
e {1} has one or more limit points, and .J is singular at each of them;

e 1, — z, such that F(z,) = 0 and J(z.) is nonsingular.

Easy examples show . ..
— it is possible for each of these to hold;

— it may not be possible to satisfy ZZ’;O relpred,;, = oo.
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Directly verifying "> , relpred;, = oo may be difficult/impossible.

Plan: We will construct algorithms that begin each iteration with the Newton
step or something closely related, then modify it if necessary to obtain a step
satisfying ared > t - pred > 0. The controlled nature of the modifications
implicitly ensures "2, relpred, = co, when possible.

There is no need to verify explicitly that % .- relpred; = oc.

Remark: For nonlinear equations, the condition ared > t - pred is a special
case of more general tests considered in [86], [39], and [40].

-

Ared/pred criteria for optimization.

Such criteria have been considered for nggl" f(z) in [75] and [97].

These require ared >t - pred, where
e ared = f(z) — f(x + 3)
o pred = -V f(2)Ts — 2sTV2 f(z)s.
Note: pred is the reduction in f(z) “predicted” by
1
f@) +Vi@)Ts+ 5 sV [(2)s,

the local quadratic model of f.

Convergence results in [75], [97] are in the context of trust region methods.

\_
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Goldstein—Armijo type criteria.

Develop these first for optimization: mgl (z).
zER™

Def.: s € IR" is a descent direction for f at z € R™ if V{7 (z)s < 0.

Note: The Newton step s = —V2f(x)"1V f(z) is a descent direction if
V2f(z) is positive definite.

Goldstein—Armijo conditions [52], [4]: For 0 < a < 8 < 1 and a descent
direction s,

o f(x+3s) < f(x)+aVf(z)Ts (the a-condition),
o Vf(z+5s)Ts>BVf(x)Ts (the B-condition).

The condition 0 < a < B < 1 ensures that there exist steps that satisfy these
conditions (see [32, Th. 6.3.2]). In practice, we need 0 < a < % so the

Newton step will satisfy them near a minimizer (see [32, Th 6.3.4]).

\_

Theorem [109], [110]: Suppose f : R™ — R' is continuously differentiable
and that {xz} is such that each s, = xp+1 — x, is a descent direction
satisfying the two Goldstein—Armijo conditions. Suppose also that

|V f(zre1) — Vf(zr)|| < M|skl| for some \ independent of k. Then either
f(zg) = —o0 or

Vf(;ck)T( Sk ) 0.

skl

Plan: We will construct algorithms that begin each iteration with the Newton
step or something closely related and ultimately produce an acceptable s; that

. L Vi) \" [ s .
is a descent direction and such that is bounded away
IV f(ze)ll (e

from zero. Then the theorem lends itself to strong global convergence

statements.

~
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Theorem: Suppose the assumptions of the previous theorem hold and
f: R™— R" is twice continuously differentiable. If {x}} has a limit point x.
such that V2 f(z.) is positive-definite and, for some € > 0,

- (ng}c%n)T (nin) =

whenever xy, is sufficiently near x., then x, is a local minimizer of f. If also
there is a C such that ||s;|| < C ||V f(xk)|| whenever xy, is sufficiently near .,
then x; — x..

A variation is ...

Moré—Thuente conditions [76]: For 0 < @ < 3 < 1 and a descent
direction s,

o fx+3) < flx)+aVf(x)Ts,
o [Vi(z+s)Ts| <BIVF(z)Ts|

The second is stronger than the Goldstein—Armijo 8 condition, may be harder
to satisfy.

Advantage: It may prevent taking some steps with larger function values.
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Adaptation for nonlinear equations.

For solving F(z.) = 0, apply the Goldstein—Armijo or Moré-Thuente tests with

f@) = 5IIF@)]3-

Note: Vf(z) = J(z)T F(z).

Further remarks:

e The Goldstein—Armijo S-condition is usually ignored in practice. Steps are
tested with respect to the a-condition only.

e For nonlinear equations, the a-condition implies that the condition
ared >t - pred holds with ¢t = « [37, Prop. 2.1].

- J

4 )

b. Backtracking methods.

We will now explore a first way of modifying Newton steps (or closely related
steps) to obtain steps that satisfy acceptability criteria.

Backtracking idea: /f a step is not acceptable, shorten it as necessary to
obtain a step that is.

Def.: s € R" is an inexact Newton step if ||F(z) + J(z) s|| < || F(z)||-

o If F(z) =0, then s = 0 may also be considered an inexact Newton step.

e The Newton step sV = —J(z) ' F(x) is an inexact Newton step.

- J




Slide 41

Slide 42

\_

Lemma: Suppose s is an inexact Newton step and F(x) # 0. Then for fixed

t € (0,1), ared(\s) > t - pred(A\s) > 0 for sufficiently small A > 0.

Proof: For A € (0,1),

Also,

pred(Xs) = |[|F(2)]| - [|F(z) + J(z)(As)|
= [I[F@I =11 =NF(z) + A(F(z) + I (z)
> IF@) - A =NIF (@) - AF(z) + J(«
= X-pred(s) >0,
ared(\s) IF ()|l = |1 F(z + As)|l

IE (@) = [|F(2) + J(z)(As)[| + o(A)
pred(As) + o(A) > t - pred(As)

v 1l

for sufficiently small A > 0.

-

Our basic backtracking method is . ..

Newton’s Method with Backtracking:

Given t € (0,1), 0 < Omin < Omax < 1, and an initial z.

Evaluate F(x).
Iterate:
Decide whether to stop or continue.
Solve J(z)s = —F(x).
Evaluate F'(z + s).
While ared < t - pred, do:
Choose 0 € [Omin, Imax]-
Update s < 0s, re-evaluate F'(z + s).
Update = < z + s and F(z) « F(x + s).




-

The reduction s < s with 6 € [Omin,Omax] is “safeguarded” backtracking:

® § < Omax ensures that the backtracking loop will terminate with an
acceptable step.

® 0 > Onin ensures that steps will not be shorter than necessary.

Slide 43 The algorithm can easily be rephrased to allow for more general “inexact

Newton” steps.

If the initial step is the exact Newton step s = —J(z)"!F(z), and if
subsequently s = As? for 0 < A < 1, then pred = \||F(z)|| and

ared >t - pred < ||F(z+s)|| < (1—t-\)[|F(z)]].

\_

-

Recast the algorithm as . ..

Newton’s Method with Backtracking:
Given t € (0,1), 0 < @min < Omax < 1, and an initial z.
Evaluate F'(x).
Iterate:
Slide 44 Decide whether to stop or continue.
Solve J(z)s = —F(x).
Evaluate F'(z + s); set A = 1.
While [|F(z + s)|| > (1 — ¢t - A)[|F(z)||, do:
Choose 0 € [Omin, Omax)-
Update s < s, A < 0\, and re-evaluate F'(z + s).
Update z < z + s and F(z) « F(x + s).
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Theorem [37, Cor. 6.2): Suppose {z} is a sequence produced by the
algorithm. If . is a limit point of {x}} such that J(z.) is nonsingular, then
F(z,) =0, 23 = T4, and s, = Tpy1 — 2 = —J(z1) " F () for all
sufficiently large k.

o If 2, — x, and s, = —J(xx) "L F(zy) for all large k, then the
convergence is that of Newton's method (probably quadratic).

e No explicit assumption Z;‘;O relpred,, = oo is necessary; this is shown to
hold in the proof of the theorem.

e Exactly one of the following must hold:
> ||zk|| = oo;
> {zy} has one or more limit points, and J is singular at each of them;

> Zr — T, such that F(z.) =0, J(z.) is nonsingular, and the
convergence is eventually that of Newton’s method.

These allow drawing nice corollaries by making assumptions about F'.

Corollary: For 2y € R", suppose L(zo) = {z: ||F(2)|| < ||F(20)l|} is
bounded and J is nonsingular everywhere on £(zo). Then there exists

x4 € L(x0) such that F(z,) =0 and z}, — ., and the convergence is that of
Newton’s method.

Corollary: Suppose F' is norm-coercive on R", i.e., || F(z)|| = oo as
[|z|| = oo. If J is nonsingular everywhere on R™, then F' maps R" onto R",
i.e., for every y € IR", there is an z € R" such that F(z) = y.

In fact, a much stronger result is that a continuous F': R"™ — R" is
norm-coercive on R" if and only if it is onto and one-to-one on R";
see [81, §5.3.8].
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Practical implementation.

e Choose t small, e.g., t =10~*, so a step will be accepted if there is minimal

(but still adequate) progress.

e Choose Ormin = .1, Omax = .5, arbitrary but typical practice (cf. [32]).

L] Choosing0 [S [eminaemax]-

1
Crude but always possible: § = 3

There are more sophisticated possibilities if || - || is an inner-product norm, i.e.,

[|lv]] = /{v,v) for v € R™.  (Example: |[v]]z = VvTv.)

\_

/
Suppose ||v|| = /{v,v) for v € R".

Idea: Choose 0 € [fmin,Omax) to minimize g(6) = || F(z + 0s)||>.

This is exact line search; usually too expensive.

Alternative [32]: Choose 8 € [Omin, Omax] to minimize a quadratic or cubic that
interpolates g.

Suppose we have s = AsY, 0< A <1, sV =—J(@) 1F(z).
Then ¢'(0) = 2(F(z + 6s), J(z + 0s) s), and

g'(0) = 2(F(z), J () s) = =2)||F (z)|]* < 0.

N

Note: s is a descent direction for ||F|| at .

\_
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First step reduction: We have g(0), ¢’'(0), g(1). Choose € € [fmin, Omax] tO

minimize a quadratic that interpolates these.

Subsequent step reductions: We have g(0), ¢'(0), g(1), and a third value of g;

\_

Choose 8 € [Omin,Omax] to minimize a cubic that interpolates these.

Minimizing the quadratic is simple; minimizing the cubic is a bit more involved.
See [32] for details.

-

Details of the quadratic interpolation.

We want p(f) such that
o p(0) = g(0) = [|[F ()|, * p'(0) = g'(0) = =2A||F'(2)||*,
o p(1) =g(1) = [|[F(z + s)|I*.

Setting p = ||F'(z + s)||/||F ()|, we have

p(8) = [|F(2)|I* — 2X|F ()16 + | F () []*(p* — 1 + 21)6?
Note: p"(6) = 2||F(z)||2(p® — 1 + 2.

o If p"(6) <0, take 6 = Oppax.

A
pP2—1+2\"
so choose this 8, correcting if necessary to be in [fmin, Omax).

o If p"(6) > 0, we have p'(§) =0 < 6 =
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Newton’s Method with Quadratic Minimization Backtracking:
Given ¢t € (0,1), 0 < Omin < fmax < 1, and an initial z.
Evaluate F(z).

Iterate:
Decide whether to stop or continue.
Solve J(z)s = —F(z).
Evaluate F(z + s); set A = 1.
While p = ||F(z + 8)||/||F(2)|| > 1 —¢- A, do:
If § =p® —14+2X <0, set § = Ormax.
Else do:
Set 6§ = \/6.
If 0> Omax, 0 < Omax-
If 6 < Omin, 0 < Omin-
Update s « 0s, A < 6, and re-evaluate F(z + s).
Update z < z + s and F(z) + F(z + s).

Backtracking for optimization.

General idea: For mgl f(z), just adapt the previous Newton algorithms,
reR™

replacing F with Vf and J with V2 f and using either the ared/pred
conditions (cf. [75], [97]) or the Goldstein—Armijo conditions to determine
acceptability of steps.

But there are some important considerations.
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Newton’s Method with Backtracking:
Given t € (0,1), 0 < Omin < Omax < 1, and an initial z.
Evaluate f(z) and V f(z).
[terate:
Decide whether to stop or continue.
Solve V2 f(x)s = =V f(z).
Evaluate f(z + s).
While ared < t - pred, do:
Choose 6 € [Omin, Omax)-
Update s < 8s, re-evaluate f(x + s).
Update z < x + s and f(z) « f(z + s)
Evaluate Vf(z + s) and update Vf(z) < Vf(z + s).

-

In the backtracking . ..
o ared = f(z) — f(z + s) and pred = -V f(z)Ts — 15TV f(z)s.
e We can substitute the Goldstein—Armijo a-condition
f(z+3s) < f(z) +aVf(z)Ts for the ared/pred condition.
— Weneed 0 < a < % so the Newton step will be acceptable near a
minimizer [32, Th. 6.3.4].

— The [B-condition is typically not used. Instead, starting with the
Newton step (or a nearby step — see below) and modifying it with
safeguarded backtracking ensure that steps aren’t too short.

e In choosing 0 € [fmin, Omax], we minimize a quadratic/cubic interpolating
polynomial as before.

— First reduction: Minimize over [fnin, fmax] @ quadratic p(6) satisfying
p(0) = f(x), p(1) = f(z +5), P'(0) = G f(z +0s)|,_, = VI(z)Ts.

— Subsequent reductions: Minimize either this quadratic or a cubic that

interpolates also a past value of f; see [32].

e In the while-loop, we only need to re-evaluate f, not Vf.
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In the solve step . ..

Very important: sV = —V2f(z)"1V f(z) is guaranteed to be a descent
direction <> V?*f(z) is positive definite.

Away from a minimizer, we may need to perturb V? f(z) to obtain a
symmetric positive definite B so that s = —B~ !V f(z) is a descent direction.

Idea (see [32, Alg. A5.5.1] for details):

Begin the Cholesky decomposition of V2 f(z).

As necessary, add positive diagonal elements to obtain
LLT =V2f(x) + D, where D = diag (di,...,d,) is such that each
d; >0 and L LT is well-conditioned.

Then use the Gerschgorin Theorem to compute § less than the smallest
eigenvalue of V2f(z).

Then take 1 = min{|8|, max{d;}} and set B = V2f(z) + p 1.

Finally, solve Bs = —V f(z) to obtain a descent direction s.

-

C.

Trust region methods.

\_

We will now explore a second way of determining acceptable steps, the
trust region approach.

First, note possible shortcomings of the backtracking approach.

Backtracking initially tries the Newton step s”, chosen so that
F(z)+ J(z) sV = 0. Then the steplength is reduced as necessary until an
acceptable step if found.

If Fis “badly behaved,” ...

Many steplength reductions may be required, entailing unproductive effort.

The step may achieve relatively little reduction in [|F'||, compared to other
steps of the same length but different directions.

