Linear Algebra: Lecture 3

More on linear transformations. Topics: range and null space, linear equation, linear equations in R™.
Range and null space.
There are two very important subspaces associated with a linear transformation 7" : V — W.

e The range of T, R(T) = {w € W : w = T for some v € V}.

e The null space of T, N(T) ={veV: Tv=0}.

We say that T is onto if R(T) = W and that T is one-to-one (abbreviated 1-1) if T'(u) = T'(v) only
when u = v. We (sometimes) say that 7" is an isomorphism between V and W if it is both 1-1 and
onto.

Suppose that 7' : V — W is 1-1 and onto. Then we can define an inverse map T-! : W — V as
follows: For each w € W, define T~!(w) to be the unique v € V such that T'(v) = w.

Note that T~ 1(T'(v)) = v for all v € V and T(T~(w)) = w for all w € W.

It is easy to see that T-Y: W — Vis linear. Indeed, suppose we have wy, wy € W and scalars aq,
as. Set vy = T~ H(w) and va = T~} (wa) . We have that T'(aqv1 + agvs) = a1T(v1) + T (v2) =
aiwi + asws, and it follows that T~ (a1wy + avws) = vy + agve = an T~ Hwy) + T~ (wo).

Conversely, suppose that 7" has an inverse, i.e., a linear map 77! : W — V such that T-Y(T(v)) = v
for all v € V and T(T~Y(w)) = w for all w € W. Then (1) T is 1-1, since T(u) = T(v) =
TYT(u)) =T YT (v)) = u=wv; (2) T is onto, since, for every w € W, we have that T'(v) = w for
v=T"1w)eV.

The following summarizes these observations.

PROPOSITION 3.1. T :V — W is 1-1 and onto if and only if there is a linear map T~' : W — V
such that T~Y(T'(v)) = v for allv € V and T(T~(w)) = w for all w € W.

The following provides useful characteristic properties of 1-1 maps.

PROPOSITION 3.2. The following are equivalent:

(a) T is 1-1.
(b) N(T)={0}, ie., T(v) =0 < v=0.
(c) T maps linearly independent sets to linearly independent sets, ie., if {vi,...,vx} is linearly

independent, then so is {T(v1),..., T (vg)}.
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Proof.
(a)=(b) Since T'is 1-1, T'(v) = 0 only when v = 0, so 0 is the only vector in N'(T).

(b)=-(c) Suppose that N (T') = {0}. Let {v1,...,vx} be linearly independent in V. If a;T'(v1) + ...+
anT(v,) =0, then T(1v1+. . .+a,v,) = 0since T is linear. It follows that aqvy +. .. +apv, € N(T)
and, since N (T') = {0}, that ayv; + ... + apv, = 0. Then, since {v1,..., v} is linearly independent,
we must have that a3 = ... = o, = 0.

(c)=-(a) Suppose that T" maps linearly independent sets to linearly independent sets. Since a non-zero
v € V constitutes a linearly independent set, we have in particular that 7'(v) # 0 whenever v # 0, or,
equivalently, that 7'(v) = 0 only if v = 0. It follows that if T'(u) = T'(v) for u, v € V, then T(u—v) =0
onlyifu—v=0,ie, u=uv. |

We can say more if V and perhaps W are finite-dimensional.
PROPOSITION 3.3. Suppose that dimV = n. If{vi,...,v,} is a basis for V, then {T(v1),...,T(v,)}
is a spanning set for R(T).

Proof. If w € R(T), then w = T(v) for some v € V. Writing v = ) ", a;v;, we have that
w=T0 " avi) =Y ;T (v;) € span{T(v1),...,T(v,)}. O

It follows from Proposition 3.3 that dimR(7") < n. Also, if dimW = m, then we clearly have that
dim R(T") < m; moreover, T' is onto if and only if dim R(T") = m.

We now work toward Theorem 3.6 below. This is a fundamentally important result for linear transfor-
mations on finite-dimensional vector spaces. We will use it in the sequel to gain basic insights into the
existence and uniqueness of solutions of linear equations.

We assume throughout the following that V is finite-dimensional, with dimV = n, and that T is a linear
transformation from V to W.

Suppose that dim N (T") = k for some k, 0 < k < n. Let {v1,...,v;} be a basis for N'(T"). By Proposi-
tion 2.7, we can expand this to a basis {v1, ..., vk, u1, ..., u,_} for V. Set M = span{uy,...,Up_p}.
Clearly, {u1,...,u,—_x} is linearly independent and so is a basis for M; thus dim M =n — k.

Note: M is not unique, since the expansion {uj,...,u,_r} is not unique. However, every such
expansion of {v1,...,v;} will result in a subspace of dimension n — k, which is the main thing that
matters to us.

