
Linear Algebra: Lecture 3

More on linear transformations. Topics: range and null space, linear equation, linear equations in Rn.

Range and null space.

There are two very important subspaces associated with a linear transformation T : V → W.

• The range of T , R(T ) = {w ∈ W : w = Tv for some v ∈ V}.

• The null space of T , N (T ) = {v ∈ V : Tv = 0}.

We say that T is onto if R(T ) = W and that T is one-to-one (abbreviated 1-1) if T (u) = T (v) only

when u = v. We (sometimes) say that T is an isomorphism between V and W if it is both 1-1 and

onto.

Suppose that T : V → W is 1-1 and onto. Then we can define an inverse map T−1 : W → V as

follows: For each w ∈ W, define T−1(w) to be the unique v ∈ V such that T (v) = w.

Note that T−1(T (v)) = v for all v ∈ V and T (T−1(w)) = w for all w ∈ W.

It is easy to see that T−1 : W → V is linear. Indeed, suppose we have w1, w2 ∈ W and scalars α1,

α2. Set v1 = T−1(w1) and v2 = T−1(w2) . We have that T (α1v1 + α2v2) = α1T (v1) + α2T (v2) =

α1w1 + α2w2, and it follows that T−1(α1w1 + α2w2) = α1v1 + α2v2 = α1T
−1(w1) + α2T

−1(w2).

Conversely, suppose that T has an inverse, i.e., a linear map T−1 : W → V such that T−1(T (v)) = v

for all v ∈ V and T (T−1(w)) = w for all w ∈ W. Then (1) T is 1-1, since T (u) = T (v) ⇒
T−1(T (u)) = T−1(T (v))⇒ u = v; (2) T is onto, since, for every w ∈ W, we have that T (v) = w for

v = T−1(w) ∈ V.

The following summarizes these observations.

Proposition 3.1. T : V → W is 1-1 and onto if and only if there is a linear map T−1 : W → V
such that T−1(T (v)) = v for all v ∈ V and T (T−1(w)) = w for all w ∈ W.

The following provides useful characteristic properties of 1-1 maps.

Proposition 3.2. The following are equivalent:

(a) T is 1-1.

(b) N (T ) = {0}, i.e., T (v) = 0 ⇐⇒ v = 0.

(c) T maps linearly independent sets to linearly independent sets, i.e., if {v1, . . . , vk} is linearly

independent, then so is {T (v1), . . . , T (vk)}.
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Proof.

(a)⇒(b) Since T is 1-1, T (v) = 0 only when v = 0, so 0 is the only vector in N (T ).

(b)⇒(c) Suppose that N (T ) = {0}. Let {v1, . . . , vk} be linearly independent in V. If α1T (v1) + . . .+

αnT (vn) = 0, then T (α1v1+. . .+αnvn) = 0 since T is linear. It follows that α1v1+. . .+αnvn ∈ N (T )

and, since N (T ) = {0}, that α1v1 + . . .+ αnvn = 0. Then, since {v1, . . . , vk} is linearly independent,

we must have that α1 = . . . = αn = 0.

(c)⇒(a) Suppose that T maps linearly independent sets to linearly independent sets. Since a non-zero

v ∈ V constitutes a linearly independent set, we have in particular that T (v) 6= 0 whenever v 6= 0, or,

equivalently, that T (v) = 0 only if v = 0. It follows that if T (u) = T (v) for u, v ∈ V, then T (u−v) = 0

only if u− v = 0, i.e., u = v.

We can say more if V and perhaps W are finite-dimensional.

Proposition 3.3. Suppose that dimV = n. If {v1, . . . , vn} is a basis for V, then {T (v1), . . . , T (vn)}
is a spanning set for R(T ).

Proof. If w ∈ R(T ), then w = T (v) for some v ∈ V. Writing v =
∑n

i=1 αivi, we have that

w = T (
∑n

i=1 αivi) =
∑n

i=1 αiT (vi) ∈ span {T (v1), . . . , T (vn)}.

It follows from Proposition 3.3 that dimR(T ) ≤ n. Also, if dimW = m, then we clearly have that

dimR(T ) ≤ m; moreover, T is onto if and only if dimR(T ) = m.

We now work toward Theorem 3.6 below. This is a fundamentally important result for linear transfor-

mations on finite-dimensional vector spaces. We will use it in the sequel to gain basic insights into the

existence and uniqueness of solutions of linear equations.

We assume throughout the following that V is finite-dimensional, with dimV = n, and that T is a linear

transformation from V to W.

Suppose that dimN (T ) = k for some k, 0 ≤ k ≤ n. Let {v1, . . . , vk} be a basis for N (T ). By Proposi-

tion 2.7, we can expand this to a basis {v1, . . . , vk, u1, . . . , un−k} for V. SetM = span {u1, . . . , un−k}.
Clearly, {u1, . . . , un−k} is linearly independent and so is a basis for M; thus dimM = n− k.

Note: M is not unique, since the expansion {u1, . . . , un−k} is not unique. However, every such

expansion of {v1, . . . , vk} will result in a subspace of dimension n − k, which is the main thing that

matters to us.