J
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Expand: Suppose || - || = | - || and set f(z) = %||F(z)||3. Then
Vf(z) = J(z)T F(zx) and

Vi) \T( N\ _ [ J@TF@) \ [ —J@&) ‘F(z)
(nwwn) (nanz) N <||J<x>TF<x)||2) (II—J(w)‘lF(w)Hz)
—[|F(2)|3
[7@)TF @)l [T (@) ' F @)l

For an unfortunate combination of F(z) and J(z), this can be ~ 1/k3(J(z)),
where k2(J(2)) = [|J(@)[l2 |7 ()2

So, if J(z) is ill-conditioned, s may be a very weak descent direction for || F||.

)

The trust region idea.

At each iteration ...

e We have § > 0 such that we “trust” the local linear model F(z) + J(z) s
within the region N5(z) = {z +s: ||s|| < d}.

e Choose a step s ideally to minimize ||F(x) + J(x) s|| over all steps of
length < 4.

o |f this step is not acceptable, reduce § and try again.

e Once an acceptable step has been found, consider adjusting ¢ for the next
step.
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General Trust Region Method [37, 54]:
Given 0 <t<u<1,6>0,0< Omin < Omax < 1, and an initial z.
Evaluate F(z).
Iterate:
Decide whether to stop or continue.
Choose s € arg min,, <5 [|1F(2) + J(z) w.
Evaluate F(z + s).
While ared < t - pred, do:
Choose 0 € [Omin, Imax]-
Update § + 66.
Choose a new s € arg miny <5 [|F(z) + J(z) wl|; re-evaluate F(z +s).
Update z < z + s and F(z) + F(z + s).
If ared > u - pred, choose 0 > 1; else choose 0 > Omin.
Update § + 66.

-

e This is a long way from a practical algorithm. The biggest issue will be
approximating s € arg min,,<s [|F(z) + J(2) wl|.

Proposition: If J(z) is nonsingular and s € arg min, <5 [|F(z) + J(z) w|
then

(i) sVl <d=s=s", (i) Is™ll > 6= lsl| = 4.

H

Proof: Since s" is the unique global minimizer of ||F(z) + J(z) w||, (i) is immediate. To
show (ii), suppose ||s™|| > & and s < §. Then ||F(z) + J(z)s|| > 0 and, for 0 < e < 1,

he = J(w)_l{—e [F(z) + J(z) s] }

1£(@) + J(@) (s + he)ll = (1 — )| F(2) + J () s|| < [[F(z) + J(@) 5]

satisfies

Since s < 4, ||s + he|| < ¢ for sufficiently small ¢ > 0, yielding a contradiction.
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-

e The algorithm can break down in the while-loop if J(x) is singular.

Example: For F: R' — R' given by F(z) = 1+ 22, if z = 0, then for any s
we have pred = 0 and ared < 0.

e The algorithm does not break down if J(z) is nonsingular.

\_

Proposition: Suppose J(x) is nonsingular and ||J(z + s) — J(z)|| < A||s]|| for
lls|| < 8. Then for s € arg min,, <5 [|F(z) + J(z) w]|

1

by -1
ared > [1 — Wd} pred.
Remarks:
> The while-loop terminates successfully no later than when § < %

> Lipschitz continuity of .J is not necessary but gives prettier result.

~

)

-

Handy Lemma: Suppose ||J(z + s) — J(z)|| < Al||s|| whenever |s|| < 5. Then
A
I1F(z +s) — F(z) — J(z) s|| < 5|Is|l2

whenever ||s|| < 5.

Proof:

|F(z + s) — F(z) — J(=z) s

'd
H‘/Or EF(cc+ts)dt7J(z)s
H{/ [J(z +ts) — J(z)] dt}s
0
1 -
Atlls|l dt o lIsll = IlslI.
{ [t v =

~
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-

Proof of the Proposition:

A%

Aan2
d— 2| s|?.
pred — Z|is|

Claim: ||s|| < ||J(z)™]| - pred.

Case 2: If ||sV|| > 4, then

and again ||s|| < ||J(z)~ || - pred.

\_

Case 1: If ||s"V]| < &, then s = sV and

ared = ||[F(@)| - [[F(z 4+ s)l| 2 |[F@)|l - |1F(z) + J(2) sl - |[F(z + 5) — F(z) — J(z) sl|

Since ||s|| < 4, the desired inequality then follows from ...

sl =1Is"1l = I = J(@) " F@)|| < 17(@) " I 1F (@) = |17 (@) " || - pred.

pred = IP@I = IF@) + @) ol > 1F@ = 17 + @) (5 27) |
_ 2 — _ sl M = 1P — (1 - IIsll .
= r@i-1 (1= L) r@i=irei - (1- L) e
bell gy F@I 1
1o TN = T e 2 e

~

-

d
Proof:  —|lF(x + 0s)||”

6=0

o For s € arg min,, <5 [|F(2) + J(z) w], ...

> We have pred = ||F(x)|| — ||F(z) + J(x) s|]| > 0. Thus an accepted step
satisfies ared > t - pred > 0.

> If J(z) is nonsingular and F(z) # 0, then pred > 0.
Proof: If ||sV|| > &, then s = s and pred = ||F(z)|. If ||s"]| < &, then

pred = |[F()l| = |[F(2) + J(2) s|| < |F(@)]| = || F () + J () (6]|s" | 7*s™)]|
= IF@I -l —8lls" 17 F @)l = alls" I |1 F ()] > o.

o If [|v||? = (v,v) for v € R"™ and pred > 0 for any s, then s is a
descent direction for || F|| at .

2(F(z), J(z) )

2(F(2), F(2) + J(2) ) — 2| F(2)|®
2||F (@) IF(2) + J (=) sl| - 2I|F ()|
—2||F(z)]| - pred < 0.

IA

~
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Def.: © € R" is a stationary point of || F|| if ||F(x)|| < ||F(z) + J(x) s|| for
every s € R"™.

Note: If F(z) # 0, then z is a stationary point <= there exists no inexact
Newton step.

Theorem [37, Th. 4.4): Suppose {z} is a sequence produced by the
General Trust Region Method. Then every limit point of {x}} is a stationary
point of |F||. If z. is a limit point of {xy} such that J(z.) is nonsingular,
then F(z,) =0, zx — z, and s, = 41 — Tx = —J(z1) "L F(xy) for all
sufficiently large k.

-

Practical trust region algorithms.

“Easy” details are much as in backtracking . ..

e Chooset small, e.g., t = 10~%.

e Choose Onin = .1, Omax = .5.

e Choosing 0 € [0min, Omax]-

Suppose we have an unsatisfactory trial step s. The approach to choosing 8 is
similar to that in backtracking, but the goal is to reduce 4 rather than ||s]|.

First, do: If ||s]| < &, update § + ||s]|.

This may save pointless passes through the while-loop.
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Choosing 6 € [Omin, Omax] (cont.)
Suppose |[v]|? = {v,v) for v € R™.

As before, choose § by minimizing a quadratic or cubic polynomial that
interpolates g() = || F(z + 0s)]|?.

First step reduction: We have g(0), ¢'(0), g(1). Choose € € [Omin, Imax] tO
minimize a quadratic that interpolates these.

Subsequent step reductions. We have ¢(0), ¢’'(0), g(1), and a third value of g;
Choose 6 € [Omin, Omax] to minimize a cubic that interpolates these.

As before, see [32] for details.

-

\_

Details of the quadratic interpolation.

Much as before, but we no longer have s = A\s" = slight differences.

We want p(6) such that
o p(0) = g(0) = [|[F(2)|*, * p'(0) = g'(0) = 2(F(z), J(z)s),
e p(1) =g(1) = |[F(z + s)|1*.
Then p(8) = ||F(x)|]2 + 2 (F(z), J(z)s) 6 + d6?, where
d=|[F(z+s)|I> = |[F@)|” - 2(F(2), J(z)s) -
So ...
o If p"(6) = 2d < 0, take 6 = Oyax.

o If p""(0) =2d > 0, we have p'() =0 <= 6 = — (F(x),J(z)s) /d,
so choose this 8, correcting if necessary to be in [fmin, Omax).
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-

e Updating § for the next step.

Follow [32] and prescribe . ..
(i) & < 20 if good agreement between F' and the local linear model,
(i) 6 « 0 if so-so agreement ...,

(iii) & < /2 if poor agreement . ...
Suppose we have u with t < u < 1.
Choose v with t < v <wu < 1.

Updating procedure:
(i) & < 26 if ared > u - pred;

(ii) 6 « & if u- pred > ared > v - pred,;
(iii) 6 < /2 if v - pred > ared.

Recommendations in [32]: u = .75, v =.1 with ¢t = 107*.

-

e Determining the trust region step.

Issue: s € arg min,, <5 ||F'(z) + J(z) w|| cannot be determined exactly.
Our task is to determine an adequate approximation at reasonable cost.
Begin by characterizing this (exact) s.

e Already know ||sV|| < § = s =s" and ||sV]|| > & = [|s]| = 4.
Assume throughout: I-1=1"I=

Similar developments hold for any other inner-product norm.
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Lemma: If J(z) is nonsingular, then s € arg min,,,<s [|F'(z) + J(z) w||2 is
given by

s=s() =~ [J@)TJ (@) +pl] J(@)TF(z)
for a unique 1 > 0, as follows:

M2 <6 = p=0,

Is¥]l2 > & = p > 0 uniquely determined by ||s(u)|> = 6.

Proof: Case 1: If ||sV]|2 < 4, then 5 = s = 5(0).

Case 2: If ||s¥]|2 > 4, then we know |[s|2 = §. Setting £(s) = &||F(z) + J(z) s||2, we also
know Vi(s) = J(z)TF(z) + J(z)T J(z)s # 0 since s # sV, and we must have V{(s) = —pus for
some p > 0 since s € arg miny <5 [|F(z) + J(z) w|l2. It follows that

[7(@)TJ(2) + pI] s = =J(2)TF(2), i-e., s = s(u), for some p such that [[s(u)||> = 6. It

follows from the Proposition and Corollary below that this p is unique.

~

-

Proposition:
(i) s(u) is differentiable and s'(p) = — [J(2)T J(z) + pl] “su).
(i) o(p) = |Is(w)||? = s(u)Ts(p) is differentiable and

¢ (1) = 25(w)7s' () = ~2s(1)" [T (2)7 T (x) + uI] " () < 0.

Proof: Suppose A(y) is any differentiable, invertible matrix-valued function of a scalar p.
Then for small Ap # 0,

A+ AT —aw T} = A an T (A LIS )

= AW TTA (WA as Ap 0.

Applying this with A(u) = J(z)T J(z) + wI and noting that A’(u) = I, we conclude that (i)

holds, and (ii) follows immediately.

Corollary: ||s(u)||2 is monotone decreasing in p, with ||s(0)||2 = ||s™||> and
lim o0 [15()]1> = 0.




-

Summary observations.

o s(p) =—[J(@)TJ(z) + pl] ~! J(2)TF(x) traces out a differentiable
curve of trust region steps.

e For § > ||sV||2, the step is 5(0) = s,
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e As§ — 0, u — oo and ||s(u)||2 = O monotonically.
o For small §, p is large and s(u) ~ —J(2)" F(z), a short step in the
steepest descent direction for ||F||2 at z.
e Fundamental practical difficulty: We cannot determine exactly an s(u)
such that ||s(p)||2 = 6.
-
/
Approach 1: The Levenberg—Marquardt (“hook” step) approach.
Idea: Determine s = s(u) exactly for a p such that ||s(u)l|2 is approximately 4.
Implementation: Set ®(u) = ||s(u)||2 — d, and use a special iteration to
approximately solve ®(u) = 0.
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e There is no need for great accuracy. The recommendation in [32, §6.4.1]
is to terminate the iteration as soon as 26 < ||s(u)||2 < 4.

e Each iteration requires O(n®) arithmetic operations; this may be
expensive.

e See [32, §6.4.1] for further details.
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Approach 2: The dogleg approach.

Idea: Determine s such that ||s||a = § exactly on a curve that approximates
the s(p)-curve {s(p) : 0 < p < oo}

Implementation: Approximate the s(u)-curve with the dogleg curve Ty, the
polygonal curve connecting s = 0, s = s°P (defined below), and s = s". Then
determine s on the dogleg curve such that ||s||2 = & (easily done).

Def.: s50 is the minimizer of £(s) = 1||F(z) + J(z) s||3 in the steepest
descent direction —V£(0) = —J(z)T F(x), the steepest descent point.

Easily determined:

so_ _II=J@TF@I ; or
T ||J($)J(m)TF($)||%J($) F(x).

e The s(u)-curve and T'py, both begin at s = 0 and end at s = s¥.

Since —=V£(0) = —J ()" F(z) and s(n) ~ —; J(z)" F () for small p,
the s(u)-curve and T py, are tangent at s = 0.

The tangent direction —V£(0) = —J(z)T F(z) is also the steepest descent
direction for || F||2 at z.

Facts (see [32, §6.4.2]): Along the dogleg curve ...
(i) ||F(x)+ J(z) s||2 is monotone strictly decreasing,

(i) ||s|l2 is monotone strictly increasing.

Corollary: For 0 < 6 < ||s™V||2, there is a unique s € T pr, such that ||s||s = 6;
furthermore, s = arg min,cr,, |w|.<sl/|F (@) + J(2) wl|2.

\_

J
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Computing the dogleg step:

Assume sV = —J(z) "' F(z) has already been computed. Then ...
1. If ||sV]|2 < 6, then s = s™.
2. If ||s™||2 > &, then do:

i. Compute s50.

d  sp

ii. If ||sSP||2 >4, then s= ——s
ol 2 P

iii. If ||s5P)|2 < &, then s = 550 + 7(s™ — 5°7), where 7 is uniquely determined by
152 + 7(s™ — s5P)||2 = 6.

Computing 7: We want ||s°C 4+ 7(s™ — s5P)||2 — 62 =0, i.e., ar? + 2b7 4+ ¢ = 0, where
a=|s" =522, b= (s5P)T(s™ — s5P), and ¢ = ||s5P||2 — 2. We know a > 0 and ¢ < 0;
also b > 0 (see [32, §6.4.2]). We want 0 < 7 < 1, so 7 is given by the “+” root in the
quadratic formula: 7 = (—b + M) /a. However, to avoid possible loss of significance
through cancellation, use the alternative formula 7 = —¢/ (b + \/W).

