
Linear Algebra: Lecture 10

More on inner-product spaces. Topics: orthogonal complements, the Projection Theorem, orthogonal

projections.

Orthogonal complements.

We assume throughout that V is an inner-product space with inner product 〈·, ·〉.

Definition 10.1. The orthogonal complement of S ⊆ V is

S⊥ = {v ∈ V : 〈v, s〉 = 0 for all s ∈ S}.

Here, S⊥ is read as “S perp.” The “perp” symbol ⊥ is used to denote orthogonality, e.g., v ⊥ w means

〈v, w〉 = 0.

Note that v ∈ S ∩ S⊥ if and only if v = 0. Indeed, the “if” part is trivial, and the “only if” follows

from the observation that if v ∈ S ∩ S⊥, then 〈v, v〉 = 0.

Proposition 10.2. S⊥ is a subspace of V .

Proposition 10.3. If V is finite-dimensional and S ⊆ V is a subspace, then dimS+dimS⊥ = dimV .

Moreover,
(

S⊥
)⊥

= S.

Proof. Suppose that dimV = n and let {u1, . . . , uk} and {v1, . . . , vℓ} be orthonormal bases of S

and S⊥, respectively. Then {u1, . . . , uk} ∪ {v1, . . . , vℓ} is orthonormal and, therefore, linearly inde-

pendent in V , and it follows that k + ℓ ≤ n. If k + ℓ < n, then there is a w ∈ V such that

w 6∈ span {{u1, . . . , uk} ∪ {v1, . . . , vℓ}}. Then z = w −
∑k

i=1
〈w, ui〉ui −

∑ℓ
i=1

〈w, vi〉 vi 6= 0. How-

ever, 〈z, uj〉 = 〈w, uj〉− 〈w, uj〉 = 0 for 1 ≤ j ≤ k and 〈z, vj〉 = 〈w, vj〉− 〈w, vj〉 = 0 for 1 ≤ j ≤ ℓ. It

follows that z ∈ S ∩ S⊥ and, consequently, that z = 0. This is a contradiction, and we conclude that

k + ℓ = n.

To complete the proof, note that, clearly, S ⊆
(

S⊥
)⊥

. On the other hand, if w ∈
(

S⊥
)⊥

, then

z = w −
∑k

i=1
〈w, ui〉ui is also in

(

S⊥
)⊥

. However, one easily verifies as above that 〈z, ui〉 = 0 for

1 ≤ j ≤ k, and it follows that z ∈ S⊥ as well. Consequently, z = 0 and w ∈ S.

We now work toward the fundamentally important Projection Theorem. This is easy to establsh in

finite-dimensional spaces using orthonormal bases. However, it is much more instructive and not much

harder to develop the result in spaces of arbitrary dimension. We begin with a necessary topological

digression.
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Complete subspaces.

The following pertains in any normed vector space regardless of whether the norm derives from an inner

product.

Definition 10.4.

• A point v ∈ V is a limit point of S ⊆ V if there is a sequence {vj}
∞
j=1 ⊆ S such that lim

j→∞
vj = v.

• A set S ⊆ V is closed if it contains all of its limit points.

• A sequence {vj}
∞
j=1 ⊆ V is Cauchy if, for every ǫ > 0, there is an n such that ‖vj − vk‖ < ǫ

whenever j, k ≥ n.

• A set S ⊆ V is complete if every Cauchy sequence {vj}
∞
j=1 in S converges to a point in S.

Note that if V is finite-dimensional, then all norms are equivalent, and it follows that the above definitions

are norm-independent, i.e., the defined properties hold in one norm if and only if they hold in every

norm.

Also, It is easily verified that a convergent sequence is Cauchy.

Proposition 10.5. A complete set is closed.

Proof. Suppose that S ⊆ V is complete. Let v be a limit point of S, and suppose that {vk}
∞
j=1 ⊆ S

converges to v. Then {vk}
∞
j=1 is Cauchy and, since S is complete, converges to a point in S. Since a

convergent sequence can have only one limit, that point must be v; hence, v ∈ S.

