Linear Algebra: Lecture 3

More on linear transformations. Topics: range and null space, linear equation, linear equations in \mathbb{R}^n .

Range and null space.

There are two very important subspaces associated with a linear transformation $T: \mathcal{V} \to \mathcal{W}$.

- The range of T, $\mathcal{R}(T) = \{ w \in \mathcal{W} : w = Tv \text{ for some } v \in \mathcal{V} \}.$
- The null space of T, $\mathcal{N}(T) = \{v \in \mathcal{V} : Tv = 0\}.$

We say that T is <u>onto</u> if $\mathcal{R}(T) = \mathcal{W}$ and that T is <u>one-to-one</u> (abbreviated 1-1) if T(u) = T(v) only when u = v. We (sometimes) say that T is an <u>isomorphism</u> between \mathcal{V} and \mathcal{W} if it is both 1-1 and onto.

Suppose that $T : \mathcal{V} \to \mathcal{W}$ is 1-1 and onto. Then we can define an <u>inverse</u> map $T^{-1} : \mathcal{W} \to \mathcal{V}$ as follows: For each $w \in \mathcal{W}$, define $T^{-1}(w)$ to be the unique $v \in \mathcal{V}$ such that T(v) = w.

Note that $T^{-1}(T(v)) = v$ for all $v \in \mathcal{V}$ and $T(T^{-1}(w)) = w$ for all $w \in \mathcal{W}$.

It is easy to see that $T^{-1}: \mathcal{W} \to \mathcal{V}$ is linear. Indeed, suppose we have $w_1, w_2 \in \mathcal{W}$ and scalars α_1, α_2 . Set $v_1 = T^{-1}(w_1)$ and $v_2 = T^{-1}(w_2)$. We have that $T(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 T(v_1) + \alpha_2 T(v_2) = \alpha_1 w_1 + \alpha_2 w_2$, and it follows that $T^{-1}(\alpha_1 w_1 + \alpha_2 w_2) = \alpha_1 v_1 + \alpha_2 v_2 = \alpha_1 T^{-1}(w_1) + \alpha_2 T^{-1}(w_2)$.

Conversely, suppose that T has an inverse, i.e., a linear map $T^{-1}: \mathcal{W} \to \mathcal{V}$ such that $T^{-1}(T(v)) = v$ for all $v \in \mathcal{V}$ and $T(T^{-1}(w)) = w$ for all $w \in \mathcal{W}$. Then (1) T is 1-1, since $T(u) = T(v) \Rightarrow$ $T^{-1}(T(u)) = T^{-1}(T(v)) \Rightarrow u = v$; (2) T is onto, since, for every $w \in \mathcal{W}$, we have that T(v) = w for $v = T^{-1}(w) \in \mathcal{V}$.

The following summarizes these observations.

PROPOSITION 3.1. $T: \mathcal{V} \to \mathcal{W}$ is 1-1 and onto if and only if there is a linear map $T^{-1}: \mathcal{W} \to \mathcal{V}$ such that $T^{-1}(T(v)) = v$ for all $v \in \mathcal{V}$ and $T(T^{-1}(w)) = w$ for all $w \in \mathcal{W}$.

The following provides useful characteristic properties of 1-1 maps.

PROPOSITION 3.2. The following are equivalent:

- (a) T is 1-1.
- (b) $\mathcal{N}(T) = \{0\}, i.e., T(v) = 0 \iff v = 0.$
- (c) T maps linearly independent sets to linearly independent sets, i.e., if $\{v_1, \ldots, v_k\}$ is linearly independent, then so is $\{T(v_1), \ldots, T(v_k)\}$.

Proof. (a) \Rightarrow (b) Since T is 1-1, T(v) = 0 only when v = 0, so 0 is the only vector in $\mathcal{N}(T)$.