Computing the Dogleg Step:
Given F(z), J(z), s¥ = —J(z) " 'F(z), and § > 0.
If )]sV ]2 < 8, set s = sV

Else do:
J(2)TF(2)13 T
Compute 550 = —”—J(w) F(z).
17 (z)J ()T F(z)]l3
[
If |s5P||2 > 6, set s = ——— 55,
| Ea | P 550115
Else do:
Evaluate a = ||s"¥ — s5P||2, b = (s5P)T (s — 55P), c = ||s°P||2 — 62
andr=— S
b+ Vb2 —ac

Set s = s5P 4 7(sV — s°0).

The outline of the dogleg method on the next slide uses quadratic minimization in reducing
the trust region radius §. Cubic minimization can be used after the first reduction if desired.

Recommendations: ¢ = 10™%, v = .1, w = .75, Omin = .1, and Omax = .5; initial § = norm of
the initial Newton step.

J
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The Dogleg Method:
Given 0 <t<v<u<1,86>0,0< Omin < Omax < 1, and an initial z.
Evaluate F(z).
Iterate:
Decide whether to stop or continue.
Compute s to be the dogleg step for 5.
Evaluate F(z + s).
While ared < t - pred, do:
If ||sV]|2 < &, update & « ||s"]|2.
If d =||F(z+ 8)||2 — | F(2)||2 — 2F(2)T J(z)s < 0, set 6 = Omax-
Else do:
Set 0 = —F(z)TJ(z)s/d.
If 0 > Omax, 0 < Omax; If 0 < Omin, 0 < Omin.
Update § + 64.
Update s to be the dogleg step for the new §; re-evaluate F(z + s).
Update z < =z + s and F(z) + F(z + s).
If ared > u - pred and ||s"V||2 > &, update & «+ 26.
Else if ared < v - pred, update 6 « §/2.

Concluding remarks:

e A double dogleg variation, introduced in [31], is recommended in [32].
This introduces an additional point on the curve to provide an “earlier
bias” toward the Newton direction.

e Which is better — Levenberg—Marquardt or dogleg?

> Levenberg—Marquardt gives marginally better approximations of the
exact trust-region step but requires O(n?®) arithmetic beyond that
required to evaluate s”.

> Dogleg methods require only O(n2) arithmetic but produce slightly
inferior approximate trust-region steps.

> Dogleg methods are usually preferred when linear algebra costs are
dominant, i.e., when n is large or function evaluations are cheap.

J
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Topic 4
Quasi-Newton (Secant Update) Methods

a. General principles and properties; the Broyden update.
b. Other updates.

¢. Special methods for large-scale problems: sparsity preserving updates,
limited-memory methods, considerations for PDE problems.

)

-

a. General principles and properties; the Broyden update.

Quasi-Newton methods are often considered to be anything of the general
form

r, =z — B 'F(x), B~ J(x).

e This includes Newton's method, finite-difference Newton's method,
modified Newton (chord) methods, etc.

e Here, we will follow common traditional usage and use “quasi-Newton
method” to refer to “secant update methods” (cf. [32]).

e In practice, we must augment the general form with “globalizations,” but
we will consider only this “local” form here.

~

J




-

Motivation: Standard Newton's method
zy =x—J(x) F(x)

has very fast (usually quadratic) local convergence, but . ..
e evaluating J(x) = up to n? scalar function evaluations, may be infeasible;
e solving J(z) s = —F(z) = up to O(n?) arithmetic operations.
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General goal: Develop quasi-Newton methods in which B = J(z) is
maintained by updating to incorporate enough information to give adequately
fast convergence while avoiding most arithmetic and function-evaluation
expense.

Specific goal: Develop methods for general problems that require at each
iteration only O(n?) arithmetic operations and no J-evaluations, and which
exhibit superlinear local convergence.

For guidance, consider the secant method for F: R' — R!.

_ 1 _Fl@)-F(=z)
2, =z — B F(x), B_T'

Looks promising: Doesn’t require J(z), exhibits superlinear convergence.
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This suggests: In general, require that B satisfy the secant equation

Bys=vy, where s=zy —uz, y=F($+)_F($)-

Note: This uniquely determines By only if n = 1.

\_
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How to determine By when n > 17

Least-change principle: Make the least possible change in B to obtain By

that satisfies the secant condition.

Later, we may augment this with the requirement that B, satisfy not only the
secant condition but also specified “auxiliary conditions” that reflect the
structure of J(x), such as symmetry or a particular pattern of sparsity.

Rationale: B presumably has useful information about J(z); alter this as little
as possible while incorporating new information expressed in the secant

condition.

-

How to interpret the least-change principle?

“Minimal-rank” interpretation: Make a change in B of the lowest possible
rank to obtain B, satisfying the secant condition.

The rank-one updates B, = B +uv” that satisfy the secant condition are of

the form
(y — Bs)w"

oTs w’s #0.

B+:B+

for w such that wT's # 0.

The most successful of these is the Broyden update [17]

(y — Bs)s™

B, =B
+ + sTs )

regarded as the most effective update for general problems.
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Shortcomings: The minimal-rank interpretation . ..
e fails to distinguish the Broyden update from other rank-one updates,

e is inappropriate for deriving some updates, such as the rank-n
sparsity-preserving updates,

e does not lend itself to understanding and analysis of method behavior.

“Minimal-norm” interpretation: Make the least possible change in B
as measured in an appropriate matrix norm to obtain B, satisfying the secant
condition.

To implement this, we need an inner-product matrix norm.

Use the Frobenius norm and inner product: For A, B € R™*", ...

(A, B>}- = Z A,JB” = trace {ABT},
1<i,5<n

<A,A)]__1/2 = Z Az?j = trace {AAT}l/Q.
1<i,j<n

4]l
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Define O(y,s) = {M € R™": Ms=y}.
Goal: To obtain B} € Q(y, s) for which ||B4 — B||# is minimal, i.e.,

B, = arg mingcg(y,, 1B — Bllr.

Proposition:

T
1y : —_ob ¥
Q(y,s)—{STS—}-M. Ms—O}— i + N,

where N' = {M € R™™™: Ms =0}, the annihilators of s.

-

Note:

e N is a subspace of R™*"™.

T T T
o ﬁeQ(y,s) and 22 e Nt e, ﬁ,M = 0 whenever M € \V.
sTs sTs sTs F

Thus Q(y, s) is an affine subspace of IR™ "™, with

— parallel subspace N,

T
ys

— normal element ——.
sTs
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Then
B, = arg minBeg(y,s)HB — Bllz = Po.s B,

where Py, 5) is orthogonal projection onto Q(y, s) with respect to (-, ) r.

In general: If A =n+ S is an affine subspace with normal n and parallel
subspace S, then
Pjiv=n+ Psv

So
ys”
B+ = 'Pg(y,s)B = —STS + Py B.

Proposition: For any B € R"*",
T
mB:BP—Eﬁ.

sTs

Proof: Just verify that
(i) P =Py, (i) Range Py =N, (i) (PvA,B)r= (A, PyB) .

Then we have

the Broyden update again.




Broyden’s Method:

Given initial z and B.

Evaluate F(x).

Iterate:
Slide 93 Decide whether to stop or continue.
Solve Bs = —F'(z).
Evaluate F(x + s) and set y = F(z + s) — F(z).
(y — Bs)sT

sTs

Update £ < = + s and F(z) « F(z + s).

Update B «+ B +

-

Properties:

e Doesn't require J(x); only requires one F-evaluation per iteration.

e Can be implemented in O(n?) arithmetic operations per iteration after an
initial O(n®) investment.
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> Form B! initially; update at each iteration using the
Sherman—Morrison-Woodbury formula [96], [111].

> Better: Form B = QR initially; update the () and R factors at each
iteration [49], [36].

See [32, §8.3] for details.
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e Superlinear local convergence.

Theorem [21], [33]: Suppose F is Lipschitz continuously differentiable at ..,
and that F(z.) = 0 and J(z.) is nonsingular. Then for xo sufficiently near x.
and By sufficiently near J(xz.), {xx} produced by Broyden's method is
well-defined and converges g-superlinearly to z.. Moreover, {By} and {B, '}
are well-defined and bounded.

-

b. Other updates.

The Broyden update imposes only the secant condition at each iteration.

We might also want to impose special structure, e.g,
— symmetry,
— positive definiteness,
— sparsity,

— etc.

Extend the least-change approach leading to the Broyden update to a general
procedure that will allow incorporating such structure and will lead to methods

with local superlinear convergence.

\_

J




Slide 97

Slide 98

Suppose we have

o (o) -1 = ()" on R™™,

— in practice, usually (-,-) 7, || - || or “weighted” versions,

e an affine subspace A € IR™*" that reflects known structure of J,

— in practice, usually a subspace.

Proposition: If AN Q(y,s) # 0, then AN Q(y,s) is an affine subspace.

Proposition: If J(z) € A for all zz, then AN Q(y,s) # 0.

If AN O(y,s) # 0, take

By =Panow,sB

where P 4ng(y,s) is the orthogonal projection onto AN Q(y, s).
o If AN Q(y,s) =0, see [33], [34].

e B, is the least-change secant update of B in .4 with respect to || - [|.
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lllustration: Suppose we want a symmetry-preserving update, i.e.,
B=B" = B,=B].

Take [|-]|=1llr, A=S={MeR"™": M=MT}.

We want By = Psng(y,s)B.

In general: If Ay =n; + &1 and Ay = ny + Sa, then
e AiNAy=n+8NSs.
e the normal n is characterized by n € Ay N A, n L S NSs.

L4 P.A1O.A2v =n++ 7)810521)-

-

\_

T
Recall: Q(y,s) = z;—s + N, where N = {M € R™*": Ms = 0}.

So:
By =Psno,ssB =N + PsnnB,

where N € SN 9O(y,s) and N L SNN.

Claim 1:
I- :STQ;) (#) (I— %) for general B,
Pon = I-=")B(I—- 2 if B=DBT.
( s 3) ( 8 S)

Proof: Just verify that

(i) P2.n = Psan, (i) Range Psaxy = SNN,  (iii) (PsnvA, B)z = (A, PsanB) x.

J




Claim 2:
syt +ysT sTyssT

N .
STS (3T3)2

Proof: We want N € SN Q(y,s) and N L SN N, so

Slide 101 osT osT
o = paw= (1 =Y (s o)
_ ssTN NssT ssT ssT
- T TsTs T sTs sTs sTs
-~ syT  ysT sTy ssT
- ~ sTs  sTs (sTs)%
From Claims 1 and 2, we obtain
Slide 102 (y — Bs)sT + s(y — Bs)T  sT(y — Bs)ssT

B+:N+PSQNB:B+

sTs sTs ’

the Powell symmetric Broyden update [85].
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There are many variations on the least-change secant update theme.

There are least-change inverse secant updates, in which we make a
minimal-norm change in B~! to obtain an matrix satisfying the secant
condition and any auxiliary conditions, expressed as

B_T_l = PAQQ(S’:U)371 .

So far, we have considered only fixed-scale updates, in which the
inner-product norm is does not depend on iteration-dependent information.

There are also (iteratively) rescaled updates, in which the inner-product
norm is updated at each iteration to reflect current information about natural
problem scaling.

-

I. Least-change secant updates. By =Pangy,s)B-

A. Fixed-scale updates obtained with |M|| = | M|/ = y/trace {MMT}.

1. A= R"*" = Broyden update, a.k.a. “good” or “first” Broyden update [17]

(y — Bs)s™ .

By =B
+ * sTs

2. A={M € R**™ : M = M"} = Powell symmetric Broyden (PSB) update [85]

B4 (y — Bs)sT + s(y — Bs)T B sT(y — Bs)ssT

B, =
+ sTs (sTs)2

3. A = sparse matrices = Schubert or sparse Broyden update [93],[20]
By =B+ Z (s?si)+ eie;-r (y — Bs) s;-r,
i=1

where e; is the it" standard unit basis vector, s; is the vector obtained by
imposing on s the sparsity pattern of the i*" row of matrices in A, and
(sFs:)T = (s¥si)~ ifs; #0 and (s¥'s;)T =0if 5; = 0.

4. A = sparse symmetric matrices = Marwil-Toint update [74], [99] (see also [32]).

J
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l. Least-change secant updates (cont.). By =Pang(y,s)B-

B. Rescaled updates obtained with ||M|| = |M|lw = \/trace {W-1MW-1MT}, where
w=wT >0, Ws =y (assuming y”s > 0).

1. A= R"*™ — Pearson update [83].

2. A={M: M = M"} = Davidon-Fletcher-Powell (DFP) update [27], [44]

_ T _ T T _ T
B+(y Bs)y” +y(y—Bs)” s (y — Bs)yy

By =
+ yTs (y7s)?

1l. Least-change inverse secant updates. B;l = PAQQ(S,y)B—l.

A. Fixed-scale updates obtained with |M|| = | M|/ = /trace {MMT}.
1. A= R"*™ — “second” (“bad”) Broyden update [17]

-1y (s— B 'y)y”

(y— Bs)y" B
yTy '

B;'=B
yT Bs

+ , or By =B+

2. A={M: M = M7} = Greenstadt update [54]

—1, (=Bt +y(s =BT yT(s —B7y)

B:'=B
yT'y (yTy)?

+

3. A = sparse or sparse symmetric matrices = analogues of sparse Broyden and
Marwil-Toint updates (never developed, no applications).
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1. Least-change inverse secant updates (cont.). B;l =Panoe. B

B. Rescaled updates obtained with |M|| = |M||lw = \/trace {W-1MW-1MT}, where
w=wT >0, Wy = s (assuming 3" s > 0).

1. A= R"*™ — McCormick update (see [83])

-1, (s — B71y)sT

(y — Bs)sTB
yTs '

1
=B
sT Bs

B , or By =B+

n

3. A={M: M = MT} —> Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [18],
[19], [42], [51], [95],

= (s =B 'y)sT +s(s — B 'y)T  yT(s— B 'y)ss”

_1_
B+ =B yTs (yTs)2 ’

or
T T
yy Bss™ B
By =B+ —/ — .
+ + yTs sTBs

A very general local convergence analysis for methods using fixed-scale and
rescaled least-change [inverse] secant updates is given in [33]. For almost all
situations, the following is the main point (see [33] for precise results):

“Theorem” [33]: Suppose F' is Lipschitz continuously differentiable at x.
and that F(x.) = 0 and J(z.) is nonsingular. If J(x) € A [or J(z)~! € A] for
all x near x., then for xq sufficiently near x, and By sufficiently near J(z.),
{z1} produced by a quasi-Newton method using a fixed-scale or rescaled
least-change [inverse] secant update method converges q-superlinearly to x..

