Linear Algebra: Lecture 10

More on inner-product spaces. Topics: orthogonal complements, the Projection Theorem, orthogonal projections.

Orthogonal complements.

We assume throughout that \mathcal{V} is an inner-product space with inner product $\langle \cdot, \cdot \rangle$.

DEFINITION 10.1. The orthogonal complement of $S \subseteq \mathcal{V}$ is

$$S^{\perp} = \{ v \in \mathcal{V} : \langle v, s \rangle = 0 \text{ for all } s \in S \}.$$

Here, S^{\perp} is read as "S perp." The "perp" symbol \perp is used to denote orthogonality, e.g., $v \perp w$ means $\langle v, w \rangle = 0$.

Note that $v \in S \cap S^{\perp}$ if and only if v = 0. Indeed, the "if" part is trivial, and the "only if" follows from the observation that if $v \in S \cap S^{\perp}$, then $\langle v, v \rangle = 0$.

PROPOSITION 10.2. S^{\perp} is a subspace of \mathcal{V} .

PROPOSITION 10.3. If \mathcal{V} is finite-dimensional and $\mathcal{S} \subseteq \mathcal{V}$ is a subspace, then $\dim \mathcal{S} + \dim \mathcal{S}^{\perp} = \dim \mathcal{V}$. Moreover, $(\mathcal{S}^{\perp})^{\perp} = \mathcal{S}$.

Proof. Suppose that dim $\mathcal{V} = n$ and let $\{u_1, \ldots, u_k\}$ and $\{v_1, \ldots, v_\ell\}$ be orthonormal bases of S and S^{\perp} , respectively. Then $\{u_1, \ldots, u_k\} \cup \{v_1, \ldots, v_\ell\}$ is orthonormal and, therefore, linearly independent in \mathcal{V} , and it follows that $k + \ell \leq n$. If $k + \ell < n$, then there is a $w \in \mathcal{V}$ such that $w \notin \text{span} \{\{u_1, \ldots, u_k\} \cup \{v_1, \ldots, v_\ell\}\}$. Then $z = w - \sum_{i=1}^k \langle w, u_i \rangle u_i - \sum_{i=1}^\ell \langle w, v_i \rangle v_i \neq 0$. However, $\langle z, u_j \rangle = \langle w, u_j \rangle - \langle w, u_j \rangle = 0$ for $1 \leq j \leq k$ and $\langle z, v_j \rangle = \langle w, v_j \rangle - \langle w, v_j \rangle = 0$ for $1 \leq j \leq \ell$. It follows that $z \in S \cap S^{\perp}$ and, consequently, that z = 0. This is a contradiction, and we conclude that $k + \ell = n$.

To complete the proof, note that, clearly, $S \subseteq (S^{\perp})^{\perp}$. On the other hand, if $w \in (S^{\perp})^{\perp}$, then $z = w - \sum_{i=1}^{k} \langle w, u_i \rangle u_i$ is also in $(S^{\perp})^{\perp}$. However, one easily verifies as above that $\langle z, u_i \rangle = 0$ for $1 \leq j \leq k$, and it follows that $z \in S^{\perp}$ as well. Consequently, z = 0 and $w \in S$. \Box

We now work toward the fundamentally important *Projection Theorem*. This is easy to establish in finite-dimensional spaces using orthonormal bases. However, it is much more instructive and not much harder to develop the result in spaces of arbitrary dimension. We begin with a necessary topological digression.

Complete subspaces.

The following pertains in any normed vector space regardless of whether the norm derives from an inner product.

Definition 10.4.

- A point $v \in \mathcal{V}$ is a limit point of $S \subseteq \mathcal{V}$ if there is a sequence $\{v_j\}_{j=1}^{\infty} \subseteq S$ such that $\lim_{i \to \infty} v_j = v$.
- A set $S \subseteq \mathcal{V}$ is closed if it contains all of its limit points.
- A sequence $\{v_j\}_{j=1}^{\infty} \subseteq \mathcal{V}$ is Cauchy if, for every $\epsilon > 0$, there is an n such that $||v_j v_k|| < \epsilon$ whenever $j, k \ge n$.
- A set $S \subseteq \mathcal{V}$ is complete if every Cauchy sequence $\{v_j\}_{j=1}^{\infty}$ in S converges to a point in S.