Proposition 10.6. A closed subset of a complete set is complete.

Proof. Suppose that T is a closed subset of a complete set S, and let {vj}
∞
j=1 be a Cauchy sequence

in T . Since S is complete, there exists a v ∈ S such that limj→∞ vj = v. Then v is a limit point of T ,

and, since T is closed, it follows that v ∈ T .

Proposition 10.7. If S is a finite-dimensional subspace of V , then S is complete.

Proof. Suppose that {vj}
∞
j=1 ⊆ S is Cauchy. Let {u1, . . . , uk} be a basis for S, and write vj =

∑k
i=1

αjiui for each j. Since {vj} is Cauchy, it is, in particular, Cauchy in the norm ‖ · ‖∞, defined

by ‖w‖∞ = max1≤i≤k |βi| for w =
∑k

i=1
βiui ∈ V . It follows that {αji}

∞
j=1 is Cauchy for each i

and, therefore, {αji}
∞
j=1 converges to some αi for each i. Then {vj =

∑k
i=1

αjiui} converges to

v =
∑k

i=1
αiui ∈ S.
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In contrast, infinite-dimensional subspaces need not be complete or even closed.

Example. In C[0, 1], set S = {f ∈ C[0, 1] : f(1
2
) = 0} and suppose that the inner product on C[0, 1]

is 〈f, g〉 =
∫

1

0
f(x)g(x) dx. Consider {fj}

∞
j=2, where, for each j ≥ 2, fj is the piecewise-linear function

passing through (0, 1), (1
2
− 1

j , 1), (
1

2
, 0), (1

2
+ 1

j , 1), and (1, 1). Clearly, {fj}
∞
j=2 ⊂ S. Let f ∈ C[0, 1]

be defined by f(x) = 1 for 0 ≤ x ≤ 1. Then

‖fj − f‖2 =

∫

1

0

(fj(x)− 1)2 dx =

∫

1/2+1/j

1/2−1/j
(fj(x)− 1)2 dx ≤

2

j
.

Thus limj→∞ ‖fj − f‖ = 0, and we have that f is a limit point of S. However, f 6∈ S, and so S is not

closed.

The Projection Theorem.

Theorem 10.8. (Projection Theorem) If S is a complete subspace of an inner-product space V ,

then every v ∈ V can be written uniquely as v = u+ w for u ∈ S and w ∈ S⊥.

Proof. Suppose that v ∈ V is given. If v ∈ S, then the result is trivial, so assume that v 6∈ S. Since S

is complete and, therefore, closed, we must have

µ ≡ inf
u∈S

‖v − u‖ > 0. (10.1)

(Otherwise, v would be a limit point of S and, therefore, in S.) Note that ‖v − u‖ ≥ µ for all u ∈ S.

Let {uj} ⊆ S be such that limj→∞ ‖v − uj‖ = µ.

We claim that {uj} is Cauchy. Indeed, suppose that ǫ > 0 is given. Choose n such that µ2 ≤

‖v − uj‖
2 < µ2 + ǫ2/4 whenever j ≥ n. Then for j, ℓ ≥ n, the Parallelogram Law gives

‖(v − uj)− (v − uℓ)‖
2 + ‖(v − uj) + (v − uℓ)‖

2 = 2‖v − uj‖
2 + 2‖v − uℓ‖

2,

whence

‖uj − uℓ‖
2 = 2‖v − uj‖

2 + 2‖v − uℓ‖
2 − 4‖v −

(uj + uℓ)

2
‖2 < 4(µ2 + ǫ2/4)− 4µ2 = ǫ2,

and we have ‖uj − uℓ‖ < ǫ.

Since S is complete and {uj} is Cauchy, there is a u ∈ S such that limj→∞ uj = u. Set w = v − u.

Note that ‖w‖ = ‖v − u‖ = limj→∞ ‖v − uj‖ = µ.