 $\underbrace{(\mathbf{b}) \Rightarrow (\mathbf{c})}_{\alpha_n T(v_n)} \text{ Suppose that } \mathcal{N}(T) = \{0\}. \text{ Let } \{v_1, \dots, v_k\} \text{ be linearly independent in } \mathcal{V}. \text{ If } \alpha_1 T(v_1) + \dots + \alpha_n T(v_n) = 0, \text{ then } T(\alpha_1 v_1 + \dots + \alpha_n v_n) = 0 \text{ since } T \text{ is linear. It follows that } \alpha_1 v_1 + \dots + \alpha_n v_n \in \mathcal{N}(T) \text{ and, since } \mathcal{N}(T) = \{0\}, \text{ that } \alpha_1 v_1 + \dots + \alpha_n v_n = 0. \text{ Then, since } \{v_1, \dots, v_k\} \text{ is linearly independent, we must have that } \alpha_1 = \dots = \alpha_n = 0.$

 $\underline{(c)} \Rightarrow \underline{(a)}$ Suppose that T maps linearly independent sets to linearly independent sets. Since a non-zero $v \in \mathcal{V}$ constitutes a linearly independent set, we have in particular that $T(v) \neq 0$ whenever $v \neq 0$, or, equivalently, that T(v) = 0 only if v = 0. It follows that if T(u) = T(v) for $u, v \in \mathcal{V}$, then T(u-v) = 0 only if u - v = 0, i.e., u = v. \Box

We can say more if \mathcal{V} and perhaps \mathcal{W} are finite-dimensional.

PROPOSITION 3.3. Suppose that dim $\mathcal{V} = n$. If $\{v_1, \ldots, v_n\}$ is a basis for \mathcal{V} , then $\{T(v_1), \ldots, T(v_n)\}$ is a spanning set for $\mathcal{R}(T)$.

Proof. If $w \in \mathcal{R}(T)$, then w = T(v) for some $v \in \mathcal{V}$. Writing $v = \sum_{i=1}^{n} \alpha_i v_i$, we have that $w = T(\sum_{i=1}^{n} \alpha_i v_i) = \sum_{i=1}^{n} \alpha_i T(v_i) \in \text{span} \{T(v_1), \dots, T(v_n)\}.$

It follows from Proposition 3.3 that $\dim \mathcal{R}(T) \leq n$. Also, if $\dim \mathcal{W} = m$, then we clearly have that $\dim \mathcal{R}(T) \leq m$; moreover, T is *onto* if and only if $\dim \mathcal{R}(T) = m$.

We now work toward Theorem 3.6 below. This is a fundamentally important result for linear transformations on finite-dimensional vector spaces. We will use it in the sequel to gain basic insights into the existence and uniqueness of solutions of linear equations.

We assume throughout the following that \mathcal{V} is finite-dimensional, with $\dim \mathcal{V} = n$, and that T is a linear transformation from \mathcal{V} to \mathcal{W} .

Suppose that $\dim \mathcal{N}(T) = k$ for some $k, 0 \le k \le n$. Let $\{v_1, \ldots, v_k\}$ be a basis for $\mathcal{N}(T)$. By Proposition 2.7, we can expand this to a basis $\{v_1, \ldots, v_k, u_1, \ldots, u_{n-k}\}$ for \mathcal{V} . Set $\mathcal{M} = \text{span} \{u_1, \ldots, u_{n-k}\}$. Clearly, $\{u_1, \ldots, u_{n-k}\}$ is linearly independent and so is a basis for \mathcal{M} ; thus $\dim \mathcal{M} = n - k$.

Note: \mathcal{M} is not unique, since the expansion $\{u_1, \ldots, u_{n-k}\}$ is not unique. However, every such expansion of $\{v_1, \ldots, v_k\}$ will result in a subspace of dimension n - k, which is the main thing that matters to us.

PROPOSITION 3.4. With $\mathcal{N}(T)$ and \mathcal{M} as above, $\mathcal{N}(T) \cap \mathcal{M} = \{0\}$.

Proof. Clearly, $\{0\} \subseteq \mathcal{N}(T) \cap \mathcal{M}$. Conversely, if $v \in \mathcal{N}(T) \cap \mathcal{M}$, then, since $\{v_1, \ldots, v_k\}$ is a basis of $\mathcal{N}(T)$, we can write $v = \sum_{i=1}^k \alpha_i v_i$ and, since $\{u_1, \ldots, u_{n-k}\}$ is a basis of \mathcal{M} , we can also write $v = \sum_{i=1}^{n-k} \beta_i u_i$. Then $\sum_{i=1}^k \alpha_i v_i = \sum_{i=1}^{n-k} \beta_i u_i$, which yields $\sum_{i=1}^k \alpha_i v_i - \sum_{i=1}^{n-k} \beta_i u_i = 0$. Since $\{v_1, \ldots, v_k, u_1, \ldots, u_{n-k}\}$ is a basis of \mathcal{V} and, therefore, linearly independent, it follows that $\alpha_1 = \ldots = \alpha_k = \beta_1 = \ldots = \beta_{n-k} = 0$ and, consequently, that v = 0. \Box

LEMMA 3.5. With T and \mathcal{M} as above, $T : \mathcal{M} \to \mathcal{R}(T)$ is 1-1 and onto.