Note that if \mathcal{V} is finite-dimensional, then all norms are equivalent, and it follows that the above definitions are *norm-independent*, i.e., the defined properties hold in one norm if and only if they hold in every norm.

Also, It is easily verified that a convergent sequence is Cauchy.

PROPOSITION 10.5. A complete set is closed.

Proof. Suppose that $S \subseteq \mathcal{V}$ is complete. Let v be a limit point of S, and suppose that $\{v_k\}_{j=1}^{\infty} \subseteq S$ converges to v. Then $\{v_k\}_{j=1}^{\infty}$ is Cauchy and, since S is complete, converges to a point in S. Since a convergent sequence can have only one limit, that point must be v; hence, $v \in S$. \Box

PROPOSITION 10.6. A closed subset of a complete set is complete.

Proof. Suppose that T is a closed subset of a complete set S, and let $\{v_j\}_{j=1}^{\infty}$ be a Cauchy sequence in T. Since S is complete, there exists a $v \in S$ such that $\lim_{j\to\infty} v_j = v$. Then v is a limit point of T, and, since T is closed, it follows that $v \in T$. \Box

PROPOSITION 10.7. If S is a finite-dimensional subspace of V, then S is complete.

Proof. Suppose that $\{v_j\}_{j=1}^{\infty} \subseteq S$ is Cauchy. Let $\{u_1, \ldots, u_k\}$ be a basis for S, and write $v_j = \sum_{i=1}^k \alpha_{ji} u_i$ for each j. Since $\{v_j\}$ is Cauchy, it is, in particular, Cauchy in the norm $\|\cdot\|_{\infty}$, defined by $\|w\|_{\infty} = \max_{1 \leq i \leq k} |\beta_i|$ for $w = \sum_{i=1}^k \beta_i u_i \in \mathcal{V}$. It follows that $\{\alpha_{ji}\}_{j=1}^{\infty}$ is Cauchy for each i and, therefore, $\{\alpha_{ji}\}_{j=1}^{\infty}$ converges to some α_i for each i. Then $\{v_j = \sum_{i=1}^k \alpha_{ji} u_i\}$ converges to $v = \sum_{i=1}^k \alpha_i u_i \in S$. \Box

In contrast, infinite-dimensional subspaces need not be complete or even closed.

Example. In C[0,1], set $S = \{f \in C[0,1] : f(\frac{1}{2}) = 0\}$ and suppose that the inner product on C[0,1] is $\langle f,g \rangle = \int_0^1 f(x)g(x) \, dx$. Consider $\{f_j\}_{j=2}^\infty$, where, for each $j \ge 2$, f_j is the piecewise-linear function passing through (0,1), $(\frac{1}{2} - \frac{1}{j}, 1)$, $(\frac{1}{2}, 0)$, $(\frac{1}{2} + \frac{1}{j}, 1)$, and (1,1). Clearly, $\{f_j\}_{j=2}^\infty \subset S$. Let $f \in C[0,1]$ be defined by f(x) = 1 for $0 \le x \le 1$. Then

$$||f_j - f||^2 = \int_0^1 (f_j(x) - 1)^2 \, dx = \int_{1/2 - 1/j}^{1/2 + 1/j} (f_j(x) - 1)^2 \, dx \le \frac{2}{j}.$$

Thus $\lim_{j\to\infty} ||f_j - f|| = 0$, and we have that f is a limit point of S. However, $f \notin S$, and so S is not closed.

The Projection Theorem.

THEOREM 10.8. (PROJECTION THEOREM) If S is a complete subspace of an inner-product space \mathcal{V} , then every $v \in \mathcal{V}$ can be written uniquely as v = u + w for $u \in S$ and $w \in S^{\perp}$.