This provides good theoretical support for using these updates, but doesn’t
provide a basis for preferring any one over any other.

Some updates are more successful than others in practice.
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General recommendations.

e Use the (“good”) Broyden update for general nonlinear equations.

e Use the BFGS update for unconstrained minimization.

e And keep in mind . ..

— the DFP update,
— the Powell symmetric Broyden update,

— the sparse Broyden update.

And there are many additional possibilities, such as “partially computed”
Jacobians used, e.g., in nonlinear least-squares methods [30], [33].

c. Special methods for large-scale problems.

The two major quasi-Newton approaches are ...

— sparsity-preserving updates

— limited-memory (implicit) updating




Sparsity-preserving updates.

The known updates are ...

e The Schubert or sparse Broyden update [93],[20]

B, =B+ s Ty — Bs) sT,
Slide 111 " Z K
where ¢; is the it" standard unit basis vector, s; is the vector obtained by
imposing on s the sparsity pattern of the i*" row of matrices in A, and
(sTs;)t = (sTs;) "' ifs; #0 and (sFs;))* =0if s, = 0.
e The Marwil-Toint sparse symmetric update [74], [99] (see also [32]).
Methods using these enjoy local g-superlinear convergence [33, Th. 3.5].
Limited memory (implicit) updating.
The popular low-rank updates are desirable but straightforward implementation
entails full matrices.
We will develop limited-memory updating for the Broyden update
Slide 112 (y — Bs)sT

By =B
+ * sTs
With the Sherman—Morrison-Woodbury formula [96], [111], we have

s— B 1ly)s'B~!
sTB-1y

= {I y =B } B

sTB1y

B_i__l — B—l + (




By extension, if we start with By and generate By, ..., By through Broyden
updating, we have

B.'=[T+vwl]...[I+vw]]| B!, (*)

where fori =1, ..., k,

Slide 113 sio1— By Ly

Vi = ) Wi = Sj—1-

T -1,
$i—1BiZ1yi—1

Limited memory idea:

e Choose Bg; obtain and store a factorization.

e For 1 < k < some ko, create and store vy, wy and apply B; " using (%).

- J

4 )

Issues:
e How many vector pairs ...
— are needed for good performance?
— can we afford to store?

e What do we do when we reach the maximum number?

Slide 114
Note: (x) can be recast as

k
—1 -1 o~
B, =B, +E v}
i=1

for appropriate {0;, Wy }.

For more, see [14], [79], [80] and the references therein.
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Considerations for PDE problems.

Discretized PDE problems are perhaps the most frequently encountered
large-scale problems.

Straightforward implementations of quasi-Newton methods are often
disappointing.

Ultimate superlinear convergence notwithstanding, the convergence of iterates
often slows intolerably as the mesh is refined.

Fundamental problem: Quasi-Newton methods do not generally exhibit local
superlinear convergence in function spaces!

A promising approach is (1) formulate the problem in a function space setting
so that the quasi-Newton method exhibits local superlinear convergence, then
(2) apply the corresponding method to the discretized problem.

See [59], [91], [56]. [55]. [57]. [58]. [65]. [66]. [67]. [70], [70]. [68]. [69]. [62]-

Topic 5
Other Methods

a. Fixed-point iteration.

b. Path following (continuation, homotopy) methods.




a. Fixed-point iteration.

Fixed-Point Problem: =z, =G(z.), G:R" — R".

Slide 117 Note: z. = G(z.) < F(z.) =0, where F(z) =z — G(x).

Thus every fixed-point problem can be recast as a zero-finding problem, and

vice versa.

However, many problems occur naturally in fixed point form, and are most
easily treated in that form.

-

The natural iteration is . ..

Fixed-Point lteration:
Given an initial z.

Until termination, do:

Slide 118 z < G(z)

also known as functional iteration, Picard iteration, successive substition, ...

We will develop some fairly standard results for this iteration typical of those
found in many introductory numerical analysis texts, e.g., [6].

-
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Assume throughout that || - || denotes a norm on R™ and also the induced
norm on IR™*", defined by

M
||M||Ema.x” 2l _ ax || Mz]|.
220 |lzl|  Jlzl=1

Def.: G is a contraction mapping on D € IR" if there is a y € [0, 1) such that

1G(z) =G <llz =yl

forall z, y € D.

Note:

e (G is a contraction mapping on D <= @ is Lipschitz continuous on D
with Lipschitz constant v < 1.

e (G is a contraction mapping on D if it is differentiable and
[|G'(z)|] <7 < 1onD. (More on this later.)

\_

~

)

-

Theorem 1: Suppose G is a contraction mapping on a closed set D and
G(D) C D. Then there is a unique z,. € D such that z, = G(z.). Moreover,
for any xog € D, the fixed-point iterates converge to x, with

|Zre1 — z«l| < Yl|zk — 24|| for each k.

Proof: Suppose zo € D is given. If we have defined z, € D for some k&, then

zr4+1 = G(zr) € D; thus by an easy induction, the fixed-point iterates are well-defined and
remain in D. We have ||zxy1 — 2|l < Yllzr — zp—1]] < ... < ¥* 7|21 — z0l|, whence for a
positive integer ¢,

£
k—1
k4e—1 k—1 k—1 1 Y
lzkte — il < (’7 Ty )||w1—$o||=’Y E | ez —zoll < [lz1 — zall.
j=0

1—x

It follows that {z} is a Cauchy sequence and, since D is closed, that there is an z,. € D
such that z; — z.. We have G(z.) = limip— oo G(Zk) = limMk— 0o Tht1 = T4, SO z4 IS a fixed
point. To show uniqueness, suppose #. = G(#.) for some . € D. Then

2+ — zull = 1G(24) — G(z)|l < YllEw — |-
Since v < 1, this can hold only if 2, = z.. Finally, we note that

lzkt1 — zall = |G(@r) — G(z)]| < vl@n — @],

\ and the proof is complete.

~
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Theorem 2: Suppose z, = G(z.) and that G is continuously differentiable
near x, with ||G'(x)|| < 1. Then for any n such that |G'(z.)|| < n < 1, there
is a & > 0 such that if ||zo — z«|| < d, then the fixed-point iterates converge to
Ty with ||zg11 — .|| < ||k — 24| for each k.

Proof: Suppose we have n such that ||G'(z.)|| < n <1, and let § > 0 be such that
IG'(z)|| < n whenever z € Ns(z.) = {y: |ly — z«|| < 6}. Then for any z, y € Ns(z.),

H/O e+ e - - |

1
/ G (y + t(z — y)ll dt ||z — yll < nllz —yll.
0

1G(z) — Gl

/G’(y+t(m—y)>(m—y)dt”
0

IN

Thus G is a contraction mapping on Ns(z.). Moreover, if z € Ns(z.), then
|G(z) — z.| = ||G(z) — G(z.)|| < nllz — z+|| < &, whence G(z) € Ns(z.). Thus
G(Ns(z+)) C Ns(z.), and the theorem follows from Theorem 1.

The “local” result of Theorem 2 can be refined to make clear that local
convergence is norm-independent, even though local ¢-linear convergence is
norm-dependent in general. Toward this end, define

o (M) ={\: Mz = Az, some z # 0}, the spectrum of M,

o p(M) = Agj%%(l) |\, the spectral radius of M.

Proposition: If || - || is a norm on R™™" induced by a norm || - || on R", then
p(M) < ||M]|| for every M € R™ ™.

Proof: If X\ € o(M), then there is an z # 0 such that Mz = Az and ||z|| = 1. Then

IM]| > |Mz]| = Allzll = |Al, and it follows that || M|| > maxx () Al = p(M).

Lemma [63, p. 12]: For a given M € R™™™ and € > 0, there is a norm || - ||
on R™ for which the induced norm || - || on R™ " satisfies | M|| < p(M) + e.

J
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The following result shows that local convergence to a fixed point z, is
determined by p(G’'(z.)) and not by any particular norm.

Theorem 3: Suppose z, = G(z.) and that G is continuously differentiable
near z,. with p(G'(z)) < 1. Then for any n such that p(G'(z.)) <n <1,
there is a norm || - || on R™ and a § > 0 such that if ||zo — x.|| < 6, then the

fixed-point iterates converge to x, with ||zk+1 — z«|| < n||xk — x4|| for each k.

Proof: By the above lemma, there is a norm || - || on R™ such that ||G'(z.)| < n for the

induced norm || - || on R™*™. With this norm, the theorem follows from Theorem 2.

-

Application 1. Suppose we have an ODE initial value problem y' = f(t,v),
y(0) = yo. Numerically solving this using a backward differentiation formula
method requires solving at the mth time step a system

q
Ym = hIBOf(tm:ym) + am, A = Zajymfj:
=1

to obtain y,, & y(t,), where h is the time step and Bo, a4,..., @, are method
coefficients. (See, e.g., [14, §1.1].)

This suggests the fixed-point iteration

YD = hBo f(tm, yF)) + am,
(0)

with y,” given by an explicit “predictor” method.

Here, G(y) = hBo f(tm,y) + am and G'(y) = hfo fy(tm,y). Then for a given
[| - ||, we have ||G'(y)]| < 1 and the iteration converges whenever

1
"< Bofy )

~
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Application 2. Consider a Newton-like iteration

r. =2 — B(z)'F(2).
This is of fixed-point form, with G(z) = =z — B(z) 1F(z).
Near z. such that F'(z.) = 0, we have
G'(z) =1 - B(z)™ J(z) + O(llz — =),
so G'(z«) = I — B(x.) 1J(z.). It follows that the iteration is locally
convergent to z, if || — B(z«)~*J(z.)|| < 1 for some induced norm on
R™™, equivalently if p(I — B(z,) "' J(24)) < 1.
Note: Taking B(z) = J(z) gives Newton's method, for which
G'(z,) =T — J(z,) ' J(zs) = 0.

It follows that Newton's method is locally and at least superlinearly convergent.

J

\_

Remark: Theorems 1 and 2 extend beyond IR™ to statements valid on any

complete normed linear space (i.e., any Banach space). The appropriate
extension of the notion of differentiability is Fréchet differentiability.

Application 3. Suppose we have an ODE initial value problem

ylzf(t,y), y(O) = Yo,

and we would like to show a solution exists for 0 <t < T.
Assume: f is continuous and |f(t,2) — f(t,y)| < A|z — y| wherever needed.

If y(t) exists, then
t
y(t) = yo + / f(r,y(r) dr.

Conversely, any continuous y satisfying this is a solution of the IVP.

~




-

Denote by C[0,T] the set of continuous functions on [0, 7.

For any y € C[0,T], we can define a new function G(y) by
6w =+ [ fra)ar

Slide 127 Clearly G(y) € C[0,T], so G : C[0,T] — C[0,T].

For any y € C[0,T] and k > 0, define

—kt
= max t)|.
||y|| telo. ]6 |y( )|

This is a norm on C[0,T], and C[0,T] is complete in this norm.

Choose k > \.

Claim: G: C[0,T] — C[0,T] is a contraction mapping.
Slide 128

It follows that there is a unique y € C[0,T] such that

t
y(t) = Gy)(®) = yo + / fry(r)dr,  0<t<T,

and this is the unique solution of our IVP on [0,T].
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Proof: For y, z € C[0,T], we have

|G(y)(1) — G(2)(1)] Yo +/ f(ry(r)) dm — yo — / fr,z(7)) dr
0 0

< / [f(rsy(7)) — F(7,2(T) | dr
0

< / Aly(r) — z(m)|dr = / AeT"Te T T |y(7) — z(7)| dr
0 0

<

t t
{ max e " |y(T) — z(T)\} Aet T dr < ||y — 2| Aet™T dr
0<r<1t o o

= 2 1)yl

Then

>

TG - GAB] < = (1= ™) Iy — 2Il < %ny— 2|l

K
It follows that

IG(y) - G(2)ll = max e™"*|G(y)(t) - G()(¥)] < iHy -z,
t€[0,T] K

and G is a contraction mapping.

\_

-

b. Path following (continuation, homotopy) methods.

Path-Following Problem: Given F : R™ x R' — IR", solve F(z,\) =0
over a range of (x, \)-values.

We will consider only the most basic aspects and solution methods.

e For an extensive survey, especially of mathematical aspects, see [3].

e For recent developments in software and algorithms, with many pointers
to the literature, see [108].




[50], [105]).

eg.

The Bratu (Gelfand) problem (see,

Example 1

u =0 on 0D

[0,1] x [0,1],

0in D =

Au + e*

Continuation on the Bratu problem, 32 x 32 grid. Left: A vs. ||u||co; right: w.

A problem of Chan [22], [105].

2

Example

u =0 on 0D.

’

=0inD=[0,1] x [0,1]

)

1+ u+u?/2
1+ 42/100

Au+ A

Continuation on the Chan problem, 32 x 32 grid. Left: A vs. ||u|/co; right: u.
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In considering the path following problem, goals may include ...

o following the solution curve in detail, possibly to reach otherwise
inaccessible solutions,

e determining distinguished points on the curve, such as turning or fold
points, or bifurcation points,

e just getting from an initial point to a final point.

-

Two broad method/problem classes:

Continuation methods are generally associated with problems that involve a
natural continuation parameter.

Example: Continuation in the Reynolds number in computational fluid mechanics.

Homotopy methods generally deal with artificially constructed problems that
begin with an easy problem and deform it into the problem of real interest.

Example: To solve F(z.) =0, F: R — R"™, construct a homotopy map pq(z, \), €.g.,

palz, A) = AF(z) + (1 — A)(z — a), 0<A<1.

Then begin with (z,A) = (a,0) and follow the curve to (z.,1).




Slide 135

Slide 136

We will focus on algorithms for following the curve that will be useful for all
methods.

Convenient notation:

e I' = solution curve.

o (z,\) =% € R".

o F(z,)\) = F(z), F'(z,)\) = F'(z) € R™"+Y) .

o ['(z) = [Fy(z), F\(%)], where F,(z) € R™*" and F)\(z) € R".

We will assume I is smooth, will not consider bifurcation.

In particular, we will assume F'(Z) is of full rank n on T'.