Proof. If $v \in \mathcal{M}$ is such that T(v) = 0, then $v \in \mathcal{N}(T) \cap \mathcal{M}$, which is $\{0\}$ by Proposition 3.4. It follows from Proposition 3.2 that T is 1-1 on \mathcal{M} . If $w \in \mathcal{R}(T)$, then w = T(v) for some $v \in \mathcal{V}$. With the basis $\{v_1, \ldots, v_k, u_1, \ldots, u_{n-k}\}$ as above, we can write $v = \sum_{i=1}^k \alpha_i v_i + \sum_{i=1}^{n-k} \beta_i u_i$ for some scalars α_i and β_i . Since $\sum_{i=1}^k \alpha_i v_i \in \mathcal{N}(T)$, we have that $w = T(v) = T\left(\sum_{i=1}^k \alpha_i v_i\right) + T\left(\sum_{i=1}^{n-k} \beta_i u_i\right) = T\left(\sum_{i=1}^{n-k} \beta_i u_i\right)$. Since $\sum_{i=1}^{n-k} \beta_i u_i \in \mathcal{M}$, it follows that T maps \mathcal{M} onto $\mathcal{R}(T)$. \Box

THEOREM 3.6. If \mathcal{V} is finite-dimensional with $\dim \mathcal{V} = n$ and $T : \mathcal{V} \to \mathcal{W}$ is a linear transformation, then $\dim \mathcal{N}(T) + \dim \mathcal{R}(T) = n$.

Proof. Suppose that, as above, we have a basis $\{v_1, \ldots, v_k\}$ for $\mathcal{N}(T)$, an expanded basis $\{v_1, \ldots, v_k, u_1, \ldots, u_{n-k}\}$ for \mathcal{V} , and $\mathcal{M} = \operatorname{span} \{u_1, \ldots, u_{n-k}\}$. Since $\{u_1, \ldots, u_{n-k}\}$ is a basis for \mathcal{M} , we have that $\dim \mathcal{N}(T) + \dim \mathcal{M} = n$. We also have, by Proposition 3.2 and Lemma 3.5, that $\{T(u_1), \ldots, T(u_{n-k})\}$ is a linearly independent spanning set in $\mathcal{R}(T)$, i.e., a basis for $\mathcal{R}(T)$. It follows that $\dim \mathcal{R}(T) = \dim \mathcal{M} = n - k$ and, hence, that $\dim \mathcal{N}(T) + \dim \mathcal{R}(T) = n$. \Box

Linear equations.

A <u>linear equation</u> has the form T(v) = w, where $T : \mathcal{V} \to \mathcal{W}$ is a given linear transformation, $w \in \mathcal{W}$ is a given right-hand side, and $v \in \mathcal{V}$ is a solution to be determined. Our immediate goal is to look into the existence and uniqueness of solutions.

Clearly, T(v) = w has a solution if and only if $w \in \mathcal{R}(T)$. The following somewhat refined statement is also clear.

PROPOSITION 3.7.

- (a) T(v) = w has at least one solution for every $w \in W$ if and only if T is onto, i.e., $\mathcal{R}(T) = W$.
- (b) T(v) = w has at most one solution for every $w \in W$ if and only if T is one-to-one, i.e., $\mathcal{N}(T) = \{0\}$.

Suppose that \mathcal{V} and \mathcal{W} are finite-dimensional with $\dim \mathcal{V} = n$ and $\dim \mathcal{W} = m$. We consider the cases n > m, n < m, and n = m in order, recalling from Theorem 3.6 that $\dim \mathcal{N}(T) + \dim \mathcal{R}(T) = n$.

<u>If n > m</u>, then dim $\mathcal{N}(T) = n - \dim \mathcal{R}(T) \ge n - m > 0$. It follows that if $w \in \mathcal{R}(T)$, then there are *infinitely many solutions* of T(v) = w. Indeed, we have the following characterization of solutions, which is also valid when $n \le m$ and even when \mathcal{V} or \mathcal{W} is infinite-dimensional.