Proposition 3.4. With N (T ) and M as above, N (T ) ∩M = {0}.
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Proof. Clearly, {0} ⊆ N (T ) ∩ M. Conversely, if v ∈ N (T ) ∩ M, then, since {v1, . . . , vk} is a

basis of N (T ), we can write v =
∑k

i=1 αivi and, since {u1, . . . , un−k} is a basis of M, we can also

write v =
∑n−k

i=1 βiui. Then
∑k

i=1 αivi =
∑n−k

i=1 βiui, which yields
∑k

i=1 αivi −
∑n−k

i=1 βiui = 0.

Since {v1, . . . , vk, u1, . . . , un−k} is a basis of V and, therefore, linearly independent, it follows that

α1 = . . . = αk = β1 = . . . = βn−k = 0 and, consequently, that v = 0.

Lemma 3.5. With T and M as above, T :M→R(T ) is 1-1 and onto.

Proof. If v ∈M is such that T (v) = 0, then v ∈ N (T )∩M, which is {0} by Proposition 3.4. It follows

from Proposition 3.2 that T is 1-1 on M. If w ∈ R(T ), then w = T (v) for some v ∈ V. With the

basis {v1, . . . , vk, u1, . . . , un−k} as above, we can write v =
∑k

i=1 αivi +
∑n−k

i=1 βiui for some scalars

αi and βi. Since
∑k

i=1 αivi ∈ N (T ), we have that w = T (v) = T
(∑k

i=1 αivi

)
+ T

(∑n−k
i=1 βiui

)
=

T
(∑n−k

i=1 βiui

)
. Since

∑n−k
i=1 βiui ∈M, it follows that T maps M onto R(T ).

Theorem 3.6. If V is finite-dimensional with dimV = n and T : V → W is a linear transformation,

then dimN (T ) + dimR(T ) = n.

Proof. Suppose that, as above, we have a basis {v1, . . . , vk} for N (T ), an expanded basis

{v1, . . . , vk, u1, . . . , un−k} for V, and M = span {u1, . . . , un−k}. Since {u1, . . . , un−k} is a basis for

M, we have that dimN (T ) + dimM = n. We also have, by Proposition 3.2 and Lemma 3.5, that

{T (u1), . . . , T (un−k)} is a linearly independent spanning set in R(T ), i.e., a basis for R(T ). It follows

that dimR(T ) = dimM = n− k and, hence, that dimN (T ) + dimR(T ) = n.

Linear equations.

A linear equation has the form T (v) = w, where T : V → W is a given linear transformation, w ∈ W is

a given right-hand side, and v ∈ V is a solution to be determined. Our immediate goal is to look into

the existence and uniqueness of solutions.

Clearly, T (v) = w has a solution if and only if w ∈ R(T ). The following somewhat refined statement

is also clear.

Proposition 3.7.
(a) T (v) = w has at least one solution for every w ∈ W if and only if T is onto, i.e., R(T ) =W.

(b) T (v) = w has at most one solution for every w ∈ W if and only if T is one-to-one, i.e., N (T ) =

{0}.

Suppose that V and W are finite-dimensional with dimV = n and dimW = m. We consider the cases

n > m, n < m, and n = m in order, recalling from Theorem 3.6 that dimN (T ) + dimR(T ) = n.

If n > m, then dimN (T ) = n − dimR(T ) ≥ n − m > 0. It follows that if w ∈ R(T ), then there

are infinitely many solutions of T (v) = w. Indeed, we have the following characterization of solutions,

which is also valid when n ≤ m and even when V or W is infinite-dimensional.
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Proposition 3.8. If v ∈ V is any vector satisfying T (v) = w, then the set of all solutions is

{v + u : u ∈ N (T ), i.e., T (u) = 0}.

Proof. If u ∈ N (T ), then T (v + u) = T (v) + T (u) = T (v) + 0 = w; thus everything in the set is a

solution. If s ∈ V is any vector satisfying T (s) = w, then T (s − v) = T (s) − T (v) = w − w = 0.

Consequently, u = s− v ∈ N (T ), and s = v + u is in the set.

Since dimN (T ) > 0 when n > m, it follows immediately that if a solution exists, then there are infinitely

many other solutions. Note that a solution exists for every w ∈ W if and only if dimN (T ) = n−m.

If n < m, then dimR(T ) = n− dimN (T ) ≤ n < m. It follows that T cannot be onto and that there

are no solutions of T (v) = w for some w ∈ W.

In summary, if n > m, then a solution of T (v) = w may exist for every w ∈ W, but it is never unique.

If n < m, then a solution may be unique if it exists, but there are some w ∈ W(T ) for which a solution

does not exist.

So our only hope for both existence and uniqueness of a solution of T (v) = w for every w ∈ W lies in

the final case m = n.

Theorem 3.9. Suppose that T : V → W is linear and that V and W are finite-dimensional with

dimV = dimW. Then the following are equivalent:

(a) T (v) = w has a unique solution v ∈ V for every w ∈ W.

(b) T is 1-1, i.e., T (v) = w has at most one solution for every w ∈ W.