We claim that w ∈ S⊥. Indeed, suppose that 〈w, s〉 6= 0 for some s ∈ S. Then for t ∈ R, u + ts ∈ S

and

‖v − (u+ ts)‖2 = ‖w − ts‖2 = ‖w‖2 − t{〈w, s〉+ 〈s, w〉}+ t2‖s‖2.
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By choosing t such that sign t = sign {〈w, s〉 + 〈s, w〉} and |t| > 0 is sufficiently small, we can make

the right-hand side less than ‖w‖2 = µ2, contradicting (10.1).

We now have the desired representation v = u + w for u ∈ S and w ∈ S⊥. To show that this

representation is unique, suppose that v = û + ŵ for û ∈ S and ŵ ∈ S⊥. Then u + w = v = û + ŵ,

and we have u− û = ŵ−w. Since u− û ∈ S and ŵ−w ∈ S⊥, it follows that both sides are in S ∩S⊥

and, hence, are zero.

The following corollary extends the second conclusion of Proposition 10.3.

Corollary 10.9. If S is a complete subspace of an inner-product space, then (S⊥)⊥ = S.

Proof. We know that (S⊥)⊥ is a subspace and clearly have S ⊆ (S⊥)⊥. Suppose that S 6= (S⊥)⊥,

and let v ∈ (S⊥)⊥ be such that v 6∈ S. Then the Projection Theorem gives v = u + w for u ∈ S and

w ∈ S⊥. But since v ∈ (S⊥)⊥ and u ∈ S ⊆ (S⊥)⊥, we also have that w = v − u ∈ (S⊥)⊥. It follows

that w = 0 and v = u ∈ S.

Corollary 10.10. If S is a finite-dimensional subspace of an inner-product space V , then every

v ∈ V can be uniquely written as v = u+ w, where u ∈ S and w ∈ S⊥.

Proof. It follows from Proposition 10.7 that S is complete, and the corollary follows from the Projection

Theorem.

The following can be regarded as a general statement of the Pythagorean Theorem.

Proposition 10.11. If v = u+ w for u ∈ S and w ∈ S⊥, then ‖v‖2 = ‖u‖2 + ‖w‖2.

Proof. The result follows immediately from the orthogonality of u and w.

Orthogonal projection.

We begin with the definition and a useful proposition.

Definition 10.12. If v = u + w for u ∈ S and w ∈ S⊥, then u is the orthogonal projection of v

onto S.

Proposition 10.13. If S is finite-dimensional and {u1, . . . , uk} is an orthonormal basis for S, then the

orthogonal projection of v onto S is given by u =
∑k

i=1
〈v, ui〉ui. Moreover, we have Bessel’s Inequality:

‖v‖2 ≥
∑k

i=1
| 〈v, ui〉 |

2, and ‖v‖2 =
∑k

i=1
| 〈v, ui〉 |

2 if and only if v =
∑k

i=1
〈v, ui〉ui ∈ S.
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Proof. Clearly, u =
∑k

i=1
〈v, ui〉ui ∈ S. Also, w = v −

∑k
i=1

〈v, ui〉ui satifies 〈w, uj〉 = 〈v, uj〉 −

〈v, uj〉 = 0 for each j, so w ∈ S⊥. It follows from the uniqueness part of the Projection Theorem

that u is the orthogonal projection of v onto S. With Proposition 10.11, Bessel’s inequality follows

immediately: ‖v‖2 = ‖u‖2 + ‖w‖2 ≥ ‖u‖2 =
∑k

i=1
| 〈v, ui〉 |

2, and ‖v‖2 =
∑k

i=1
| 〈v, ui〉 |

2 if and only

if w = 0, i.e., v = u =
∑k

i=1
〈v, ui〉ui ∈ S.

More generally, suppose that S is a complete subspace of an inner product space V so that orthogonal

projection onto S is defined on all of V . Let P (v) denote the orthogonal projection of v ∈ V . It is

easily verified that P : V → V is a linear transformation. Note that for every v ∈ V , we have that

v = P (v) + (I − P )(v), where I is the identity transformation on V and (I − P )(v) ∈ S⊥.

Proposition 10.14. Orthogonal projection onto a complete subspace S satistifes the following:

(a) P 2 = P ;

(b) R(P ) ≡ {u ∈ V : u = P (v) for some v ∈ V} = S;

(c) 〈P (v), w〉 = 〈v, P (w)〉 for all v, w ∈ V .

