Linear Algebra: Lecture 10

More on inner-product spaces. Topics: orthogonal complements, the Projection Theorem, orthogonal projections.

Orthogonal complements.

We assume throughout that \(V \) is an inner-product space with inner product \(\langle \cdot, \cdot \rangle \).

Definition 10.1. The **orthogonal complement** of \(S \subseteq V \) is
\[
S^\perp = \{ v \in V : \langle v, s \rangle = 0 \text{ for all } s \in S \}.
\]
Here, \(S^\perp \) is read as “\(S \) perp.” The “perp” symbol \(\perp \) is used to denote orthogonality, e.g., \(v \perp w \) means \(\langle v, w \rangle = 0 \).

Note that \(v \in S \cap S^\perp \) if and only if \(v = 0 \). Indeed, the “if” part is trivial, and the “only if” follows from the observation that if \(v \in S \cap S^\perp \), then \(\langle v, v \rangle = 0 \).

Proposition 10.2. \(S^\perp \) is a subspace of \(V \).

Proposition 10.3. If \(V \) is finite-dimensional and \(S \subseteq V \) is a subspace, then \(\dim S + \dim S^\perp = \dim V \). Moreover, \((S^\perp)^\perp = S \).

Proof. Suppose that \(\dim V = n \) and let \(\{u_1, \ldots, u_k\} \) and \(\{v_1, \ldots, v_\ell\} \) be orthonormal bases of \(S \) and \(S^\perp \), respectively. Then \(\{u_1, \ldots, u_k\} \cup \{v_1, \ldots, v_\ell\} \) is orthonormal and, therefore, linearly independent in \(V \), and it follows that \(k + \ell \leq n \). If \(k + \ell < n \), then there is a \(w \in V \) such that \(w \notin \text{span} \{u_1, \ldots, u_k\} \cup \{v_1, \ldots, v_\ell\} \). Then \(z = w - \sum_{i=1}^{k} \langle w, u_i \rangle u_i - \sum_{i=1}^{\ell} \langle w, v_i \rangle v_i \neq 0 \). However, \(\langle z, u_j \rangle = \langle w, u_j \rangle - \langle w, u_j \rangle = 0 \) for \(1 \leq j \leq k \) and \(\langle z, v_j \rangle = \langle w, v_j \rangle - \langle w, v_j \rangle = 0 \) for \(1 \leq j \leq \ell \). It follows that \(z \in S \cap S^\perp \) and, consequently, that \(z = 0 \). This is a contradiction, and we conclude that \(k + \ell = n \).

To complete the proof, note that, clearly, \(S \subseteq (S^\perp)^\perp \). On the other hand, if \(w \in (S^\perp)^\perp \), then \(z = w - \sum_{i=1}^{k} \langle w, u_i \rangle u_i \) is also in \((S^\perp)^\perp \). However, one easily verifies as above that \(\langle z, u_i \rangle = 0 \) for \(1 \leq j \leq k \), and it follows that \(z \in S^\perp \) as well. Consequently, \(z = 0 \) and \(w \in S \). \(\square \)

We now work toward the fundamentally important **Projection Theorem**. This is easy to establish in finite-dimensional spaces using orthonormal bases. However, it is much more instructive and not much harder to develop the result in spaces of arbitrary dimension. We begin with a necessary topological digression.
Complete subspaces.

The following pertains in any normed vector space regardless of whether the norm derives from an inner product.

Definition 10.4.

- A point \(v \in V \) is a **limit point** of \(S \subseteq V \) if there is a sequence \(\{ v_j \}_{j=1}^{\infty} \subseteq S \) such that \(\lim_{j \to \infty} v_j = v \).
- A set \(S \subseteq V \) is **closed** if it contains all of its limit points.
- A sequence \(\{ v_j \}_{j=1}^{\infty} \subseteq V \) is **Cauchy** if, for every \(\epsilon > 0 \), there is an \(n \) such that \(\| v_j - v_k \| < \epsilon \) whenever \(j, k \geq n \).
- A set \(S \subseteq V \) is **complete** if every Cauchy sequence \(\{ v_j \}_{j=1}^{\infty} \) in \(S \) converges to a point in \(S \).

