
Linear Algebra: Lecture 11

More on inner-product spaces. Topics: Linear transformations on inner product spaces, linear functionals,

the Riesz Representation Theorem, adjoint transformations, linear transformations revisited, matrix rank.

Linear transformations on inner product spaces..

This broad topic can be regarded as a capstone for all of the material developed so far. We assume

throughout that V is an inner-product space with inner product 〈·, ·〉 and associated norm ‖ · ‖, and we

begin with arguably the simplest type of linear transformation defined on V .

Linear functionals.

Definition 11.1. A linear functional is a linear transformation from V to F.

Recall from Lecture 9 that a linear transformation T from V to a normed vector space W is bounded if

there exists a C such that ‖T (v)‖ ≤ C‖v‖ for all v ∈ V . Moreover, if T is bounded, then it is continuous

everywhere. A linear transformation need not be bounded in general; however, if V is finite-dimensional,

then every linear transformation on V is bounded.

A linear functional ℓ : V → F is bounded if there is a C such that |ℓ(v)| ≤ C‖v‖ for all v ∈ V . As in

the case of general linear transformations, linear functionals are not always bounded.

Example 11.2. Define ℓ(f) = f(1
2
) for f ∈ C[0, 1], and suppose that the inner product on C[0, 1] is

〈f, g〉 =
∫

1

0
f(x)g(x) dx. Consider {fk}

∞
k=2

⊂ C[0, 1], where, for each k ≥ 2, fk is the piecewise-linear

function passing through (0, 0), (1
2
− 1

k , 0), (
1

2
, 1), (1

2
+ 1

k , 0), and (1, 0). Then ℓ(fk) = 1 for each k,

while ‖fk‖ =
(

∫

1

0
fk(x)

2 dx
)1/2

≤
√

2

k → 0 as k → ∞. It follows that no inequality |ℓ(fk)| ≤ C‖fk‖

can hold for all k, and so ℓ is not bounded.

There is a particular source of bounded linear functionals on an inner-product space, namely, the vectors

in the space themselves. Indeed, for w ∈ V , we can define ℓ(v) = 〈v, w〉 for v ∈ V . It is easily verified

that ℓ is linear on V . Moreover, the Schwarz Inequality yields |ℓ(v)| ≤ ‖w‖‖v‖, and so ℓ is bounded.

Our goal is to establish the converse: if ℓ is a bounded linear functional on V , then there is a w ∈ V

such that ℓ(v) = 〈v, w〉 for every v ∈ V . This is the Riesz Representation Theorem.

Lemma 11.3. Suppose that V is a complete inner-product space and that ℓ is a bounded linear

functional on V . Then N (ℓ) is complete.

Proof. Suppose that {vk} is a Cauchy sequence in N (ℓ). Then {vk} is also Cauchy in V , and since V

is complete, there is a v ∈ V such that limk→∞ vk = v. Since ℓ is bounded, it is continuous, and we

have ℓ(v) = limk→∞ ℓ(vk) = 0. Thus v ∈ N (ℓ), and it follows that N (ℓ) is complete.
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Theorem 11.4. (Riesz Representation Theorem) Suppose that V is a complete inner-

product space and that ℓ is a bounded linear functional on V . Then there is a unique w ∈ V such that

ℓ(v) = 〈v, w〉 for all v ∈ V .

Proof. We first show the existence of such a w. Note that if ℓ = 0, i.e., if ℓ(v) = 0 for all v ∈ V , then

w = 0 will do. Suppose that ℓ 6= 0.

We claim that dimN (ℓ)⊥ = 1. To show this, we first note that, since ℓ 6= 0, there is a v ∈ V such that

ℓ(v) 6= 0. Since ℓ is bounded and V is complete, we have from Lemma 11.3 that N (ℓ) is complete.

Then we can apply the Projection Theorem to obtain v = u + w, where u ∈ N (ℓ) and w ∈ N (ℓ)⊥.

Since v 6∈ N (ℓ), we have that w 6= 0, and it follows that dimN (ℓ)⊥ ≥ 1. To show that dimN (ℓ)⊥ = 1,

suppose that u and v are in N (ℓ)⊥. There are α, β ∈ F that are not both zero and are such that

αℓ(u)+βℓ(v) = 0. Then ℓ(αu+βv) = 0, which is to say that αu+βv ∈ N (ℓ). Since αu+βv ∈ N (ℓ)⊥

as well, it follows that αu + βv = 0. Consequently, u and v are linearly dependent, and we conclude

that dimN (ℓ)⊥ = 1.