Proof. Suppose that $v \in \mathcal{V}$ is given. If $v \in S$, then the result is trivial, so assume that $v \notin S$. Since S is complete and, therefore, closed, we must have

$$\mu \equiv \inf_{u \in S} \|v - u\| > 0.$$
(10.1)

(Otherwise, v would be a limit point of S and, therefore, in S.) Note that $||v - u|| \ge \mu$ for all $u \in S$. Let $\{u_j\} \subseteq S$ be such that $\lim_{j\to\infty} ||v - u_j|| = \mu$.

We claim that $\{u_j\}$ is Cauchy. Indeed, suppose that $\epsilon > 0$ is given. Choose n such that $\mu^2 \le ||v - u_j||^2 < \mu^2 + \epsilon^2/4$ whenever $j \ge n$. Then for j, $\ell \ge n$, the Parallelogram Law gives

$$||(v - u_j) - (v - u_\ell)||^2 + ||(v - u_j) + (v - u_\ell)||^2 = 2||v - u_j||^2 + 2||v - u_\ell||^2,$$

whence

$$||u_j - u_\ell||^2 = 2||v - u_j||^2 + 2||v - u_\ell||^2 - 4||v - \frac{(u_j + u_\ell)}{2}||^2 < 4(\mu^2 + \epsilon^2/4) - 4\mu^2 = \epsilon^2/4$$

and we have $||u_j - u_\ell|| < \epsilon$.

Since S is complete and $\{u_j\}$ is Cauchy, there is a $u \in S$ such that $\lim_{j\to\infty} u_j = u$. Set w = v - u. Note that $||w|| = ||v - u|| = \lim_{j\to\infty} ||v - u_j|| = \mu$.

We claim that $w \in S^{\perp}$. Indeed, suppose that $\langle w, s \rangle \neq 0$ for some $s \in S$. Then for $t \in \mathbb{R}$, $u + ts \in S$ and

$$||v - (u + ts)||^{2} = ||w - ts||^{2} = ||w||^{2} - t\{\langle w, s \rangle + \langle s, w \rangle\} + t^{2} ||s||^{2}.$$

By choosing t such that sign $t = \text{sign} \{ \langle w, s \rangle + \langle s, w \rangle \}$ and |t| > 0 is sufficiently small, we can make the right-hand side less than $||w||^2 = \mu^2$, contradicting (10.1).

We now have the desired representation v = u + w for $u \in S$ and $w \in S^{\perp}$. To show that this representation is unique, suppose that $v = \hat{u} + \hat{w}$ for $\hat{u} \in S$ and $\hat{w} \in S^{\perp}$. Then $u + w = v = \hat{u} + \hat{w}$, and we have $u - \hat{u} = \hat{w} - w$. Since $u - \hat{u} \in S$ and $\hat{w} - w \in S^{\perp}$, it follows that both sides are in $S \cap S^{\perp}$ and, hence, are zero. \Box

The following corollary extends the second conclusion of Proposition 10.3.

COROLLARY 10.9. If S is a complete subspace of an inner-product space, then $(S^{\perp})^{\perp} = S$.

Proof. We know that $(\mathcal{S}^{\perp})^{\perp}$ is a subspace and clearly have $\mathcal{S} \subseteq (\mathcal{S}^{\perp})^{\perp}$. Suppose that $\mathcal{S} \neq (\mathcal{S}^{\perp})^{\perp}$, and let $v \in (\mathcal{S}^{\perp})^{\perp}$ be such that $v \notin \mathcal{S}$. Then the Projection Theorem gives v = u + w for $u \in \mathcal{S}$ and $w \in \mathcal{S}^{\perp}$. But since $v \in (\mathcal{S}^{\perp})^{\perp}$ and $u \in \mathcal{S} \subseteq (\mathcal{S}^{\perp})^{\perp}$, we also have that $w = v - u \in (\mathcal{S}^{\perp})^{\perp}$. It follows that w = 0 and $v = u \in \mathcal{S}$. \Box

COROLLARY 10.10. If S is a finite-dimensional subspace of an inner-product space \mathcal{V} , then every $v \in \mathcal{V}$ can be uniquely written as v = u + w, where $u \in S$ and $w \in S^{\perp}$.