-

\_

Naive approach: Given a current (z,\) €T ...
> Increment A < A,.

> Solve F(z4,A+) =0 for z.

This breaks down at turning points.

e )\, may be such that no z exists.

e [} is singular at turning points and ill-conditioned nearby.

We will outline methods that treat & and F(Z) without distinguishing ).
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Method framework:

1. Determine an initial z € T'.
2. Advance along T'.
i. Predict the next point.
ii. Correct to return to I'.
iii. Adjust the steplength for the next advance.

3. If necessary, perform a refined computation of the final solution.

Determining the initial Z € I" is often problem-dependent and a matter of
solving F'(z,\) = 0 for z, given an initial A.

For comments on adjusting the steplength and on refined computation of the
final solution, see [108].

J

Predicting the next point.

Techniques typically depend on one or more unit tangents to I'.

Simple possibility: If # is a unit tangent at the current point € T, then
predict T, = T + ht as the next point, where h is the current steplength.

More sophisticated [108]: Assume that arclength s is computed along T',
allowing parametrization in s. Given current and previous points Z(s;) and
Z(s2) on T and unit tangents £(s;) and #(sy) at those points, determine an

Hermite cubic polynomial p(s) such that

)

p(s1) = Z(s1), P'(s1) = #(s1)
p(s2) = Z(s2), P'(s2) = 1(s2)
Then predict Z; = p(s1 + h), where h is the increment in arclength to the

next point.
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Correcting to return to I

Corrector iterations typically begin with Z; determined by the predictor and
produce iterates Zyy1 = Ty, + Sk, where

F'(Zy) 5p = —F(Z4).

This is an underdetermined system.

We will outline iterations based on two ways of specifying a unique solution.

The normal flow iteration.

Compute 3 = —F'(z;)* F(Zy), where “+" denotes Moore—Penrose
pseudoinverse, i.e., the minimal-norm solution.

The resulting iteration exhibits local quadratic convergence to I" [106].

Computing 5k:
e If direct solution is preferred,
1. Factor F'(z;)T = QR, where Q € R""tV*" R e R™".
2. Solve RTw = —F(3},).
3. Form 53, = Quw.

o If iterative solution is preferred, see [105].

Computing the new unit tangent #: Given a unit tangent %y at a previous
point, compute At = —F'(Zr) T F'(Zx)to. Then F'(Z;)(to + At) = 0, hence
to + At is a tangent. Then take T = (o + A?) /|20 + Al

J
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The augmented Jacobian iteration.

()= ("),

where %o is a unit tangent at a previous point.

Compute 5 by

This iteration also exhibits local quadratic convergence to I' [106].
Computing 55: Straightforward (but watch out for bad scaling); see also [105].

Computing the new unit tangent #: With % as above, compute At such that

("g”)a=(75),

As before, to + At is a tangent, so take t = (to + At)/||to + At]|.

\_

)

-

Final Example: The driven cavity problem.

d
(1/Re)A%p+ =— — Ayp— — — Ay =0in D =[0,1]x[0,1], + =0 and 9% _ g on 8D,
E)zl 8$2 (91)2 8$1 on

where g = 0 on the sides, g = 1 on top. The discretization was straightforward centered

differences, which results in spurious solutions for low Re [92].

500

Re vs. ||¥]|eo, m X m grids with m = 24, 28, 32, 36.

9),
<

o

ﬁ
&

Solutions on the upper, middle, and lower branches at Re = 1100, 32 x 32 grid.

\_

~

J
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Introduction to Part 2
Methods for Large-Scale Problems

We'll again consider iterative methods for . ..
Problem: F(z,)=0, F:R"— R".
and also ...

Problem: rggh f(x), f:R™— R', recastas Vf(z.)=0.

Assume: lterative linear algebra methods are preferred.
Main motivation: The case of very large n, probably sparse J(z) = F'(z).

As before, theorems may not be the strongest possible; proofs are usually

\ off-line.

)

-
Topic 6

Inexact Newton and Newton—Krylov Methods

a. Newton-iterative and inexact Newton methods.
i. Formulation and local convergence.
ii. Globally convergent methods.

iii. Choosing the forcing terms.
b. Krylov subspace methods.

¢. Newton—Krylov methods.
i. General considerations.
ii. Matrix-free implementations.

iii. Adaptation to path following.

~
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a. Newton-iterative and inexact Newton methods.

The model method will be . ..

Newton’s Method:
Given an initial z.

Iterate:
Decide whether to stop or continue.

Solve J(z)s = —F(z).
Update 2 < = + s.

Here, J(z) = F'(z) = (BZ;(;”)) c R,

\_

-

About Newton's method, recall ...

mesh-independent on discretized PDE problems [2].

local and global convergence, etc.

Assume throughout: F' is continuously differentiable.

e Major strength: quadratic local convergence, which is often

e We've previously discussed stopping, scaling, globalization procedures,
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Suppose that jterative linear algebra methods are preferred for solving

The resulting method is a Newton iterative (truncated Newton) method.

—F(x) is solved only approximately.

Key aspect: J(z)s =

Key issues:

e When should we stop the linear iterations?
e How should we globalize the method?

e Which linear solver should we use?

The first two can be well treated in the strictly more general context

of inexact Newton methods.

-

the norm of the local linear model of F'.

Inexact Newton Method [28]:
Given an initial 2.

Tterate:
Decide whether to stop or continue.

Find some 7 € [0,1) and s that satisfy
I F () + J(x) s]| < nllF(z)]]-
Update ¢ < x + s.

An inexact Newton method [28] is any method each step of which reduces

~
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e Our previously considered globalized Newton methods are inexact Newton
methods.

e A Newton iterative method fits naturally into this framework:
— Choose 5 € [0,1).

— Apply the iterative linear solver until ||F(z) + J(z) s|| < n||F(x)]]-

> Used in this way, 7 is called a forcing term.

> The issue of stopping the linear iterations becomes the issue of
choosing the forcing terms.

)

e An inexact Newton step exists for every n € [0,1) <= F(z) € range J(z).

e If J(x) is nonsingular, then an inexact Newton step exists for every 5 € [0,1).

If F(x) # 0, then an inexact Newton step exists for some 7 € [0,1) <= =z is
not a stationary point* of ||F||.

If || - || is an inner-product norm, then an inexact Newton step exists for some
n€[0,1) < F(z) L range J(z).

*

z is a stationary point of || F|| if ||F(z)|| < ||F(z)+ J(z) s|| for every s.

\_

~
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Local convergence is controlled by choices of n [28].

Theorem [28]: Suppose F(z.) =0 and J(x.) is invertible. If {x}} is an
inexact Newton sequence with xq sufficiently near x., then

® Nk <Mmax <1 = xp =z, g-linearly*,
e i, —» 0 = =z — x. q-superlinearly**,

If also J is Lipschitz continuous*** at x., then

e n, = O(|F(ar)|]) = =xr — x« g-quadratically****.

* For some 8 < 1, ||zrt1 — Z«||s(ar) < Bllzr — z«|| 5z, for sufficiently large &,
where ||wl|j(a,) = |/ (z+) wl|.

||z;c+1 — z*|| < Bk||a:k — z*||, where Br — 0.

EEEY

For some X, ||J(z) — J(z.)|| < A||z — z.|| for z near z..

**** For some C, ||zrt+1 — 24| < Cllzk — z.||? for all k.

\_

-

Proof idea:
Suppose ||F(z) + J(z) s|| < n||F(z)||. Setzy ==xz+s.
We have F(z4) ~ F(z) + J(2)s =  [IF(e)ll § nllF(@)]l.

Near z. ...

F(z) = F(z)— F(z.)~J(zs)(z—2x),

F(zy) = F(z4) - F(z.) ® J(z.) (24 — 2s).

S0 |J(2.) (24 — )|  nllJ(@2) (@ — 2], ie.,

llz4+ — z*”J(m*) é nllz — 5”*”.1(;»,)
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Globally convergent methods.

A very general method is ...

Global Inexact Newton (GIN) Method [37]:
Given an initial z and ¢ € (0,1).
Iterate:
Decide whether to stop or continue.
Find some 7 € [0,1) and s that satisfy
I1F () + J(z) sl| < nllF ().
and
I1F(z+ )|l < [L—t(1 —n)]l|F ()]
Update 2 < = + s.

Recall: Given z € IR" and a step s € IR", define
o ared = ||F(z)|| — ||F(z + s)||, the actual reduction of ||F||;

e pred = ||F(z)|| — || F(x) + J(x)s||, the predicted reduction of || F||,

A step s of the GIN method satisfies . ..

pred = (1 =n)||F(zk)|l and  ared > ¢(1 —n)[|F(z)]|

Compare to our earlier criterion ared > t - pred > 0.
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Existence [37, Lem. 3.1, Cor. 3.2]: There exist steps satisfying both

[F(z) + J(z) s|| <nl|F(z)]| and [[F(z + )| <[1 —¢(1 = n)][[F(z)]]

for some 1 € [0, 1) whenever ...
— there exists any inexact Newton step from z,

— z is not a stationary point of ||F|| at which F(z) # 0.

The main global convergence result is ...

Theorem [37, Th.3.4]: Suppose {x\} is produced by the GIN method. If
Yreo(l = ni) = oo, then F(zy) — 0. If, in addition, z. is a limit point of
{zy} such that J(x.) is nonsingular, then F'(z,) = 0 and zj, — ..

e The analysis previously outlined for steps satisfying ared, >t - pred, > 0
is a special case obtained by defining ny, = ||F(zx) + J (k) skl /|| F(zx)],
which gives pred;, = (1 — ng)||F (zx)|| and relpred;,, = (1 — ng,).

e The previous argument can be adapted to show the “easy” part:

o0

dl-m)=o00 = F(z) 0.
k=0
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As before . ..

o If 377 (1 — i) = oo, then exactly one of the following holds:
> [|zg]] = oo
> {z1} has one or more limit points, and J is singular at each of them;

> Z — x4 such that F(z.) = 0 and J(z.) is nonsingular.

e Easy examples [37, pp. 400-401] show, depending on the problem, ...
— it is possible for each of these cases to hold;

— it may not be possible to satisfy > -, relpred, = co.

e Directly verifying 3,2 (1 — n) = co may be difficult/impossible, but we
will consider algorithms for which this isn't explicitly required.

J

-

Application: Global approximate Newton methods [8].

Global Approximate Newton (GAN) Method [8]:
Given zy and Ky > 0.
Iterate: For k=0,1, 2, ...
Solve My, 5, = —F (1), where My ~ J(zy).
Choose K}, € [0, Kq).
Set s = 713k, where 7, = 1/(1 + Ky||F(zx)]])-

Set zx11 =z + Sk
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The global convergence result of [8, §2] is based on the following assumptions:
1. L(zo) = {z| ||[F(z)|| < ||F(z0)||} is bounded.
2. Jis invertible on L(zo), each Mj, is invertible, and ||M; || < « for all & > 0.
3. 15(y) = J (@)l < vlly — |l for z, y € {u] |[ull < sup,ep(ag) Il + &l F(20)lI}-
4. F(zi) #0 and 7ix = ||F(zw) + J(z2)5 | /I F(z3)]] < 7o < 1 for all k > 0.

5. Fort € (0,1 — 7o), Kx > (k%7/2)(1 — 7k — t) ™" — ||F(z)||~* for all & > 0.

Proposition (cf. [8, p. 285, Th. 1, conclusion(i)]): Under these
assumptions, there exists an x, such that F(z,) = 0 and zj, — ..

-

\_

Proof: Set n, = (1 — ) + T € [0,1) for each k. Then

18 (2x) + J(@r)sell = [|(1 — 7o) F(2x) + mo[F(2x) + J(@r) 5]l < el F () |-

By [8, (2.18), p. 283], we also have ||F(zy + s3)|| < (1 — t73) || F(z)|l-

Since 1 — ¢, <1 —t7%(1 — ) = 1 — t(1 — ), this gives

1F(zr + si)ll < [0 —¢(1 = mi)] 1 F (z)|]-

Thus, Algorithm GAN is a special case of Algorithm GIN.

To conclude, note that ...

_ — — 1 1
o1 —m =711 —7x) > (1l — 7o) and 7, = TR IF G 2 TFRGIF (oI
o Consequently, Z:"_O(l — 1K) = oo.

e Assumptions (1) and (2) imply {zx} has a limit point z. € L(zo) with J(z.) invertible.

It follows from the Theorem that F(z.) =0 and zp — z..

J
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Move toward practical algorithms with . ..

Inexact Newton Backtracking (INB) Method [37]:

Given an initial z and ¢ € (0,1), Pmax € [0,1), t € (0,1),
and 0 < fmin < Omax < 1.

Iterate:
Decide whether to stop or continue.

Choose initial n € [0, ymax] and s such that
1 (z) + J(2) sl| < nllF ()]
Evaluate F(z + s).
While ||F(z + s)|| > [1 — t(1 — n)]|| F(=)||, do:
Choose 0 € [Omin, Imax]-

Update s «+ fsand  + 1 — 6(1 — 7).
Revaluate F(z + s).

Update z < z + s and F(z) + F(z + s).

-

\_

e This clearly lends itself to Newton iterative implementations.

e This becomes our previous “basic” backtracking method if initially = 0
at each step and we define A = (1 — 7).

e Can the method break down?

> Given an initial € [0,1), a suitable initial s exists if J(z) is
nonsingular.

> The while-loop does not break down if F(x) # 0 or J(z) is
nonsingular [37, p. 410].

> So the method does not break down if J(x) is nonsingular.

o At each step, the final s still satisfies ||F'(z) + J(z) s|| < n||F(z)||, even if
s and n are modified in the while-loop. Thus, the method is a special case
of the GIN method.
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The global convergence result is . ..

Theorem [37, Th.6.1]: Suppose {x\} is produced by the INB method. If
{zx} has a limit point z, such that J(z.) is nonsingular, then F(x.) = 0 and
T — T«. Furthermore, the initial s; and ny, are accepted for all sufficiently
large k.

Possibilities:
o ||zk|| = oo.
e {1} has limit points, and .J is singular at each one.

e {x;} converges to z, such that F'(z,.) =0, J(z.) is nonsingular, and
asymptotic convergence is determined by the initial n;,’s.

-

\_

A more general possibility is ...
Piecewise linear backtracking through inexact Newton steps [37, §6].