Choose ŵ ∈ N (ℓ)⊥ such that ‖ŵ‖ = 1, and set w = ℓ(ŵ) ŵ. (For convenience, we assume that

F = C, which subsumes the case F = R.) By Proposition 10.7, N (ℓ)⊥ is complete, and we can apply

the Projection Theorem to define the orthogonal projection P onto N (ℓ)⊥. For v ∈ V , we have that

P (v) = 〈v, ŵ〉 ŵ by Proposition 10.13; thus v = P (v)+ (I −P )(v) = 〈v, ŵ〉 ŵ+(I −P )(v). Note that

(I − P )(v) ∈
(

N (ℓ)⊥
)⊥

= N (ℓ) since N (ℓ) is complete. Then

ℓ(v) = ℓ(P (v) + (I − P )(v)) = ℓ(P (v)) = ℓ(〈v, ŵ〉 ŵ) = 〈v, ŵ〉 ℓ(ŵ)

=
〈

v, ℓ(ŵ) ŵ
〉

= 〈v, w〉 .

To show that this w is unique, suppose that w̃ ∈ V is such that ℓ(v) = 〈v, w̃〉 for all v ∈ V . Then

0 = ℓ(v) − ℓ(v) = 〈v, w〉 − 〈v, w̃〉 = 〈v, w − w̃〉 for all v ∈ V . In particular, 0 = 〈w − w̃, w − w̃〉, and

it follows that w̃ = w.

Adjoint transformations.

We now consider linear transformations from V to another inner-product space W. We use the same

symbols 〈·, ·〉 and ‖ · ‖ to denote the inner products and norms on both spaces. We assume that V is

complete throughout, although this is not necessary for Proposition 11.6.

Suppose that T : V → W is a bounded linear transformation. As in Lecture 9,1 we define

‖T‖ = sup
v 6=0

‖T (v)‖

‖v‖
= sup

‖v‖=1

‖T (v)‖.

1In Lecture 9, we defined ‖T‖ = maxv 6=0 ‖T (v)‖/‖v‖ = max‖v‖=1 ‖T (v)‖, assuming that V is finite-dimensional.
Here, we do not assume this and, consequently, must replace “max” with “sup.”
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If V is finite-dimensional, then {v ∈ V : ‖v‖ = 1} is compact, and“sup” can be replaced by “max” in

this definition.

For w ∈ W, consider a linear functional on V defined by ℓ(v) = 〈T (v), w〉 for v ∈ V . With the Schwarz

Inequality, we have that

|ℓ(v)| = | 〈T (v), w〉 | ≤ ‖T (v)‖ ‖w‖ ≤ (‖T‖ ‖w‖) ‖v‖,

so ℓ is a bounded linear functional on V . It follows from the Riesz Representation Theorem that there

is a w∗ ∈ V such that ℓ(v) = 〈v, w∗〉 and, hence, 〈T (v), w〉 = 〈v, w∗〉 for all v ∈ V . Denoting w∗ by

T ∗(w), we have that

〈T (v), w〉 = 〈v, T ∗(w)〉 (11.1)

for all v ∈ V and all w ∈ W. The assignment w → T ∗(w) defines a map T ∗ : W → V called the

adjoint of T .

Proposition 11.5. T ∗ is a linear transformation from W to V .

Proof. Suppose that w and ŵ are in W and α and β are scalars. Then for v ∈ V ,

〈v, αT ∗(w) + βT ∗(ŵ)〉 = α 〈v, T ∗(w)〉+ β 〈v, T ∗(ŵ)〉 = α 〈T (v), w〉+ β 〈T (v), ŵ〉

= 〈T (v), αw〉+ 〈T (v), βŵ〉 = 〈T (v), αw + βŵ〉

= 〈v, T ∗(αw + βŵ)〉 ,

and it follows that αT ∗(w) + βT ∗(ŵ) = T ∗(αw + βŵ).

The following lemma will be useful in obtaining the result that follows.

Lemma 11.6. For v ∈ V ,

‖v‖ = max
‖u‖=1

| 〈u, v〉 |.

Proof. Suppose that v ∈ V . If u ∈ V is such that ‖u‖ = 1, then | 〈u, v〉 | ≤ ‖u‖ ‖v‖ = ‖v‖, so

‖v‖ ≥ sup‖u‖=1 | 〈u, v〉 |. On the other hand, taking u = v/‖v‖ gives | 〈u, v〉 | = | 〈v/‖v‖, v〉 | = ‖v‖. It

follows that ‖v‖ = sup‖u‖=1 | 〈u, v〉 |, and we can replace “sup” with “max.”

Proposition 11.7. T ∗ : W → V is bounded, and ‖T ∗‖ = ‖T‖.
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Proof. With Lemma 11.6, we have

‖T ∗‖ = sup
‖w‖=1

‖T ∗(w)‖ = sup
‖w‖=1

max
‖v‖=1

| 〈v, T ∗(w)〉 | = sup
‖w‖=1

max
‖v‖=1

| 〈T (v), w〉 |.