Note that if \(V \) is finite-dimensional, then all norms are equivalent, and it follows that the above definitions are **norm-independent**, i.e., the defined properties hold in one norm if and only if they hold in every norm.

Also, it is easily verified that a convergent sequence is Cauchy.

Proposition 10.5. A complete set is closed.

Proof. Suppose that \(S \subseteq V \) is complete. Let \(v \) be a limit point of \(S \), and suppose that \(\{ v_k \}_{k=1}^{\infty} \subseteq S \) converges to \(v \). Then \(\{ v_k \}_{k=1}^{\infty} \) is Cauchy and, since \(S \) is complete, converges to a point in \(S \). Since a convergent sequence can have only one limit, that point must be \(v \); hence, \(v \in S \).

Proposition 10.6. A closed subset of a complete set is complete.

Proof. Suppose that \(T \) is a closed subset of a complete set \(S \), and let \(\{ v_j \}_{j=1}^{\infty} \) be a Cauchy sequence in \(T \). Since \(S \) is complete, there exists a \(v \in S \) such that \(\lim_{j \to \infty} v_j = v \). Then \(v \) is a limit point of \(T \), and, since \(T \) is closed, it follows that \(v \in T \).

Proposition 10.7. If \(S \) is a finite-dimensional subspace of \(V \), then \(S \) is complete.

Proof. Suppose that \(\{ v_j \}_{j=1}^{\infty} \subseteq S \) is Cauchy. Let \(\{ u_1, \ldots, u_k \} \) be a basis for \(S \), and write \(v_j = \sum_{i=1}^{k} \alpha_{ji} u_i \) for each \(j \). Since \(\{ v_j \} \) is Cauchy, it is, in particular, Cauchy in the norm \(\| \cdot \|_\infty \), defined by \(\| w \|_\infty = \max_{1 \leq i \leq k} | \beta_i | \) for \(w = \sum_{i=1}^{k} \beta_i u_i \in V \). It follows that \(\{ \alpha_{ji} \}_{j=1}^{\infty} \) is Cauchy for each \(i \) and, therefore, \(\{ \alpha_{ji} \}_{j=1}^{\infty} \) converges to some \(\alpha_i \) for each \(i \). Then \(v_j = \sum_{i=1}^{k} \alpha_{ji} u_i \) converges to \(v = \sum_{i=1}^{k} \alpha_i u_i \in S \).
In contrast, infinite-dimensional subspaces need not be complete or even closed.

Example. In $C[0,1]$, set $S = \{ f \in C[0,1]: f(\frac{1}{2}) = 0 \}$ and suppose that the inner product on $C[0,1]$ is $(f,g) = \int_0^1 f(x)g(x) \, dx$. Consider $\{ f_j \}_{j=2}^\infty$, where, for each $j \geq 2$, f_j is the piecewise-linear function passing through $(0,1), (\frac{1}{2} - \frac{1}{j},1), (\frac{1}{2},0), (\frac{1}{2} + \frac{1}{j},1)$, and $(1,1)$. Clearly, $\{ f_j \}_{j=2}^\infty \subset S$. Let $f \in C[0,1]$ be defined by $f(x) = 1$ for $0 \leq x \leq 1$. Then

$$\| f_j - f \|^2 = \int_0^1 (f_j(x) - 1)^2 \, dx = \int_{1/2-1/j}^{1/2+1/j} (f_j(x) - 1)^2 \, dx \leq \frac{2}{j}.$$

Thus $\lim_{j \to \infty} \| f_j - f \| = 0$, and we have that f is a limit point of S. However, $f \notin S$, and so S is not closed.

The Projection Theorem.

Theorem 10.8. (Projection Theorem) If S is a complete subspace of an inner-product space V, then every $v \in V$ can be written uniquely as $v = u + w$ for $u \in S$ and $w \in S^\perp$.

Proof. Suppose that $v \in V$ is given. If $v \in S$, then the result is trivial, so assume that $v \notin S$. Since S is complete and, therefore, closed, we must have

$$\mu \equiv \inf_{u \in S} \| v - u \| > 0. \tag{10.1}$$

(Otherwise, v would be a limit point of S and, therefore, in S.) Note that $\| v - u \| \geq \mu$ for all $u \in S$. Let $\{ u_j \} \subseteq S$ be such that $\lim_{j \to \infty} \| v - u_j \| = \mu$.