PROPOSITION 3.4. With N(T) and M as above, N (T) N M = {0}.
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Proof. Clearly, {0} C N(T) N M. Conversely, if v € N(T) N M, then, since {vi,...,v;} is a

basis of N(T'), we can write v = Zle a;v; and, since {ui,...,u,—x} is a basis of M, we can also
write v = Z:‘;k ;. Then Zle U = Z?;lk 1, which yields Zle o — Z:‘;k sy = 0.
Since {v1,...,Vk,U1,...,Up—} is a basis of V and, therefore, linearly independent, it follows that
ar=...=ap =01 =...= Bh_r = 0 and, consequently, that v = 0. [l

LEMMA 3.5. With T and M as above, T : M — R(T') is 1-1 and onto.

Proof. If v € M is such that T'(v) = 0, then v € N (T')N.M, which is {0} by Proposition 3.4. It follows
from Proposition 3.2 that 7" is 1-1 on M. If w € R(T), then w = T'(v) for some v € V. With the

- - k —k
basis {v1,..., vk, u1,...,u,—i} as above, we can write v = > a;v; + > ;| Biu; for some scalars

o; and B;. Since Zle a;v; € N(T), we have that w = T(v) =T (Zle aivi> +T <Z?:_1k Zul) =
T (Z;:lk zuz) Since E?z_lk Biu; € M, it follows that T" maps M onto R(T). 0

THEOREM 3.6. IfV is finite-dimensional with dimV =n and T : V — W is a linear transformation,
then dim N (T') + dim R(T) = n.

Proof. Suppose that, as above, we have a basis {v1, ..., v} for N(T'), an expanded basis

{vi,.. ., vk, u1, ..., up—p} for V, and M = span{uq,...,u,_}. Since {uq,...,u,_} is a basis for
M, we have that dim N (T') + dim M = n. We also have, by Proposition 3.2 and Lemma 3.5, that
{T'(u1),...,T(un—g)} is a linearly independent spanning set in R(T), i.e., a basis for R(T). It follows
that dim R(7T') = dim M = n — k and, hence, that dim N(T) + dimR(T) =n. [

Linear equations.

A linear equation has the form T'(v) = w, where T : V — W is a given linear transformation, w € W is
a given right-hand side, and v € V is a solution to be determined. Our immediate goal is to look into
the existence and uniqueness of solutions.

Clearly, T'(v) = w has a solution if and only if w € R(T"). The following somewhat refined statement
is also clear.

PROPOSITION 3.7.
(a) T'(v) = w has at least one solution for every w € W if and only if T is onto, i.e., R(T) = W.

(b) T'(v) = w has at most one solution for every w € W if and only if T is one-to-one, i.e., N(T) =
{0}
Suppose that V and W are finite-dimensional with dim} = n and dim W = m. We consider the cases
n >m, n <m, and n = m in order, recalling from Theorem 3.6 that dim N'(T") + dim R(T) = n.

Ifn > m, then dimN(T) = n — dimR(T) > n —m > 0. It follows that if w € R(T), then there
are infinitely many solutions of T'(v) = w. Indeed, we have the following characterization of solutions,
which is also valid when n < m and even when V or W is infinite-dimensional.
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PROPOSITION 3.8. Ifv € V is any vector satisfying T'(v) = w, then the set of all solutions is
{v+u: uweN(T), ie., T(u) =0}.

Proof. If w € N(T), then T'(v +u) = T(v) + T(u) = T(v) + 0 = w; thus everything in the set is a
solution. If s € V is any vector satisfying T'(s) = w, then T'(s —v) = T(s) = T(v) = w —w = 0.
Consequently, u = s —v € N(T), and s =v+u is in the set. [

Since dim A/ (T') > 0 when n. > m, it follows immediately that if a solution exists, then there are infinitely
many other solutions. Note that a solution exists for every w € W if and only if dim N (T) = n — m.

If n < m, then dimR(T") = n — dim N(T) < n < m. It follows that 7' cannot be onto and that there
are no solutions of T'(v) = w for some w € W.

In summary, if n > m, then a solution of T'(v) = w may exist for every w € W, but it is never unique.
If n < m, then a solution may be unique if it exists, but there are some w € W(T') for which a solution
does not exist.

So our only hope for both existence and uniqueness of a solution of 7'(v) = w for every w € W lies in
the final case m = n.

THEOREM 3.9. Suppose that T : V — W is linear and that V and VW are finite-dimensional with
dimV = dim W. Then the following are equivalent:

(a
b

(
(c
(

) T'(v) = w has a unique solution v € V for every w € W.