Since | 〈T (v), w〉 | ≤ ‖T (v)‖ ‖w‖ ≤ ‖T‖ ‖v‖ ‖w‖, it follows that ‖T ∗‖ ≤ ‖T‖. On the other hand,

sup
‖w‖=1

max
‖v‖=1

| 〈T (v), w〉 | ≥ max
‖v‖=1

| 〈T (v), T (v)/‖T (v)‖〉 | = max
‖v‖=1

‖T (v)‖ = ‖T‖.

There are many important examples of adjoint transformations, but the most important for us are

provided by matrices. Suppose that T : R
n → R

m is defined by T (v) = Av for v ∈ R
n, where

A ∈ R
m×n. Suppose also that the inner product on both R

n and R
m is the Euclidean inner product,

i.e., 〈v, w〉 = vTw. Then for v ∈ R
n and w ∈ R

m, we have

〈Av,w〉 = (Av)Tw = vTATw =
〈

v,ATw
〉

.

It follows that the adjoint transformation is given by T ∗(w) = ATw. Note that AT ∈ IR
n×m.

In the complex case, if the transformation is from C
n to C

m and A ∈ C
m×n, then

〈Av,w〉 = (Av)Tw = vTATw = vT
(

A∗w
)

= 〈v,A∗w〉 ,

where A∗ = AT is the conjugate transpose (or Hermitian transpose) of A.

Linear equations revisited.

In general, suppose that V andW are inner-product spaces and that T is a bounded linear transformation

from V to W. Consider a linear equation

T (v) = w, w ∈ W. (11.2)

This has a solution v ∈ V if and only if w is in R(T ). We proceed to characterize R(T ).

Lemma 11.8. R(T )⊥ = N (T ∗).

Proof. We have that

R(T )⊥ = {w ∈ W : 〈T (v), w〉 = 0 for all v ∈ V} = {w ∈ W : 〈v, T ∗(w)〉 = 0 for all v ∈ V}

= {w ∈ W : T ∗(w) = 0} = N (T ∗).

The following provides our fundamental characterization of R(T ).
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Theorem 11.9. If R(T ) is complete, then R(T ) = N (T ∗)⊥.

Proof. If R(T ) is complete, then Corollary 10.9 implies that R(T ) =
(

R(T )⊥
)⊥

, and it follows from

Lemma 11.8 that R(T ) = N (T ∗)⊥.

Corollary 11.10. If either V or W is finite-dimensional, then R(T ) = N (T ∗)⊥.

Proof. If either V or W is finite-dimensional, then so is R(T ), and it follows from Proposition 10.7 that

R(T ) is complete. With Theorem 11.9, we conclude that R(T ) = N (T ∗)⊥.

Remark. With regard to (11.2), a useful interpretation of the condition R(T ) = N (T ∗)⊥ is that

T (v) = w has a solution v ∈ V if and only if 〈w, z〉 = 0 for all z ∈ W such that T ∗(z) = 0.

Linear equations in R
n and R

m revisited.

Suppose that (11.2) is specialized to

Ax = b, A ∈ R
m×n, b ∈ R

m. (11.3)

From Corollary 11.10 and the subsequent remark, we have that Ax = b has a solution if and only if

b ∈ N (AT )⊥, i.e., bT z = 0 for all z ∈ R
m such that AT z = 0.

Similarly, if A ∈ C
m×n and b ∈ C

n, then Ax = b has a solution if and only if b ∈ N (A∗)⊥, i.e., bT z = 0

for all z ∈ C
m such that A∗z = 0.

Matrix rank.

Recall that, for A in R
m×n or Cm×n, we defined the column rank of A to be the number of linearly

independent columns of A, which is also the dimension of R(A). We can similarly define the row rank

of A to be the number of linearly independent rows of A. However, as we now show, there is no need

to distinguish between the row and column ranks of A.

Lemma 11.11. For A ∈ R
m×n, dimR(AT ) = dimR(A). Similarly, for A ∈ C

m×n, dimR(A∗) =

dimR(A).

Proof. For A ∈ R
m×n, Proposition 10.3 implies that m = dimR(A) + dimR(A)⊥. Since R(A)⊥ =

N (AT ) by Lemma 11.8, this yields m = dimR(A) + dimN (AT ). From Theorem 3.6, we have

that dimR(AT ) + dimN (AT ) = m, and it follows that m = dimR(A) + m − dimR(AT ), whence

dimR(AT ) = dimR(A). The proof for A ∈ C
m×n is similar.

It follows from the lemma that the number of linearly independent rows of A is equal to the number

of linearly independent columns of A; in other words, the row rank of a matrix is equal to its column

rank. Consequently, we can speak simply of the rank of a matrix.

The following are immediately seen for A in R
m×n or Cm×n:

• rankA = rankAT ;

• rankA ≤ min{m,n}.
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