Proof. It follows from Proposition 10.7 that S is complete, and the corollary follows from the Projection Theorem.

The following can be regarded as a general statement of the Pythagorean Theorem.

PROPOSITION 10.11. If v = u + w for $u \in S$ and $w \in S^{\perp}$, then $||v||^2 = ||u||^2 + ||w||^2$.

Proof. The result follows immediately from the orthogonality of u and w.

Orthogonal projection.

We begin with the definition and a useful proposition.

DEFINITION 10.12. If v = u + w for $u \in S$ and $w \in S^{\perp}$, then u is the orthogonal projection of v onto S.

PROPOSITION 10.13. If S is finite-dimensional and $\{u_1, \ldots, u_k\}$ is an orthonormal basis for S, then the orthogonal projection of v onto S is given by $u = \sum_{i=1}^k \langle v, u_i \rangle u_i$. Moreover, we have Bessel's Inequality: $||v||^2 \ge \sum_{i=1}^k |\langle v, u_i \rangle|^2$, and $||v||^2 = \sum_{i=1}^k |\langle v, u_i \rangle|^2$ if and only if $v = \sum_{i=1}^k \langle v, u_i \rangle u_i \in S$.

Proof. Clearly, $u = \sum_{i=1}^{k} \langle v, u_i \rangle u_i \in S$. Also, $w = v - \sum_{i=1}^{k} \langle v, u_i \rangle u_i$ satifies $\langle w, u_j \rangle = \langle v, u_j \rangle - \langle v, u_j \rangle = 0$ for each j, so $w \in S^{\perp}$. It follows from the uniqueness part of the Projection Theorem that u is the orthogonal projection of v onto S. With Proposition 10.11, Bessel's inequality follows immediately: $||v||^2 = ||u||^2 + ||w||^2 \ge ||u||^2 = \sum_{i=1}^{k} |\langle v, u_i \rangle|^2$, and $||v||^2 = \sum_{i=1}^{k} |\langle v, u_i \rangle|^2$ if and only if w = 0, i.e., $v = u = \sum_{i=1}^{k} \langle v, u_i \rangle u_i \in S$.

More generally, suppose that S is a complete subspace of an inner product space \mathcal{V} so that orthogonal projection onto S is defined on all of \mathcal{V} . Let P(v) denote the orthogonal projection of $v \in \mathcal{V}$. It is easily verified that $P : \mathcal{V} \to \mathcal{V}$ is a linear transformation. Note that for every $v \in \mathcal{V}$, we have that v = P(v) + (I - P)(v), where I is the identity transformation on \mathcal{V} and $(I - P)(v) \in S^{\perp}$.

PROPOSITION 10.14. Orthogonal projection onto a complete subspace S satistifes the following:

- (a) $P^2 = P;$
- (b) $\mathcal{R}(P) \equiv \{u \in \mathcal{V} : u = P(v) \text{ for some } v \in \mathcal{V}\} = \mathcal{S};$
- (c) $\langle P(v), w \rangle = \langle v, P(w) \rangle$ for all $v, w \in \mathcal{V}$.

Moreover, P is uniquely characterized by these properties, i.e., if $Q : \mathcal{V} \to \mathcal{V}$ is a linear transformation satisfying these properties, then Q = P.

Proof. Noting that $P(v) \in S$ for all $v \in V$ and that P acts as the identity transformation on S, we immediately have (a) and also that $\mathcal{R}(P) \subseteq S$. On the other hand, if $u \in S$, then P(u) = u. It follows that $S \subseteq \mathcal{R}(P)$, and (b) holds.

To show (c), write v = P(v) + (I - P)(v) and w = P(w) + (I - P)(w). Recalling that (I - P)(v) and (I - P)(w) are in S^{\perp} , we have that

$$\langle P(v), w \rangle = \langle P(v), P(w) + (I - P)(w) \rangle = \langle P(v), P(w) \rangle = \langle P(v) + (I - P)(v), P(w) \rangle = \langle v, P(w) \rangle,$$

which verifies (c).