) T is 1-1, i.e., T(v) = w has at most one solution for every w € W.
) T is onto, i.e., T'(v) = w has at least one solution for every w € W.
d) T has an inverse, i.e., a linear transformation T=' : W — V such that T~1(T(v)) = v for every
veV and T(TH(w )):wforeverywew.

Proof.

(a)=(b) If (a) holds, then T'(v) = 0 has the unique solution v = 0, and it follows from Proposition 3.2
that T is 1-1.

(b)=(c) If T"is 1-1, then dim N (T) = 0. Since dim N (T') + dim R(T) = n by Theorem 3.6, it follows
that dim R(7") = n and, consequently, that 7" is onto.

(c)=(a) If T is onto, then T'(v) = w has at least one solution V' € V for every w € W. Also, we have
that R(T) = W, and so dim R(T) = n. Since dim N'(T') + dim R(T') = n by Theorem 3.6, it follows
that dim A (T') = 0. Then, by Proposition 3.1, T is 1-1, and the solution of T'(v) = w is unique for
every w € W.

To complete the proof, recall from Proposition 3.1 that 7" is 1-1 and onto if and only if it has an inverse.
Thus (a)-(c) hold if and only if (d) holds. O
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Linear equations in R".

Here, we outline the implications of the general results above when V = R", W = R™, and T'(v) =
Av € R™ for v € R", where A € R™*™. One can regard T as defined by T'(v) = Av for a given A,
or one can regard A as the matrix representation of a given T' with respect to the natural bases on R"
and R™. We denote R(T") by R(A) and N(T) by N (A).

In this context, we write a linear equation as Ax = b, where b € R™ is given and z € R" is a solution
to be determined. This represents a system of m linear equations in n unknowns:

a1171 + a12x2 + . .. + a1y = by

Am1T1 + Q22 + ... + ppTy = by

From our general results, we have the following:
1. dimN(A) +dimR(A) = n.
2. If Az = b for some x € R", then the set of all solutions is {x +y: y € N(A), i.e.,, Ay =0}.

3. If n > m, then a solution may exist for every b € R™, but it is never unique. If n < m, then a
solution may be unique if it exists, but there are some b € R™ for which a solution does not exist.

4. If n = m, then the following are equivalent:
(a) Az = b has a unique solution for every b € R".
b

(b) The only solution of Az =0 is x = 0.
(c) Ax = b has at least one solution for every b € R".
(d)

d) A has an inverse matrix A~ € R™*" such that A=A = AA~! = I, the identity matrix! in
RHXH-

Items 1-3 are straightforward “translations” of Theorem 3.6, Proposition 3.8, and the summary preceding
Theorem 3.9, respectively. Parts (a) and (c) of the item 4 are likewise straightforward “translations”
of their counterparts in Theorem 3.9. Part (b) is nearly straightforward but requires recalling from
Proposition 3.2 that the linear transformation defined by A is 1-1 if and only if A/(A) = {0}, which is to
say that the only solution of Az = 0isz = 0. For part (d), recall from Proposition 3.1 that part (a) holds
if and only if the map T associated with A has an inverse T~! such that T7-(T(z)) = T(T~!(z)) = z
for every z € R™. Then take A~! € R™*™ to be the matrix representation of 7! with respect to the
natural basis on R™. It is easy to verify that A=Az = AA~'z = z for all z € R", which is to say that
ATTA=AA"1=1T

!This is the matrix with all diagonal entries equal to one and all other entries equal to zero.
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Remark 1. If A € R™™ has an inverse matrix A~!, then A is said to be invertible or nonsingular. Note
that Ax = b — A 1Az = A1b — z = A~1b. This characterization of the solution is useful for

theoretical purposes but does not suggest a practical way to determine x in general.

PRrROPOSITION 3.10. Suppose A, B € R*™*™. Then AB is nonsingular if and only if both A and B
are nonsingular.

Remark 2. In the present context, we can specify an additional equivalent condition in item 4, as follows:
Denote the columns of A by

a a2 ain
a) = , ag = B :
anl P Qnn
n
T > i1 0155
Then for x = : € R™, we have Ax = : =z101 + Toa2 + ...+ apTy.
n
Tn 2 j=1 UnjTj
Letting « range over all R", we have that R(A) = span{ai,...,a,}. It follows that A is onto <=
R(A) =R" < span{ai,...,a,} =R <= the columns of A are linearly independent.

DEFINITION 3.11.  The column rank of a matrix is the maximal number of linearly independent
columns in the matrix.

We have that the column rank of A is equal dimspan {ay,...,a,}. Then to item 4 above, we can add
a fifth equivalent condition:

(e) The column rank of A is n.
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