We claim that $\{ u_j \}$ is Cauchy. Indeed, suppose that $\epsilon > 0$ is given. Choose n such that $\mu^2 \leq \| v - u_j \|^2 < \mu^2 + \epsilon^2/4$ whenever $j \geq n$. Then for $j, \ell \geq n$, the Parallelogram Law gives

$$\| (v - u_j) - (v - u_\ell) \|^2 + \| (v - u_j) + (v - u_\ell) \|^2 = 2 \| v - u_j \|^2 + 2 \| v - u_\ell \|^2,$$

whence

$$\| u_j - u_\ell \|^2 = 2 \| v - u_j \|^2 + 2 \| v - u_\ell \|^2 - 4 \| v - \frac{(u_j + u_\ell)}{2} \|^2 < 4(\mu^2 + \epsilon^2/4) - 4\mu^2 = \epsilon^2,$$

and we have $\| u_j - u_\ell \| < \epsilon$.

Since S is complete and $\{ u_j \}$ is Cauchy, there is a $u \in S$ such that $\lim_{j \to \infty} u_j = u$. Set $w = v - u$. Note that $\| w \| = \| v - u \| = \lim_{j \to \infty} \| v - u_j \| = \mu$.

We claim that $w \in S^\perp$. Indeed, suppose that $\langle w, s \rangle \neq 0$ for some $s \in S$. Then for $t \in \mathbb{R}$, $u + ts \in S$ and

$$\| v - (u + ts) \|^2 = \| w - ts \|^2 = \| w \|^2 - t\langle w, s \rangle + \langle s, w \rangle + t^2\| s \|^2.$$
By choosing t such that \[\text{sign } t = \text{sign} \{ \langle w, s \rangle + \langle s, w \rangle \} \] and $|t| > 0$ is sufficiently small, we can make the right-hand side less than $\|w\|^2 = \mu^2$, contradicting (10.1).

We now have the desired representation $v = u + w$ for $u \in S$ and $w \in S^\perp$. To show that this representation is unique, suppose that $v = \hat{u} + \hat{w}$ for $\hat{u} \in S$ and $\hat{w} \in S^\perp$. Then $u + w = v = \hat{u} + \hat{w}$, and we have $u - \hat{u} = \hat{w} - w$. Since $u - \hat{u} \in S$ and $\hat{w} - w \in S^\perp$, it follows that both sides are in $S \cap S^\perp$ and, hence, are zero.

The following corollary extends the second conclusion of Proposition 10.3.

\textbf{Corollary 10.9.} \hspace{1em} If S is a complete subspace of an inner-product space, then $(S^\perp)^\perp = S$.

\textbf{Proof.} We know that $(S^\perp)^\perp$ is a subspace and clearly have $S \subseteq (S^\perp)^\perp$. Suppose that $S \neq (S^\perp)^\perp$, and let $v \in (S^\perp)^\perp$ be such that $v \not\in S$. Then the Projection Theorem gives $v = u + w$ for $u \in S$ and $w \in S^\perp$. But since $v \in (S^\perp)^\perp$ and $u \in S \subseteq (S^\perp)^\perp$, we also have that $w = v - u \in (S^\perp)^\perp$. It follows that $w = 0$ and $v = u \in S$. \hfill \Box

\textbf{Corollary 10.10.} \hspace{1em} If S is a finite-dimensional subspace of an inner-product space V, then every $v \in V$ can be uniquely written as $v = u + w$, where $u \in S$ and $w \in S^\perp$.

\textbf{Proof.} It follows from Proposition 10.7 that S is complete, and the corollary follows from the Projection Theorem. \hfill \Box

The following can be regarded as a general statement of the Pythagorean Theorem.

\textbf{Proposition 10.11.} \hspace{1em} If $v = u + w$ for $u \in S$ and $w \in S^\perp$, then $\|v\|^2 = \|u\|^2 + \|w\|^2$.

\textbf{Proof.} The result follows immediately from the orthogonality of u and w. \hfill \Box

\textbf{Orthogonal projection.}

We begin with the definition and a useful proposition.

\textbf{Definition 10.12.} \hspace{1em} If $v = u + w$ for $u \in S$ and $w \in S^\perp$, then u is the \textbf{orthogonal projection} of v onto S.