To complete the proof, suppose that Q is a linear transformation satisfying (a)–(c). For $v \in \mathcal{V}$, we have that v = Q(v) + (I - Q)(v). We claim that $(I - Q)(v) \in S^{\perp}$. Indeed, it follows from (a) and (b) that Q acts as the identity transformation on S, and, with (c), we have for $u \in S$ that

$$\langle (I-Q)(v), u \rangle = \langle v, u \rangle - \langle Q(v), u \rangle = \langle v, u \rangle - \langle v, Q(u) \rangle = \langle v, u \rangle - \langle v, u \rangle = 0$$

Then v = Q(v) + (I - Q)(v) with $Q(v) \in S$ and $(I - Q)(v) \in S^{\perp}$, and it follows from the uniqueness part of the Projection Theorem that Q(v) = P(v). \Box

Remarks. A linear transformation P satisfying property (a) is said to be <u>idempotent</u>. If P satisfies (a) and (b), then P is a <u>projection</u> onto S. Note that this projection is characterized by algebraic properties alone. If (a), (b), and (c) hold, then P is an <u>orthogonal projection</u> onto S, with the geometric notion of orthogonality brought in through the inner product $\langle \cdot, \cdot \rangle$.

EXAMPLE 10.15. Suppose that $v \in \mathbb{R}^n$. The <u>annihilators</u> of v are the matrices $A \in \mathbb{R}^{n \times n}$ such that Av = 0. Denote the set of all annihilators of v by $\mathcal{A}(v)$. It is easily verified that $\mathcal{A}(v)$ is a subspace of $\mathbb{R}^{n \times n}$. In the trivial case v = 0, we have that $\mathcal{A}(v) = \mathbb{R}^{n \times n}$, and so we assume that $v \neq 0$.

Suppose that the inner product on $\mathbb{R}^{n \times n}$ is the Frobenius inner product $\langle \cdot, \cdot \rangle$, given by $\langle A, B \rangle = \sum_{i,j} a_{ij}b_{ij} = \text{trace } \{AB^T\}$. We claim that orthogonal projection onto $\mathcal{A}(v)$ with respect to this inner product is given by $P(A) = A\left[I - \frac{vv^T}{v^Tv}\right]$ for $A \in \mathcal{A}(v)$. To show this, we only need to verify that properties (a)–(c) hold for this P. For $A \in \mathbb{R}^{n \times n}$, we have

$$P^{2}(A) = A\left[I - \frac{vv^{T}}{v^{T}v}\right] \left[I - \frac{vv^{T}}{v^{T}v}\right] = A\left[I - 2\frac{vv^{T}}{v^{T}v} + \frac{vv^{T}}{v^{T}v}\frac{vv^{T}}{v^{T}v}\right] = A\left[I - \frac{vv^{T}}{v^{T}v}\right] = P(A)$$

and so (a) holds. To show that (b) holds, note first that if $A \in \mathbb{R}^{n \times n}$, then $P(A)v = A\left[I - \frac{vv^T}{v^Tv}\right]v = A[v-v] = 0$, and it follows that $\mathcal{R}(P) \subseteq \mathcal{A}(v)$. On the other hand, if $A \in \mathcal{A}(v)$, then $P(A) = A\left[I - \frac{vv^T}{v^Tv}\right] = A$, and so $\mathcal{A}(v) \subseteq \mathcal{R}(P)$. We conclude that $\mathcal{A}(v) = \mathcal{R}(P)$, i.e., that (b) holds. Finally, we have that

$$\langle P(A), B \rangle = \operatorname{trace} \left\{ A \left[I - \frac{vv^T}{v^T v} \right] B^T \right\} = \operatorname{trace} \left\{ A \left(B \left[I - \frac{vv^T}{v^T v} \right] \right)^T \right\} = \langle A, P(B) \rangle,$$

and so (c) holds as well.

Remark. Projections onto subspaces of $\mathbb{R}^{n \times n}$ are fundamentally important for developing and analyzing *quasi-Newton methods* for numerically solving systems of nonlinear equations and optimization problems. The particular projection in Example 10.15 is used to derive and analyze *Broyden's method*, the most widely used quasi-Newton method for general nonlinear systems.