Moreover, P is uniquely characterized by these properties, i.e., if Q : V → V is a linear transformation

satisfying these properties, then Q = P .

Proof. Noting that P (v) ∈ S for all v ∈ V and that P acts as the identity transformation on S, we

immediately have (a) and also that R(P ) ⊆ S. On the other hand, if u ∈ S, then P (u) = u. It follows

that S ⊆ R(P ), and (b) holds.

To show (c), write v = P (v)+ (I −P )(v) and w = P (w)+ (I −P )(w). Recalling that (I −P )(v) and

(I − P )(w) are in S⊥, we have that

〈P (v), w〉 = 〈P (v), P (w) + (I − P )(w)〉 = 〈P (v), P (w)〉 = 〈P (v) + (I − P )(v), P (w)〉 = 〈v, P (w)〉 ,

which verifies (c).

To complete the proof, suppose that Q is a linear transformation satisfying (a)–(c). For v ∈ V , we have

that v = Q(v) + (I −Q)(v). We claim that (I −Q)(v) ∈ S⊥. Indeed, it follows from (a) and (b) that

Q acts as the identity transformation on S, and, with (c), we have for u ∈ S that

〈(I −Q)(v), u〉 = 〈v, u〉 − 〈Q(v), u〉 = 〈v, u〉 − 〈v,Q(u)〉 = 〈v, u〉 − 〈v, u〉 = 0.

Then v = Q(v) + (I −Q)(v) with Q(v) ∈ S and (I −Q)(v) ∈ S⊥, and it follows from the uniqueness

part of the Projection Theorem that Q(v) = P (v).

Remarks. A linear transformation P satisfying property (a) is said to be idempotent. If P satisfies (a)

and (b), then P is a projection onto S. Note that this projection is characterized by algebraic properties

alone. If (a), (b), and (c) hold, then P is an orthogonal projection onto S, with the geometric notion

of orthogonality brought in through the inner product 〈·, ·〉.
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Example 10.15. Suppose that v ∈ R
n. The annihilators of v are the matrices A ∈ R

n×n such that

Av = 0. Denote the set of all annihilators of v by A(v). It is easily verified that A(v) is a subspace of

R
n×n. In the trivial case v = 0, we have that A(v) = R

n×n, and so we assume that v 6= 0.

Suppose that the inner product on R
n×n is the Frobenius inner product 〈·, ·〉, given by 〈A,B〉 =

∑

i,j aijbij = trace
{

ABT
}

. We claim that orthogonal projection onto A(v) with respect to this inner

product is given by P (A) = A
[

I − vvT

vT v

]

for A ∈ A(v). To show this, we only need to verify that

properties (a)–(c) hold for this P . For A ∈ R
n×n, we have

P 2(A) = A

[

I −
vvT

vT v

] [

I −
vvT

vT v

]

= A

[

I − 2
vvT

vT v
+

vvT

vT v

vvT

vT v

]

= A

[

I −
vvT

vT v

]

= P (A),

and so (a) holds. To show that (b) holds, note first that if A ∈ R
n×n, then P (A)v = A

[

I − vvT

vT v

]

v =

A[v − v] = 0, and it follows that R(P ) ⊆ A(v). On the other hand, if A ∈ A(v), then P (A) =

A
[

I − vvT

vT v

]

= A, and so A(v) ⊆ R(P ). We conclude that A(v) = R(P ), i.e., that (b) holds. Finally,

we have that

〈P (A), B〉 = trace

{

A

[

I −
vvT

vT v

]

BT

}

= trace

{

A

(

B

[

I −
vvT

vT v

])T
}

= 〈A,P (B)〉 ,

and so (c) holds as well.

Remark. Projections onto subspaces of Rn×n are fundamentally important for developing and analyzing

quasi-Newton methods for numerically solving systems of nonlinear equations and optimization problems.

The particular projection in Example 10.15 is used to derive and analyze Broyden’s method, the most

widely used quasi-Newton method for general nonlinear systems.
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