(c) T is onto, i.e., T (v) = w has at least one solution for every w ∈ W.

(d) T has an inverse, i.e., a linear transformation T−1 : W → V such that T−1(T (v)) = v for every

v ∈ V and T (T−1(w)) = w for every w ∈ W.

Proof.

(a)⇒(b) If (a) holds, then T (v) = 0 has the unique solution v = 0, and it follows from Proposition 3.2

that T is 1-1.

(b)⇒(c) If T is 1-1, then dimN (T ) = 0. Since dimN (T ) + dimR(T ) = n by Theorem 3.6, it follows

that dimR(T ) = n and, consequently, that T is onto.

(c)⇒(a) If T is onto, then T (v) = w has at least one solution V ∈ V for every w ∈ W. Also, we have

that R(T ) =W, and so dimR(T ) = n. Since dimN (T ) + dimR(T ) = n by Theorem 3.6, it follows

that dimN (T ) = 0. Then, by Proposition 3.1, T is 1-1, and the solution of T (v) = w is unique for

every w ∈ W.

To complete the proof, recall from Proposition 3.1 that T is 1-1 and onto if and only if it has an inverse.

Thus (a)-(c) hold if and only if (d) holds.
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Linear equations in Rn.

Here, we outline the implications of the general results above when V = Rn, W = Rm, and T (v) =

Av ∈ Rm for v ∈ Rn, where A ∈ Rm×n. One can regard T as defined by T (v) = Av for a given A,

or one can regard A as the matrix representation of a given T with respect to the natural bases on Rn

and Rm. We denote R(T ) by R(A) and N (T ) by N (A).

In this context, we write a linear equation as Ax = b, where b ∈ Rm is given and x ∈ Rn is a solution

to be determined. This represents a system of m linear equations in n unknowns:

a11x1 + a12x2 + . . .+ a1nxn = b1
...

am1x1 + am2x2 + . . .+ amnxn = bm

From our general results, we have the following:

1. dimN (A) + dimR(A) = n.

2. If Ax = b for some x ∈ Rn, then the set of all solutions is {x+ y : y ∈ N (A), i.e., Ay = 0}.

3. If n > m, then a solution may exist for every b ∈ Rm, but it is never unique. If n < m, then a

solution may be unique if it exists, but there are some b ∈ Rm for which a solution does not exist.

4. If n = m, then the following are equivalent:

(a) Ax = b has a unique solution for every b ∈ Rn.

(b) The only solution of Ax = 0 is x = 0.

(c) Ax = b has at least one solution for every b ∈ Rn.

(d) A has an inverse matrix A−1 ∈ Rn×n such that A−1A = AA−1 = I, the identity matrix1 in

Rn×n.

Items 1-3 are straightforward “translations” of Theorem 3.6, Proposition 3.8, and the summary preceding

Theorem 3.9, respectively. Parts (a) and (c) of the item 4 are likewise straightforward “translations”

of their counterparts in Theorem 3.9. Part (b) is nearly straightforward but requires recalling from

Proposition 3.2 that the linear transformation defined by A is 1-1 if and only if N (A) = {0}, which is to

say that the only solution of Ax = 0 is x = 0. For part (d), recall from Proposition 3.1 that part (a) holds

if and only if the map T associated with A has an inverse T−1 such that T−1(T (x)) = T (T−1(x)) = x

for every x ∈ Rn. Then take A−1 ∈ Rn×n to be the matrix representation of T−1 with respect to the

natural basis on Rn. It is easy to verify that A−1Ax = AA−1x = x for all x ∈ Rn, which is to say that

A−1A = AA−1 = I.
1This is the matrix with all diagonal entries equal to one and all other entries equal to zero.
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Remark 1. If A ∈ Rn×n has an inverse matrix A−1, then A is said to be invertible or nonsingular. Note

that Ax = b ⇐⇒ A−1Ax = A−1b ⇐⇒ x = A−1b. This characterization of the solution is useful for

theoretical purposes but does not suggest a practical way to determine x in general.

Proposition 3.10. Suppose A, B ∈ Rn×n. Then AB is nonsingular if and only if both A and B

are nonsingular.

Remark 2. In the present context, we can specify an additional equivalent condition in item 4, as follows:

Denote the columns of A by

a1 =

 a11
...
an1

 , a2 =

 a12
...
an2

 , . . . , an =

 a1n
...
ann

 .

Then for x =

 x1
...
xn

 ∈ Rn, we have Ax =


∑n

j=1 a1jxj
...∑n

j=1 anjxj

 = x1a1 + x2a2 + . . .+ anxn.

Letting x range over all Rn, we have that R(A) = span {a1, . . . , an}. It follows that A is onto ⇐⇒
R(A) = Rn ⇐⇒ span {a1, . . . , an} = Rn ⇐⇒ the columns of A are linearly independent.

Definition 3.11. The column rank of a matrix is the maximal number of linearly independent

columns in the matrix.

We have that the column rank of A is equal dim span {a1, . . . , an}. Then to item 4 above, we can add

a fifth equivalent condition:

(e) The column rank of A is n.
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