PROPOSITION 3.8. If $v \in V$ is any vector satisfying T(v) = w, then the set of all solutions is $\{v + u : u \in \mathcal{N}(T), i.e., T(u) = 0\}$.

Proof. If $u \in \mathcal{N}(T)$, then T(v+u) = T(v) + T(u) = T(v) + 0 = w; thus everything in the set is a solution. If $s \in \mathcal{V}$ is any vector satisfying T(s) = w, then T(s-v) = T(s) - T(v) = w - w = 0. Consequently, $u = s - v \in \mathcal{N}(T)$, and s = v + u is in the set. \Box

Since $\dim \mathcal{N}(T) > 0$ when n > m, it follows immediately that if a solution exists, then there are infinitely many other solutions. Note that a solution exists for every $w \in \mathcal{W}$ if and only if $\dim \mathcal{N}(T) = n - m$.

<u>If n < m</u>, then dim $\mathcal{R}(T) = n - \dim \mathcal{N}(T) \le n < m$. It follows that T cannot be onto and that there are *no solutions* of T(v) = w for some $w \in \mathcal{W}$.

In summary, if n > m, then a solution of T(v) = w <u>may exist</u> for every $w \in W$, but it is <u>never unique</u>. If n < m, then a solution <u>may be unique</u> if it exists, but there are some $w \in W(T)$ for which a solution does not exist.

So our only hope for both existence and uniqueness of a solution of T(v) = w for every $w \in W$ lies in the final case m = n.

THEOREM 3.9. Suppose that $T : \mathcal{V} \to \mathcal{W}$ is linear and that \mathcal{V} and \mathcal{W} are finite-dimensional with $\dim \mathcal{V} = \dim \mathcal{W}$. Then the following are equivalent:

- (a) T(v) = w has a unique solution $v \in \mathcal{V}$ for every $w \in \mathcal{W}$.
- (b) T is 1-1, i.e., T(v) = w has at most one solution for every $w \in W$.
- (c) T is onto, i.e., T(v) = w has at least one solution for every $w \in W$.
- (d) T has an inverse, i.e., a linear transformation $T^{-1}: \mathcal{W} \to \mathcal{V}$ such that $T^{-1}(T(v)) = v$ for every $v \in \mathcal{V}$ and $T(T^{-1}(w)) = w$ for every $w \in \mathcal{W}$.

Proof.

 $(\underline{a}) \Rightarrow (\underline{b})$ If (a) holds, then T(v) = 0 has the unique solution v = 0, and it follows from Proposition 3.2 that T is 1-1.

<u>(b)</u> \Rightarrow (c) If T is 1-1, then dim $\mathcal{N}(T) = 0$. Since dim $\mathcal{N}(T) + \dim \mathcal{R}(T) = n$ by Theorem 3.6, it follows that dim $\mathcal{R}(T) = n$ and, consequently, that T is onto.

 $(\underline{c}) \Rightarrow (\underline{a})$ If T is onto, then T(v) = w has at least one solution $V \in \mathcal{V}$ for every $w \in \mathcal{W}$. Also, we have that $\mathcal{R}(T) = \mathcal{W}$, and so $\dim \mathcal{R}(T) = n$. Since $\dim \mathcal{N}(T) + \dim \mathcal{R}(T) = n$ by Theorem 3.6, it follows that $\dim \mathcal{N}(T) = 0$. Then, by Proposition 3.1, T is 1-1, and the solution of T(v) = w is unique for every $w \in \mathcal{W}$.

To complete the proof, recall from Proposition 3.1 that T is 1-1 and onto if and only if it has an inverse. Thus (a)-(c) hold if and only if (d) holds.

Linear equations in \mathbb{R}^n .

Here, we outline the implications of the general results above when $\mathcal{V} = \mathbb{R}^n$, $\mathcal{W} = \mathbb{R}^m$, and $T(v) = Av \in \mathbb{R}^m$ for $v \in \mathbb{R}^n$, where $A \in \mathbb{R}^{m \times n}$. One can regard T as defined by T(v) = Av for a given A, or one can regard A as the matrix representation of a given T with respect to the natural bases on \mathbb{R}^n and \mathbb{R}^m . We denote $\mathcal{R}(T)$ by $\mathcal{R}(A)$ and $\mathcal{N}(T)$ by $\mathcal{N}(A)$.