\textbf{Proposition 10.13.} \hspace{1em} If S is finite-dimensional and $\{u_1, \ldots, u_k\}$ is an orthonormal basis for S, then the orthogonal projection of v onto S is given by $u = \sum_{i=1}^k \langle v, u_i \rangle u_i$. Moreover, we have Bessel’s Inequality: \[\|v\|^2 \geq \sum_{i=1}^k |\langle v, u_i \rangle|^2, \] and $\|v\|^2 = \sum_{i=1}^k |\langle v, u_i \rangle|^2$ if and only if $v = \sum_{i=1}^k \langle v, u_i \rangle u_i \in S$.

10.4
Proof. Clearly, \(u = \sum_{i=1}^{k} \langle v, u_i \rangle u_i \in \mathcal{S} \). Also, \(w = v - \sum_{i=1}^{k} \langle v, u_i \rangle u_i \) satisfies \(\langle w, u_j \rangle = \langle v, u_j \rangle - \langle v, u_i \rangle = 0 \) for each \(j \), so \(w \in \mathcal{S}^\perp \). It follows from the uniqueness part of the Projection Theorem that \(u \) is the orthogonal projection of \(v \) onto \(\mathcal{S} \). With Proposition 10.11, Bessel’s inequality follows immediately: \(\|v\|^2 = \|u\|^2 + \|w\|^2 \geq \|u\|^2 = \sum_{i=1}^{k} |\langle v, u_i \rangle|^2 \), and \(\|v\|^2 = \sum_{i=1}^{k} |\langle v, u_i \rangle|^2 \) if and only if \(w = 0 \), i.e., \(v = u = \sum_{i=1}^{k} \langle v, u_i \rangle u_i \in \mathcal{S} \). \(\square \)

More generally, suppose that \(\mathcal{S} \) is a complete subspace of an inner product space \(\mathcal{V} \) so that orthogonal projection onto \(\mathcal{S} \) is defined on all of \(\mathcal{V} \). Let \(P(v) \) denote the orthogonal projection of \(v \in \mathcal{V} \). It is easily verified that \(P : \mathcal{V} \to \mathcal{V} \) is a linear transformation. Note that for every \(v \in \mathcal{V} \), we have that \(v = P(v) + (I - P)(v) \), where \(I \) is the identity transformation on \(\mathcal{V} \) and \((I - P)(v) \in \mathcal{S}^\perp \).

Proposition 10.14. Orthogonal projection onto a complete subspace \(\mathcal{S} \) satisfies the following:

(a) \(P^2 = P \);

(b) \(\mathcal{R}(P) \equiv \{ u \in \mathcal{V} : u = P(v) \text{ for some } v \in \mathcal{V} \} = \mathcal{S} \);

(c) \(\langle P(v), w \rangle = \langle v, P(w) \rangle \) for all \(v, w \in \mathcal{V} \).

Moreover, \(P \) is uniquely characterized by these properties, i.e., if \(Q : \mathcal{V} \to \mathcal{V} \) is a linear transformation satisfying these properties, then \(Q = P \).

Proof. Noting that \(P(v) \in \mathcal{S} \) for all \(v \in \mathcal{V} \) and that \(P \) acts as the identity transformation on \(\mathcal{S} \), we immediately have (a) and also that \(\mathcal{R}(P) \subseteq \mathcal{S} \). On the other hand, if \(u \in \mathcal{S} \), then \(P(u) = u \). It follows that \(\mathcal{S} \subseteq \mathcal{R}(P) \), and (b) holds.

To show (c), write \(v = P(v) + (I - P)(v) \) and \(w = P(w) + (I - P)(w) \). Recalling that \((I - P)(v) \) and \((I - P)(w) \) are in \(\mathcal{S}^\perp \), we have that

\[
\langle P(v), w \rangle = \langle P(v), P(w) + (I - P)(w) \rangle = \langle P(v), P(w) \rangle = \langle P(v) + (I - P)(v), P(w) \rangle = \langle v, P(w) \rangle,
\]

which verifies (c).