Idea: At the kth inexact Newton step, given fmax € [0,1), ...
> Choose a forcing term 7, € [0, Nmax]-

> Select approximate solutions sg), cen glme)

, 8, satisfying
IF (i) + T(@e) s < F@)ll, =1, ,ma,
where Npmax > n,(;) > > n,(cm’“) = k.

> If the final approximate solution sim’“) is not acceptable, then determine
additional trial steps by backtracking along the piecewise linear curve

1 (mx)
P .

joining 0, s SRR Y

See [37, §6] for details.
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e The global convergence result is . ..

Theorem [37, Th. 6.3): Suppose {z} is an iteration sequence so produced.
If {z}} has a limit point z.. such that J(z.) is nonsingular, then F(x.) =0
and xy — .. Furthermore, the initial sy, and n;, are accepted for all
sufficiently large k.

e This approach clearly lends itself to Newton iterative implementations.

e If we can compute —J(z)T F(z), the steepest descent direction for ||F||» at
x, then we can adapt this approach to implement a dogleg method in which
sV = —J(x)"'F(x) is replaced by the final approximate solution produced by
the linear solver.

Practical implementation of the INB method.

Minor details (most as before):

e Choose 7max Near 1, e.g., fmax = -9.

Choose t small, e.g., t = 107%.

Choose Omin = .1, Omax = .5.

Take || - || to be an inner-product norm, e.g., || - || = || - ||2-

Choose 0 € [Omin,max] to minimize a quadratic or cubic that interpolates
|1F'(z + Osg)]|-

J
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Choosing the forcing terms.

From [28], we know ...
e 0, < constant <1 = local linear convergence.
e N =0 = local superlinear convergence.

e . = O(||F(zx)|]) = local quadratic convergence.

These allow practically implementable choices of the 7 's that lead to desirable
asymptotic convergence rates.

But there remains the danger of oversolving, i.e., imposing an accuracy on an
approximate solution s of the Newton equation that leads to significant
disagreement between F(z + s) and F(x) + J(z) s.

-

Example: The driven cavity problem.

o 9 oy 0

1 A2 — — AYp—— " AYp=0 i =10,1 1
( /Re) w + 6.’51 6$2 81:2 6$1 w 0 n D [07 ] X [07 ]7
On 4D, ¢=0anda—¢={1 on top-

on 0 on the sides and bottom.

Streamlines for Re = 10, 000.
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1
For n) = min {||F(zk)||2,

k+2

} (from [29]), . ..

R |
AN

E
S
z
T -6F \ i
3 \
@
4 N
S -8 N b
] .
N\
AN
-10f — Linear Residual Norm b
A New Nonlinear Iterations \
-12+ N -
_1gl I I I I I I
0 50 100 150 200 250 300

Total GMRES(20) Iterations

Performance on the driven cavity problem, Re = 500. “Gaps” indicate oversolving.

)

-

Forcing term choices have been proposed in [38] that are aimed at reducing
oversolving. The first is ...

Choice 1: Set 7, = min {Nmax, 7 }, Where

PG = IF @) + T(@im) s
= [F ()]

e This directly reflects the (dis)agreement between F' and its local linear
model at the previous step.

e This is invariant under multiplication of F' by a scalar.

\_

~
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The local convergence theorem s . ..

Theorem [38, Th.2.2]: Suppose F(z.) =0, J(x.) is nonsingular, and J is
Lipschitz continuous at x.. If {x}} is an inexact Newton sequence with xq
sufficiently near x, and with each ny, given by Choice 1, then x}, — x. with

lzk+1 — 2| < Bllzk — zul|l|Tp—1 — 2 ]]-

for some 3 independent of k.

o |t follows that convergence is . ..
> r-order (1 ++/5)/2,
> g-superlinear,

> two-step g-quadratic.

If we use n; given by Choice 1 in the backtracking method, we can combine
the above local result with the previous global result to obtain ...

Theorem: Suppose {z} is produced by the INB method with each n;, given
by Choice 1. If {z} has a limit point x, such that J(z.) is nonsingular and J
is Lipschitz continuous at x,, then F(x,) = 0 and x, — x. with

|1 — z4ll < Bllzg — ull|Tp—1 — |-

for some 3 independent of k.




4 )

This and other choices in [38] may become too small too quickly away from a
solution.

We recommend safeguards that work against this.

Rationale: If large forcing terms are appropriate at some point, then

Slide 173 dramatically smaller forcing terms should be justified over several iterations
before usage.
Choice 1 safeguard [38]: Modify 7, by
(14+v5)/2
Mk = max{ne, 27" 7}
1 5)/2
whenever 771(9_+1\/_)/ > .1
For safeguarded Choice 1 ny,’s, . ..
of 4 B
b ]
~
-4+ \\ =
e .
5 \.
z \\
El ™~ 1
Slide 174 3 "\
14 N\
g o N .
3 N\
AN
\\
=10 — Linear Residual Norm \\\A —
A New Nonlinear Iterations AN
-12+ \ .
1l ‘ ‘ ‘ ‘
0 50 100 150 200
Total GMRES(20) Iterations
Performance on the driven cavity problem, Re = 500.
The inverted triangle indicates the safeguard value was used.
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Another choice from [38] is . ..

Choice 2: Set 7, = min {Nmax, 7k }, Where

) 17 ()] >
=~ (A ER 0<y<1, 1<a<?2
T ”(HF(ask_l)u =72

e This is invariant under multiplication of F' by a scalar.

e This offers a variety of local convergence rates, determined by v and a.

The local convergence theorem is . ..

Theorem [38, Th.2.3]: Suppose F(x.) =0, J(x.) is nonsingular, and J is
Lipschitz continuous at x.. If {x}} is an inexact Newton sequence with xq
sufficiently near x,. and with each ny, given by Choice 2, then xy, — . as
follows:

> Ify <1, then z; — z, with q-order .

> Ify =1, then ), — . with r-order o. and q-order p for every p € [1, a).

e |n particular, @« = 2 and v < 1 = local quadratic convergence.
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Using 7, given by Choice 2 in the backtracking method and combining the
above local result with the previous global result gives . ..

Theorem: Suppose {z} is produced by the INB method with each ny, given
by Choice 2. If {z} has a limit point x, such that J(z.) is nonsingular and J
is Lipschitz continuous at x., then F(x,) =0 and x, — x. as follows:

> Ify <1, then xy — x. with q-order a.

> Ify =1 ,thenxz) — x, with r-order o and q-order p for every p € [1, ).

Choice 2 safeguard [38]: Modify 7, by

Mk < max{ng, YNg—1}

whenever ynp_; > .1.

-

Numerical experiments on CFD problems.

o Joint work with J. N. Shadid and R. S. Tuminaro, Sandia National Labs [94].

Goal: to test the effectiveness of backtracking alone and in combination with various forcing
term choices.

Problems: Three 2D CFD benchmark problems and two large scale 3D flow simulations.

PDEs: Low Mach number Navier—Stokes equations with heat and mass transport
equations as appropriate.

Discretization: Pressure stabilized streamline upwind Petrov—Galerkin FEM.

Software: INB implementation in the Sandia MPSalsa parallel reactive flow code, with
GMRES routine and domain-based (overlapping Schwarz) ILU preconditioners from the
Sandia Aztec package.

Machines: Intel Paragons at Sandia National Labs.
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The driven cavity and backward facing step.

u-Vu:—Vp-i-LVZu, V-u=0
Re

Backward facing step. Streamlines for Re = 850.

-

Thermal convection.
1

P—ru-Vu:—Vp+V2u+RaTg, V-u=0, u-VT=VT

Here, Pr = 1.

Thermal convection. Flow and temperature contours at Ra = 1,000, 000.
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2D benchmark problem experiments. A robustness study ...

. Thermal Lid Driven Backward
Forcing Convection Cavity Facing Step
Term
Mk Easier | Harder || Easier | Harder Easier | Harder
0 0 0 0 0 1
Choice 1
0 1 0 5 0 4
Choice 2 0 0 ! ! 0 3
a=151~v=.9 0 1 1 4 0 4
Choice 2 0 0 0 0 ° 2
a=2v=.9 0 1 1 5 1 4
0 0 4 5 1 4
1071
0 1 5 5 1 2
0 0 3 4 2 4
107*
0 1 5 5 3 4

Numbers of failures with backtracking (top rows) and without (bottom rows).

Easier Harder
Thermal Convection 10% < Ra < 10° Ra = 10°
Driven Cavity 1000 < Re < 5000 6000 < Re < 10000
Backward Facing Step 100 < Re < 500 600 < Re < 800

2D benchmark problem experiments. An efficiency study ...

A comparison of Choices 1 and 2 (with backtracking) on problems on which all were
successful (see [94] for cases).

Inexact
Newton Back- GMRES Time
Forcing Term Steps tracks | Ilterations | (Seconds)
Choice 1 36.5 41.4 4054.1 792.1
Choice 2, a = 1.5,y = .9 36.3 49.8 4189.6 824.2
Choice 2, a =2,v=.9 32.8 48.5 3951.6 779.4

“Backtracks” gives arithmetic means; all other columns give geometric means.
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Tilted CVD reactor.

o Navier-Stokes equations plus heat and mass transport. (No chemistry in these

experiments.)

e 3D unstructured mesh; 384,200 unknowns; 220 processors.

-

Inexact
Newton Back- GMRES Time
Forcing Term nj, Steps tracks | lterations | (Seconds)
With Backtracking Choice 1 25 3 1503 924.9
1071 13 1 1315 593.8
1074 5 0 1531 4445
Inexact
Newton Back- GMRES Time
Forcing Term 7y, Steps tracks | lIterations | (Seconds)
Without Backtracking Choice 1 20 0 1052 707.9
107! 12 0 1051 511.5
107* 5 0 1531 4455
Duct flow with contaminant transport.
o Navier-Stokes equations plus mass transport.
e 3D non-uniform mesh; 477,855 unknowns; 256 processors.
e Divergence without backtracking for all forcing terms.
e No failures with backtracking.
Inexact .
Newton | Back- GMRES Time
Forcing Term n;, Steps tracks | lterations | (Seconds)
Choice 1 28 6 13,450 3554.5
1071 25 7 15,477 3953.9
10~% 24 6 15,360 3915.1

Performance with backtracking.




Summary observations.

Newton-iterative methods can be very effective on these problems, but ...

e A good forcing term choice is necessary (but not sufficient).
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Globalization (backtracking) is necessary (but not sufficient).

e Many inexact Newton steps may be necessary.

e Very accurate Jacobians may be necessary.

No strategy always works best.

b. Krylov subspace methods.

Shift gears somewhat to the linear problem ...
Slide 186
Problem: Az =0b, Ae R"", be R".
Ultimate interest: J(z)s = —F(z).

Assume throughout: A is nonsingular.

General references: Survey articles [60], [47]; books [89], [9], [53]




Krylov Subspace Method:

Given zq, determine . ..
T = Tg + 2k,

2 € Ky, = span {rg, Arg, ..., AF"1rg},
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Terminology: Ky is the kth Krylov subspace.
There are by now many Krylov subspace methods, e.g., ...
CG/CR, GMRES, BCG, CGS, QMR, TFQMR (QMRCGS), QMR-squared,
BiCGSTAB, BiCGSTAB2, BiCGSTAB(¢), QMRCGSTAB, Arnoldi
(FOM/IOM), GMRESR, GCR, GMBACK, MINRES, SYMMLQ, ORTHODIR,
ORTHOMIN, ORTHORES, Axelsson, SYMMBK, CGNR, CGNE, LSQR,....
-
/
General features.
e They require only products of A (and sometimes AT ) with vectors.
This property . ..
... brings out the operator structure of A,
... may facilitate exploitation of sparsity, etc.,
... may allow matrix-free implementations.
Slide 188

L4 IC()(_ZICl QICQQ and dlkaSk
Assume throughout: 79 =b — Azy # 0, so dimC; = 1.

Lemma: If A is nonsingular, then dim Ky <k < A7lb=1z¢+ 2 for
some z € K.

e So a “smart” Krylov subspace method will find the solution in at most n
steps — sounds good but may be cold comfort in practice.

\_
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Specifying zj.

There are two traditional criteria . . .

Minimal residual (MR): Choose z;, € K to solve

i —A = mi — Az||>.
min[|b — A(zo + 2)||2 = min [[ro — Azl

Orthogonal residual (OR): Choose z; € K so that

Tk Erg—Azk J_/Ck.

® If A is symmetric positive definite, then OR is equivalent to choosing z; € Kj to minimize

llwo +2 — A7 blla = \/(z0 + 2 — A=1B)T A(zo + z — A=1b)

\_

General properties.

Lemma: [If A is nonsingular and dim Ky, < k, then both MR and OR
uniquely characterize zj, € Ky, such that xy = xo + 2, = A7'b.

But ...
e MR uniquely characterizes zj, for every k.

e Some OR steps may fail to exist before the solution is found (but OR
steps are unique if they exist).

1 1
Example: For A = <(1) 0) and rg = ((]) the first step fails to exist.

\_
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Also ...

e The residual norms of an MR method are monotone decreasing, since

K1 CKr = [Ird Bz > (Ird™ -

e The decrease may not be strictly monotone.

00 --- 0 .
1 0 0 0 0

Example: For A=]0 1 0 O]andro=| .
Do Do 0
00 ---10

the method stagnates for the first n — 1 steps.

)

-

e OR residual norms may behave wildly. Even if OR steps exist, they and
their residuals may be dangerously large.

[k Iz

VL= I3/ 11 1

Lemma [13]: ||r,?R||2 =

It follows that [|rO®(|2 > [|r¥®||» always, with strict inequality until the
solution is found.

If MR makes good progress at the kth step, i.e., ||[r¥E||2 < ||[rMB ||, then
I7OR |5 ~ ||7M®||s and OR makes good progress as well.

If MR nearly stagnates, i.e., [|[rM®||2 = [|[r¥ R [|2, then [|[rQR (]2 > [|[rMB ||
and the OR residual is (perhaps dangerously) large.

These observations underlie “peak-plateau” behavior of OR/MR method
pairs [13], [24], [104],[25].

~
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Computing MR and OR steps.

Choose a basis matrix By, = (by,--+,bg).

Then z € Ky <= 2z = By for somey € R*, and ...

MR : yj, = arg min,¢ g ||ro — ABgy|l2
2k = Byyg-
OR: B;fro = BkTABky,c

e The power basis matrix By, = (ro, Aro,- - -, A¥~1ry) is often very
ill-conditioned.