In this context, we write a linear equation as Ax = b, where $b \in \mathbb{R}^m$ is given and $x \in \mathbb{R}^n$ is a solution to be determined. This represents a system of m linear equations in n unknowns:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$

From our general results, we have the following:

- 1. dim $\mathcal{N}(A)$ + dim $\mathcal{R}(A) = n$.
- 2. If Ax = b for some $x \in \mathbb{R}^n$, then the set of <u>all</u> solutions is $\{x + y : y \in \mathcal{N}(A), \text{ i.e., } Ay = 0\}$.
- 3. If n > m, then a solution <u>may exist</u> for every $b \in \mathbb{R}^m$, but it is <u>never unique</u>. If n < m, then a solution may be unique if it exists, but there are some $b \in \mathbb{R}^m$ for which a solution does not exist.
- 4. If n = m, then the following are equivalent:
 - (a) Ax = b has a unique solution for every $b \in \mathbb{R}^n$.
 - (b) The only solution of Ax = 0 is x = 0.
 - (c) Ax = b has at least one solution for every $b \in \mathbb{R}^n$.
 - (d) A has an <u>inverse matrix</u> $A^{-1} \in \mathbb{R}^{n \times n}$ such that $A^{-1}A = AA^{-1} = I$, the identity matrix¹ in $\mathbb{R}^{n \times n}$.

Items 1-3 are straightforward "translations" of Theorem 3.6, Proposition 3.8, and the summary preceding Theorem 3.9, respectively. Parts (a) and (c) of the item 4 are likewise straightforward "translations" of their counterparts in Theorem 3.9. Part (b) is nearly straightforward but requires recalling from Proposition 3.2 that the linear transformation defined by A is 1-1 if and only if $\mathcal{N}(A) = \{0\}$, which is to say that the only solution of Ax = 0 is x = 0. For part (d), recall from Proposition 3.1 that part (a) holds if and only if the map T associated with A has an inverse T^{-1} such that $T^{-1}(T(x)) = T(T^{-1}(x)) = x$ for every $x \in \mathbb{R}^n$. Then take $A^{-1} \in \mathbb{R}^{n \times n}$ to be the matrix representation of T^{-1} with respect to the natural basis on \mathbb{R}^n . It is easy to verify that $A^{-1}Ax = AA^{-1}x = x$ for all $x \in \mathbb{R}^n$, which is to say that $A^{-1}A = AA^{-1} = I$.

¹This is the matrix with all diagonal entries equal to one and all other entries equal to zero.

Remark 1. If $A \in \mathbb{R}^{n \times n}$ has an inverse matrix A^{-1} , then A is said to be *invertible* or *nonsingular*. Note that $Ax = b \iff A^{-1}Ax = A^{-1}b \iff x = A^{-1}b$. This characterization of the solution is useful for theoretical purposes but does not suggest a practical way to determine x in general.

PROPOSITION 3.10. Suppose $A, B \in \mathbb{R}^{n \times n}$. Then AB is nonsingular if and only if both A and B are nonsingular.

Remark 2. In the present context, we can specify an additional equivalent condition in item 4, as follows: Denote the columns of A by

$$a_1 = \begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix}, \quad a_2 = \begin{pmatrix} a_{12} \\ \vdots \\ a_{n2} \end{pmatrix}, \quad \dots, \quad a_n = \begin{pmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{pmatrix}.$$

Then for $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$, we have $Ax = \begin{pmatrix} \sum_{j=1}^n a_{1j} x_j \\ \vdots \\ \sum_{j=1}^n a_{nj} x_j \end{pmatrix} = x_1 a_1 + x_2 a_2 + \dots + a_n x_n$

Letting x range over all \mathbb{R}^n , we have that $\mathcal{R}(A) = \operatorname{span} \{a_1, \ldots, a_n\}$. It follows that A is onto $\iff \mathcal{R}(A) = \mathbb{R}^n \iff \operatorname{span} \{a_1, \ldots, a_n\} = \mathbb{R}^n \iff$ the columns of A are linearly independent.

DEFINITION 3.11. The <u>column rank</u> of a matrix is the maximal number of linearly independent columns in the matrix.

We have that the column rank of A is equal dim span $\{a_1, \ldots, a_n\}$. Then to item 4 above, we can add a fifth equivalent condition:

(e) The column rank of A is n.