To complete the proof, suppose that \(Q \) is a linear transformation satisfying (a)-(c). For \(v \in \mathcal{V} \), we have that \(v = Q(v) + (I - Q)(v) \). We claim that \((I - Q)(v) \in \mathcal{S}^\perp \). Indeed, it follows from (a) and (b) that \(Q \) acts as the identity transformation on \(\mathcal{S} \), and, with (c), we have for \(u \in \mathcal{S} \) that

\[
\langle (I - Q)(v), u \rangle = \langle v, u \rangle - \langle Q(v), u \rangle = \langle v, u \rangle - \langle Q(u), v \rangle = \langle v, u \rangle - \langle v, u \rangle = 0.
\]

Then \(v = Q(v) + (I - Q)(v) \) with \(Q(v) \in \mathcal{S} \) and \((I - Q)(v) \in \mathcal{S}^\perp \), and it follows from the uniqueness part of the Projection Theorem that \(Q(v) = P(v) \). \(\square \)

Remarks. A linear transformation \(P \) satisfying property (a) is said to be **idempotent**. If \(P \) satisfies (a) and (b), then \(P \) is a **projection** onto \(\mathcal{S} \). Note that this projection is characterized by algebraic properties alone. If (a), (b), and (c) hold, then \(P \) is an **orthogonal projection** onto \(\mathcal{S} \), with the geometric notion of orthogonality brought in through the inner product \(\langle \cdot, \cdot \rangle \).

10.5
Example 10.15. Suppose that \(v \in \mathbb{R}^n \). The annihilators of \(v \) are the matrices \(A \in \mathbb{R}^{n \times n} \) such that \(Av = 0 \). Denote the set of all annihilators of \(v \) by \(\mathcal{A}(v) \). It is easily verified that \(\mathcal{A}(v) \) is a subspace of \(\mathbb{R}^{n \times n} \). In the trivial case \(v = 0 \), we have that \(\mathcal{A}(v) = \mathbb{R}^{n \times n} \), and so we assume that \(v \neq 0 \).

Suppose that the inner product on \(\mathbb{R}^{n \times n} \) is the Frobenius inner product \(\langle \cdot, \cdot \rangle \), given by \(\langle A, B \rangle = \sum_{i,j} a_{ij} b_{ij} = \text{trace} \{ AB^T \} \). We claim that orthogonal projection onto \(\mathcal{A}(v) \) with respect to this inner product is given by \(P(A) = A \left[I - \frac{vv^T}{v^Tv} \right] \) for \(A \in \mathcal{A}(v) \). To show this, we only need to verify that properties (a)–(c) hold for this \(P \). For \(A \in \mathbb{R}^{n \times n} \), we have

\[
P^2(A) = A \left[I - \frac{vv^T}{v^Tv} \right] \left[I - \frac{vv^T}{v^Tv} \right] = A \left[I - 2 \frac{vv^T}{v^Tv} + \frac{vv^T}{v^Tv} vv^T \right] = A \left[I - \frac{vv^T}{v^Tv} \right] = P(A),
\]

and so (a) holds. To show that (b) holds, note first that if \(A \in \mathbb{R}^{n \times n} \), then \(P(A)v = A \left[I - \frac{vv^T}{v^Tv} \right] v = A[v - v] = 0 \), and it follows that \(\mathcal{R}(P) \subseteq \mathcal{A}(v) \). On the other hand, if \(A \in \mathcal{A}(v) \), then \(P(A) = A \left[I - \frac{vv^T}{v^Tv} \right] = A \), and so \(\mathcal{A}(v) \subseteq \mathcal{R}(P) \). We conclude that \(\mathcal{A}(v) = \mathcal{R}(P) \), i.e., that (b) holds. Finally, we have that

\[
\langle P(A), B \rangle = \text{trace} \left\{ A \left[I - \frac{vv^T}{v^Tv} \right] B^T \right\} = \text{trace} \left\{ A \left(B \left[I - \frac{vv^T}{v^Tv} \right] \right)^T \right\} = \langle A, P(B) \rangle,
\]

and so (c) holds as well.

Remark. Projections onto subspaces of \(\mathbb{R}^{n \times n} \) are fundamentally important for developing and analyzing quasi-Newton methods for numerically solving systems of nonlinear equations and optimization problems. The particular projection in Example 10.15 is used to derive and analyze Broyden’s method, the most widely used quasi-Newton method for general nonlinear systems.