- J

4 )

Generate a well-conditioned (orthonormal) basis with ...

Arnoldi Process [5]: (standard Gram—Schmidt version)
Given rg.
Set po = ||7ol|2 and v1 = ro/po.
Fork=1,2,--- do:
Initialize vgy; = Avg.
Fori=1,.- k, do:
Set hix = vl vgi1.
Update vg41 ¢ Vg1 — higv;.
Set hpy1,k = |[vrs1l2-

Update Vg1 4 Vkt1/Pkt1,k-
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e For the Arnoldi process, we have ...
breakdown <= Av; € Ky <= dimKpy1 =dim Ky =k

<= OR and MR give z;, = A~1b.

e Setting

hi1 - hik h11
h : _ h

Vi = (V1,5 0k), Hy = ‘21 ) H;, = .21
0 -+ hetik 0 - hrk—1

we have

before breakdown : AV, = Vi1 Hy, rank H, = k
on breakdown : AV, = Vi Hy, H,, nonsingular.

Since VkTVk = I, it's easy to compute MR and OR steps, as follows . ..

MR steps: 2, = Viyg, where
yr = arg minge pe [[ro — AViy|l2

{ arg min, ¢ gr ||Vi11(poer — Hyy)ll2  before breakdown

arg min, ¢ pr [|Vi(po1 — Hyy)|la  on breakdown

{ arg min, ¢ pr ||poer — Hyyll2 before breakdown

arg min, ¢ ge [|po€1 — Hyyll2  on breakdown

Here, e = (1,0,...,0)T € R* ! and & = (1,0,...,0)T € R".
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OR steps: z; = Viy, where

0 =VI(ro— AViys)

{VkTVkH(poel — Hyyr) before breakdown

VEVi(po&r — Hryr) on breakdown

= poe1 — Hyyy.

e Caution: This system is nonsingular on breakdown, but may be singular
and have no solution prior to breakdown.

Methods when A = AT,

We have ...

AV =V Hy = VAV, = VIV, Hy = Hy

Then A=AT =— H,=Hl = H; and Hy are tridiagonal.

It follows that Avy, = hj_1 kvk—1 + Pk kVk + Rikt1,kVk+1, and we can
determine vp41 using only vi_1, vi, and Avy!

e The Arnoldi process becomes the short-recurrence symmetric Lanczos
process [71], [72].

e MR and OR can be implemented with short recurrences!
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For A symmetric positive definite, the methods are:

> OR = Conjugate Gradient (CG) [61]

> MR = Conjugate Residual (CR) [61]

For A symmetric indefinite, the methods are:

> OR = SYMMLQ [82]

> MR = MINRES [82]

Conjugate Gradient Method [61]:
Given A, b, z, tol, itmaz.
Set r =b— Az, p> = ||7||2, z=0, B =0.

Iterate: For itno = 1,..., itmaz, do:
If p < tol, go to End.
Update p < r + Bp.
Compute Ap.
Compute pT Ap and a = p2/pT Ap.
Update z < z + ap.
Update r + r — aAp.
Update 5 « [Irll2/p® and p* « [|r]3.

End: Update z + z + 2.
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e In the special case of symmetric positive definite A, OR steps are always
defined, and CG doesn’t break down.

Theorem [53, Th. 10.2.5], [73]: With k2(A) = ||Al|2||A7||2, we have

KQ(A) -1 k
VK2(A4) +1

lloe — A71blla < 2[|lzo — A7b]|a (

e This is almost always overly pessimistic but does correctly suggest that
conditioning has something to do with convergence and that convergence is
fast for well-conditioned A.

Proposition: If A is symmetric positive definite and has k < n distinct
eigenvalues, then CG converges in at most k iterations.

e This correctly suggests that if the eigenvalues of A are clustered around k

distinct values, then CG “almost” converges after k iterations.

Preconditioning.

This is a very important, very vast subject. We will cover only the barest
outlines here. See [89], [9], and [53] for more.

Basic idea: Instead of solving Az = b directly, apply the Krylov solver to a
preconditioned system that can be solved more efficiently.

Typical approaches include ...
Left: solve M 1Az = M~1b.
Right: solve AM 'y = b, then form z = M ~1y.

Two-sided: solve M; ' AM; 'y = M;'b, then form z = My 'y.
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e The preconditioners can be explicitly given as matrices, implicitly defined
as operaters, etc.

e The traditional view is that the goal of preconditioning is to improve the
conditioning of the system being solved. The real goal is always to reduce
time to solution.

e For a preconditioner to be practically worthwhile, speedup in convergence
must outweigh the cost of the preconditioner solves.

e Applying a preconditioner with a Krylov method is usually straightforward.
Some explanation is necessary in the case of CG.

CG is applicable only to symmetric positive-definite systems, so begin by
supposing C is a symmetric positive-definite matrix and applying CG to

Az =b, where A=C'AC', b=C"'b.
Once # has been found, recover z = C~1%.

Straightforward substitution of these into the CG algorithm, followed by some
algebra, results in an algorithm formulated in terms of z, A, b, etc., in which C
appears only as C2.

Setting M = C? gives the preconditioned CG algorithm.
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Preconditioned Conjugate Gradient Method:
Given A, b, z, tol, itmaz, and a symmetric positive-definite M.
Setr=b— Az, w=M"1r, p> =rTw, z=0,8=0.

Iterate: For itno = 1,..., itmaz, do:
If p < tol, go to End.
Update p < w + Bp.
Compute Ap.
Compute p¥ Ap and a = p?/p” Ap.
Update z + z + ap.
Update r < r» — aAp.
Update w = M~ 'r, B+ rTw/p? and p? « rTw.

End: Update z < z + z.

-

Methods for general A.

Simple, old idea: Apply CG to the normal equations.

e Applying CG in a straightforward way to AT Az = ATb gives CGNR,
for CG on the Normal equations with Residual minimization over

Ki = span {ATrg, (ATA)ATrg, ... (AT A1 ATr}.
This goes back to [61].
e Applying CG to AATy = b and then taking z = ATy gives

Craig’s method [23], or CGNE, meaning CG on the Normal equations
with Error minimization over Kk.
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CGNR and CGNE are good methods for some problems; see [47], [78].

For many (most?) problems, convergence may be too slow because
K9 (ATA) = K3y (AAT) = K2 (A)2

Can we implement MR and OR with short recurrences for general A?

Faber and Manteuffel: NO! [41]

It is shown in [41] that, except for “a few anomolies,” the only matrices for
which MR or OR can be implemented with short recurrences are those of the
form A = e (S + oI), where S = S, § € R', and o € C*.

So we must give up either MR/OR or short recurrences.

-

First possibility: Stick with MR/OR and give up short recurrences.

We can implement MR/OR with the general Arnoldi process as previously
described.

OR leads to the Arnoldi method or FOM (Full Orthogonalization Method)
[87].

MR leads to GMRES, the Generalized Minimal REsidual Method [90].
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Basic operation of standard GMRES.

We have zp, = Viyk, where yy = arg min, ¢ pe [|poer — Hyy||2-
. . Ry
Use Givens rotations to factor Jg - -+ J1Hyp = .

0

Setting w = Jy, - - - J1(poe1), we have

Ry Ry,
oves =t =17+ 7 [ = (Yo 1o == () e

w
Write w = < ) for @ € R*. Then Y = R,;lu_) and 2z = Viyg. Furthermore,
Wk+1

I7%ll2 = |wkt1]

e This allows monitoring ||7%||2 (for stopping) without having to compute 2 or 7!

\_

)

-

Basic GMRES properties.

e Monotone decreasing residual norms (but not necessarily strictly
decreasing).

e Converges in < n iterations (in exact arithmetic) but it may stagnate —
as long as rg L A(K},) = span {Arq, - - -, AFro}.

e Carrying out k iterations costs O(k?n) arithmetic and requires O(kn)
storage, plus k products of A with vectors.

e For most large-scale problems, the method implemented is GMRES (1),
which restarts as necessary with ¢ < x,,, after m steps.

¢ GMRES(m) may not converge. It usually works well, but the choice of
m can be very important.

~

J
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GMRES(m) [90]: (standard Gram-Schmidt implementation)
Given A, b, z, tol, itmaz.
Initialize: Set r = b — Az, v1 = 7/||r||2, w = ||r||2e1 € R™T?, itno = 0.
Iterate: For k =1, ..., m, do:
Set vp41 = Avy; update itno = itno + 1.
Fori=1, ..., k, do:
Set hip = v vg41-
Update vp 41 < V41 — hirv;.
Set hpt1,k = ||Vks1]|2-
Ifk>1,apply Jy—1---J1 to (Rig,---, hir, ht1,x,0,...)7 € R™HL
Determine Jj such that
Je oo Ji(hak, - bk Rt 1,k,0, . )T = (P1, oo, TRk, 0,0. )T
If k=1, form Ry = (r11); else form Ry, = ( Rko—l r(®)), where r(®) = (r;,) € R*.
Update w + Jrw. If |wi41| < tol or k = m or itno = itmaz, go to Solve;
else update v 1 « Vit1/hrt1 k-
Solve: Let k be the final iteration number from Iterate.
Solve Ryy = @ for y, where @ = (w1, ..., ws)" .
Update z < z + (v1,...,v%)Y.
If |lwi41| < tol, accept z; otherwise, return to Initialize.

\_

-

GMRES performance on a model problem.

2]
Au—i—cu—i—da—u:f in D =[0,1] x [0,1], u=0 on dD.
T

o f=1,c=d=>50,100 x 100 grid (= n = 10*), double precision = machine epsilon ~ 10716,
e GMRES(20), no preconditioning.

o Green (solid): logy, ||[b — Azy]|-
Red (dotted): log,q |Wk41]- 200 _

1.00 — —

0.00 — —

-1.00 — —

-2.00 — —

-3.00 — —

-4.00 [~ E

-5.00 — —

-6.00 — —

7.00 - B

-8.00 — —

-9.00 — —
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® There have been a number of MR methods mathematically equivalent to GMRES; see,
e.g., [47].

e Other GMRES variations include: Householder instead of Gram—-Schmidt
orthogonalization [102, 103]; “Newton basis” instead of Arnoldi basis [7]; “simpler”
GMRES (the least-squares problem emerges in upper-triangular rather than Hessenberg

form) [107]; “efficient high accuracy” implementations [100].

e Performance on singular or ill-conditioned systems is treated in [16].

® A variant that allows variable (“flexible”) preconditioning, e.g., using an iterative
method, is FGMRES [88].

A related method (built around GMRES) is GMRESR [35].

~

Second possibility: Give up MR/OR, pursue short recurrences.

Don't forget: According to [41],
e we can't do MR/OR with short recurrences;

e short-recurrence bases can't be orthonormal.

Use the short-recurrence nonsymmetric Lanczos process [71] to generate
a basis.

Choose 7. (Typically 7 = 79.) Set Ky = span {7, AT70, ..., (AT)*~17}.

The nonsymmetric Lanczos process generates basis matrices Vi, = (vy, - -, v)
and Wy, = (wy, -+, wy) for K and K. respectively, as follows . ..
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Nonsymmetric Lanczos Process [71]:
Given 7o and 7.

Set v1 =ro/l[roll2. w1 = Fo/||7ol2-
Fork=1, 2, ---, do:
Set vpy1 = Avg, wry1 = ATwy.
Fori=1, --- k, do:
Set hit, = wlvgrr/wlvi, gk = v wpyr /wiv;.
Update vp41 <= Vp41 — RipVin Wil & Wet1 — GikW;-
Set hit1,k = |[Vk+1ll2: Grt1.6 = ||wrs1]]2-

Update vgt1 < Vkt1/Pkt1k:  Wht1 < Wet1/Gk+1,k-

We have:

o vpy1 L Ky and wippy L Kg, so WEV), = Dy, (diagonal).

AVk = Vk+1Hk and ATWk == Wk—‘,—le'

W,;TAVk = Wng+1Hk = Dkgk and VkTATWk = VkTWk+1 = Dkék.

e Hy =D, 'GT Dy and Gy, = D' HI Dy.

Hy, and G}, are tridiagonal.

Short recurrences!

The inner loop is just “For i = max{1,k — 1}, k, do:"




How can we use this in a solution method?

One possibility is the following variant on the OR idea.
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BCG [72], [43], the BiConjugate Gradient method: Take zj, = xo + 2k, where

2 € Ky, is characterized by

Ty =10 + Az J_Iﬁk.

Biconjugate Gradient Method [72], [43]:
Given xg, set g =19 = b — Axg.
Choose 7y # 0 and set Gy = 7o.

Fork=1, 2, ---, do:
Slide 218 Compute
Ok = Fh_ Th—1/dF_ Agr—1,
Tp = Th—1 + Orqr—1,
Th = Th—1 — O Aqr—1, T =7Fr_1 — kAT g1,
Ve = T Tk /Th_1Th-1,

QG =Tk +Veqk—1, Gk = Tk + Vedr-1-
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BCG has short recurrences as desired, but ...

e There is a possibility of breakdown if . ..
—  GF_,Agr—1 = 0 (breakdown of the OR criterion),

— 7L ri_1 = 0 (breakdown of the underlying Lanczos process).

e The method needs A” products as well as A products, which may be
expensive or infeasible.

e The method may produce wildly varying residual norms, which may be
unnerving and limit attainable accuracy.

\_

-

BCG performance on the model problem.

2]
Au—i—cu—i—da—u:f in D =[0,1] x [0,1], u=0 on dD.
T

o f=1,c=d=>50,100 x 100 grid (= n = 10*), double precision = machine epsilon ~ 10716,
e BCG, no preconditioning; directly (green) and recursively (red) evaluated residual norms.

o Green (solid): logy, ||[b — Azy]|-
Red (dotted): logyq |7k ||- 8.00 -

ol /MWWWA\ |
ol \

2.00 — \ —
4 |

-2.00 —

-4.00 -

-6.00 —

-8.00 —
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First, address the problem of A” products.
Can we develop ‘“transpose free” Lanczos methods?
CGS [98], the Conjugate Gradient Squared method:

In BCG, A” only appears only indirectly in the recurrences for the things we
Slide 221 care about (zj, and ry) through inner products G} Agy and 7} ry,. There are
polynomials 1, ¢ such that ...

i = Yr(A)ro, r = Y (AT)Fo,
qk = dr(A)ro, Gr = dr(AT)7o.
These can be “flipped” across inner products, yielding . ..
Frrh = 7o i (A)’ro, @i Agqr, = 74 Agr(A)’ro,

which are expressions only in A.

Conjugate Gradient Squared Method [98]:
Given xg, Set po = uo = ro = b — Awo, v = Apo.

Choose 7 such that po = 7379 # 0.

For k=1, 2, .-, do:
Compute
Slide 222 Ok—1 = e Uk—1, Ok—1 = Pk—1/0k—1,

e = Ukg—1 — X —1Vk—1,

T = Tr—1+ ap—1(Ur—1 + q&),
e =7Tp—1 — ap_1A(up_1 + q&),
Pk =TFa Tk, Bk = pr/pr—1,

ur = 1k + Brqr,

Pr = Uk + Br(qr + BrPr—1),

v = Apk-
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CGS properties:
e Short recurrences; requires only A products.
e At the kth step, two A products are needed, resulting in x5 € 2o + Ko

e Since r{9S = ¢, (A)%ro, the behavior of rB°Y = 14 (4)ry tends to be

accentuated.

Note: 1, is also the kth residual polynomial for CG as well as BCG, i.e., in the
symmetric positive-definite case, r,?G = 9 (A)ro. This accounts for the name
“conjugate gradient squared”.

Now, address the problem of wildly varying residual norms.

One approach: Bi-CGSTAB [101], the Bi-Conjugate Gradient STABilized
method.

The CGS residuals are given by r{%S = 4, (4)%ry, where ¢, is the kth BCG

residual polynomial, i.e., rE€¢ = ¢y (A)ro.

Bi-CGSTAB idea: Consider more general methods with rj, = ¢ (A)Yy (A)ro.

The specific choice of ¢y, in [101] is ¥y (t) = (1 — wit)he_1(t), where wy, is
chosen so that ||rBICGSTAB||, = (1 — wr )bk 1 (A)wk (A)rol|2 is minimal.
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Bi-CGSTAB properties:
o Like CGS, A
> Short recurrences; requires only A products.

> At the kth step, two A products are needed, resulting in
T € xo + Koy

e Typically produces much smoother residual norm behavior than CGS, but
the residual norms still behave badly on some problems.

e There are numerous variants; see [60] for up-to-date references.

Another approach: QMR [48], the Quasi-Minimal Residual method.

For z € K, and the Lanczos basis matrix Vi, we have z = Vy
and (po = [Iroll2) - --

lro — Az||2 = [|ro — AViyll2 = llpovs — Vi1 Hryll2 = [|[Vir1 (poer — Hry) ||2-
QMR idea: Choose 2, = Viyx, where y;, = arg min, ¢ pr [[poer — Hyylla-

e This would be GMRES if the columns of V}, were the orthonormal Arnoldi
vectors.
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QMR properties:

Short recurrences, but requires one A and one AT product per iteration.

QMR produces residual norm sequences that are fairly smoothly (if not monotonically)
decreasing. However, each QMR residual norm is usually about the same size as the
best BCG residual norm so far obtained [112], [104].

® There are residual norm bounds . ..

(48] [lr2¥|ls < VE+1 min, ¢ g [lpoer — Hyyll.

QMR GMRES
77 g™ ll2 < w2(Viers)[Irk 2.
® Breakdown is considerably alleviated through the look-ahead Lanczos process; see [48].

® There are numerous variants, including transpose-free TFQMR [46]; see [60] for

up-to-date references.

\_
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QMR performance on the model problem.

o
Au—i—cu—i—da—u:f in D =[0,1] x [0,1], u=0 on dD.
z

e f=1,c=d= 50,100 x 100 grid (= n = 10*), double precision = machine epsilon ~~ 10716
e Green (solid): QMR, no preconditioning.

e Red (dotted): BCG, no preconditioning.

8.00 —

The “peak-plateau” behavior 6.00 —
can be explained through
residual smoothing [112], [104].

200 ¢
0.00 —

-2.00 —

-6.00 —
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Summary of major ideas:

e Using the nonsymmetric Lanczos process to obtain short recurrences.
e “Flipping” polynomials across inner products to get rid of AT products.

e Using the QMR and Bi-CGSTAB ideas to get fairly well-behaved residual
norms.

e Using look-ahead Lanczos and similar strategies to alleviate breakdown.

See [60] for up-to-date references.

\_

c. Newton—Krylov methods.

Idea: Implement a Newton iterative method using a Krylov subspace method
as the linear solver.

e The term appears to have originated with [15].

e Naming conventions: Newton-GMRES, Newton—Krylov—-Schwarz (NKS),
Newton-Krylov-Multigrid (NKMG), ...

e “Truncated Newton” originated with [29], which outlined an
implementation of Newton with CG.
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General considerations.

e The linear system is J(z) s = —F(x). The usual initial approximate solution
is S0 = 0.

e The linear residual norm || F(x) + J(x) s|| is just the local linear model norm.
e About preconditioning ...

> Preconditioning on the right retains compatibility between the norms used
in the linear and nonlinear inexact Newton strategies.

> Preconditioning on the left may introduce incompatibilities.

> It is safe to “precondition the problem” on the left, i.e., to solve
M~1F(x) =0 for an M that is used without change throughout the
solution process.

\_

-

e An MR method (e.g., GMRES) is optimal among Krylov subspace methods
from the point of view of reducing ||F(x) + J(z) s|| and thereby satisfying an
inexact Newton condition in a minimal number of iterations.

e The MR property also lends itself to several trust region-like globalizations:
> A dogleg method within the Krylov subspace [15].
> Piecewise linear backtracking through residual minimizing steps [37, §8].

> These strategies are compromised by any deviation from the MR principle,
e.g., by restarting GMRES.




Slide 233

Slide 234

Considerations for optimization.
The linear system is V2 f(z) s = —V f(z), with exact solution
sV = —V2f(x) 'V f(z).
V2f(z) is symmetric, probably positive-definite near a minimizer.
This suggests using CG or a symmetric-Lanczos variant such as SYMMLQ [82].
Assume V2 f(z) is SPD and we are applying CG.

e Recall: For Az = b with symmetric positive definite A, the kth CG iterate
minimizes ||zg + 2z — A~1b||a over z € K}, where ||v||a = ||Av||2 for v € R™.

Substituting A < V2f(z), A7'b « sV, 29 < 0 and z « s, we have that ...

e The kth iterate of CG applied to V? f(z) s = —V f(x) minimizes

lls — sN ||v2f(2) overs € Ky.
-

-

Recall the local quadratic model of f,

F@) + VI @)s + 5 5"V f@)s.

This can be rewritten as

fa@) -1

T 1
2SN sz(S)SN + 5”8 — SNHsz(z).
It follows that . ..

e The kth CG iterate minimizes the local quadratic model of f over Ky,.

e Sincerg = =V f(x), the first CG iterate is the steepest descent step
for f at x.
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These observations facilitate trust region-like globalizations.

e The usual dogleg method with sV = —V2f(2)~1V f(x) replaced by the final
solution produced by the linear solver.

e Truncated Newton globalizations that employ piecewise-linear backtracking
through inexact Newton steps produced by CG, along the lines of that
described above.

Matrix-free implementations.

Krylov subspace methods require only products of J(z) — and sometimes
J(z)T — with vectors.

There are possibilities for producing these without creating and storing J(x).

One possibility for products involving either J(z) or J(z)T is automatic
differentiation.

This is actively being explored in the Mathematics and Computer Science
Division, Argonne National Lab. See the ANL Computational Differentiation
Project web page , www-unix.mcs.anl.gov/autodiff/index.html.
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~

A very widely used technique, applicable when only products involving J(x) are
needed, is finite-difference approximation.

For a local convergence analysis, see [12].

Given v € R", formulas for approximating J(z)v to 1st, 2nd, 4th, and 6th

order are ...

%[F(w +6v) — F(a)],

%[F(z +6v) — F(z — 8v)],

1 5 1
rH [SF(m + EU) — 8F(z — Ev) — F(z + 6v) + F(x — 61})] ,

1 4 4 4 4
— %) — 256F(z — Sv) — 40F 2o) 4+ 40F(z — 20) + F — F(z — )
905 [256F(w + 4v) 256 F (z 1 v) 0F(z + 21}) + 40F (z 21}) + F(z 4 6v) (z 61))]

J

-

~

e In an inexact Newton method, F'(z) is already available. Therefore, each
of these requires a number of new F-evaluations equal to its order.

e The 1st-order formula is very commonly used; the others very rarely used
(although sometimes they're needed).

e If GMRES is used as the solver, a technique in [100] can be applied to
achieve the benefits of higher-order differencing at very little cost.

> Use the higher order formula at each GMRES restart.

> Use first-order differences thereafter until the next restart.

e The 1st, 2nd, and 4th order formulas are offered as options in NITSOL
[84]. The technique of [100] is used with GMRES when the higher-order

formulas are chosen.
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Choosing 6.

e As before ...
> We try to choose § to roughly balance truncation and floating point error.

> Fairly well-justified choices can be made for scalar functions. The
justifications weaken with vector functions. Nothing is foolproof.

e A choice used in [84] that approximately minimizes a bound on the relative
error in the difference approximation is based on ...

)

where p is the difference order and e is the relative error in F-evaluations
(“function precision”). The main underlying assumption is that F' and its
derivatives up to order p + 1 have about the same scale.

e A crude heuristic is § = ¢!/(?*1) where € is machine epsilon.

\_

Adaptation to path following.

We previously considered . ..

Path-Following Problem: Given F: R" x R' — R", solve F(z,\) =0
over a range of (z, \)-values.

We introduced notation:
e ' = solution curve.
o (r,\)=Z¢c R".
o F(z,)\) = F(z), F'(z,)\) = F'(z) € RV

o ['(Z) = [Fy(Z), F\(Z)], where F,(Z) € R™*" and F)\(Z) € R".

\_
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We developed predictor-corrector methods for following T'.

The major linear algebra tasks were

1. Computing a corrector step 5 by solving the underdetermined system

F'(z)s = —F(z).

2. Computing a unit tangent to the curve.

We will outline ways of applying Krylov subspace methods to these.

As before, assume F'(z) is of full rank n on T.

\_

-

1. Computing a corrector step.

We had two approaches to computing s:
> the normal flow approach,

> the augmented Jacobian approach.

In both cases, we can characterize 5 as satisfying

F'(£)5= —F(%) subjectto t'5=0.

e Normal flow: ¢ is an approximate unit null vector of F'(z).

e Augmented Jacobian: ¢ is an approximate unit tangent to T’
(i-e., an approximate unit null vector of F') at a previous point.

\_
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Fi(z _F(z%
An obvious approach: Solve ( t(;:)) 5= ( (w)).

Potential difficulties:
e lll-conditioning through unfortunate scaling.

e Krylov iterates may only approximately satisfy 75 = 0.

We will outline the approach in [105], which avoids these.

\_

-

The abstract approach:

1. Find Q € R™™*™ sych that
a. range (Q) = {7},
b. [|Qyll2 = ||y||2 for all y € R™.
Then F'(2)Q € R™".

2. Apply the Krylov subspace method to solve approximately
F'(Z)Qy = —F(Z) for y € R™. Then set 5 = Qy.

With this . ..

. Qy automatically satisfies 75 = 0 regardless of how well it satisfies
5) 5

F'( = —F(z).
e Since [|Qy]|2 = |ly]|2 for y € R™, conditioning problems are not worsened
as long as t is an accurate unit null vector.

\_




Slide 245

Slide 246

A concrete implementation:

1. Determine a Householder transformation P such that
0

pi=|:|emr.

2. Define Q by Qv:P(g), v e R"

3. Apply the Krylov solver to F'(Z)Qy = —F(Z), and set 5§ = Qu.

2. Computing a unit tangent.
We want ¢ such that F'(Z)t = 0.
Suppose we have an initial approximation %;.
Then ...
1. Solve F'(z) s = —F'(z) fo subject to #L's = 0 as above.

2. Set t = (to + 5)/||t0 + 3||2-
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About preconditioning with this approach.

On difficult problems, effective preconditioners have often been determined for
the “fixed-parameter” (fixed ) case. It would be highly desirable to re-use
these for path-following.

Re-using a left preconditioner M € R™*" is straightforward: Just solve
M™'F'(2)§=-M"'F(z)

as before.

With right preconditioning, there are at least two ways:

1. Approximately solve F'(z;)QM 'z, = —F(Zy), then set 5, = QM ~'z;.
S M 0 . -1 _
2. Writing M = 0 1) approximately solve F'(Z;) M 1Qz, = —F(z)
and set 5, = M 'Qz,.

In limited experimentation, both seem equally effective.

~

\_

Numerical experiments [105].
Recall the two example problems (D = [0,1 x [0,1]) ...
Bratu problem: Au+ Xe* =0in D =[0,1] x [0,1], u =0 on dD.

Chan [22] problem:

u+u?/2

A 14 T2
“’”‘( 1 ra2/100

>:01n’D:[0,1]><[0,1], u=0on dD.

We applied a simple path following method to these problems:
e Forward Euler predictor, augmented Jacobian corrector iterations.

e Approximate unit tangents were normalized differences of current and
previous points on T,

e GMRES(40) and BiCGSTAB, preconditioned on the left with a
fast Poisson solver.




Slide 249

Slide 250

-

Particular goal: Assess the effectiveness of the preconditioner, especially its
mesh independence.

The tables show geometric means of successive linear residual norm ratios
[|7k+1]l2/l|7k|]2 over all Krylov iterations at all corrector steps.

Grid Size || 16 x 16 | 32 x 32 | 64 x 64 | 128 x 128

GMRES(40) || .0201 | .0204 | .0282 0285

BiCGSTAB .0681 .0961 .1001 1278

Results for the Bratu problem.

Grid Size || 16 x 16 | 32 x 32 | 64 x 64 | 128 x 128

GMRES(40) .0207 .0197 .0196 .0205

BiCGSTAB .0575 .0655 .0789 .0935

Results for the Chan problem.

-

\_

To show that convergence was not adversely affected near fold points, we plotted
geometric means of residual norm ratios ||rx+1]|2/||7%||2 at each continuation step

along the curves, using a 64 x 64 grid.

Bratu problem (left) and Chan problem (right); GMRES (top) and BiCGSTAB (bottom).
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