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1. Introduction. This paper presents mathematical and software developments
that are the basis for a suite of programs for the solution of initial value problems

y′ = F (t, y)

on a time interval [t0, tf ], given initial values y(t0) = y0. The solvers for stiff problems
allow the more general form

M(t) y′ = f(t, y)

with a mass matrix M(t) that is nonsingular and (usually) sparse. The programs have
been developed for Matlab [29], a widely used environment for scientific computing.
This influenced the choice of methods and how they were implemented.

As in many environments, the typical problem in Matlab is solved interactively
and the results displayed graphically. Generally functions defining the differential
equations are not expensive to evaluate. The typical stiff problem is either of modest
size or has a highly structured Jacobian. In Matlab, linear algebra and the built-
in array operations are relatively fast and the language provides for sparse arrays.
Matlab handles storage dynamically and retains copies of arrays.

A new family of formulas for the solution of stiff problems called the numerical
differentiation formulas (NDFs) are devised in section 2. They are more efficient than
the backward differentiation formulas (BDFs) although a couple of the higher-order
formulas are somewhat less stable. These formulas are conveniently implemented with
backward differences. A way of changing step size in this representation is developed
that is both compact and efficient in Matlab. In section 3 we devise a new linearly
implicit one-step method for solving stiff systems, specifically a modified Rosenbrock
method, and also a continuous extension of the method. Section 4 describes briefly
how to modify these methods so as to solve conveniently and efficiently problems
involving a mass matrix. In section 5, we discuss briefly three methods for nonstiff
problems. The two based on explicit Runge–Kutta methods are more efficient than
those previously available in Matlab and have free interpolants.

Matlab has features, some of which are available in C and FORTRAN 90, that
make possible an interesting and powerful user interface. Section 6 explains how the
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language was exploited to devise an interface that is unobtrusive, powerful, and ex-
tendable. Using the scheme of section 7 for the numerical approximation of Jacobians,
the design makes it possible for all the codes of the suite to be used in exactly the same
manner. Options allow users to supply more information that makes the solution of
stiff problems more reliable and/or efficient. In particular, it is easy to exploit sparse
Jacobians.

Examples in section 8 show the relative performance of codes in the suite and the
value of some of the options. The availability of the codes is described in section 8.2.

2. Implicit formulas for stiff systems. The BDFs are very popular for solving
stiff problems. When the step size is a constant h and backward differences are used,
the formula of order k, BDFk, for a step from (tn, yn) to (tn+1, yn+1) is

k∑
m=1

1
m
∇myn+1 − hF (tn+1, yn+1) = 0.(1)

The algebraic equation for yn+1 is solved with a simplified Newton (chord) iteration.
The iteration is started with the predicted value

y
(0)
n+1 =

k∑
m=0

∇myn.(2)

The leading term of the BDFk truncation error can be conveniently approximated as

1
k + 1

hk+1y(k+1) ≈ 1
k + 1

∇k+1yn+1.(3)

The typical implementation of a general-purpose BDF code is quasi-constant step
size. This means that the formulas used are those for a constant step size and the
step size is held constant during an integration unless there is good reason to change
it. General-purpose BDF codes also vary the order during an integration.

2.1. The numerical differentiation formulas. Noting that the predictor (2)
has a longer memory than (1), Klopfenstein [25] and Reiher [31] considered how to
exploit this to obtain better stability. Klopfenstein studied methods of the form

k∑
m=1

1
m
∇myn+1 − hF (tn+1, yn+1)− κγk

(
yn+1 − y(0)

n+1

)
= 0(4)

that he called numerical differentiation formulas. Here κ is a scalar parameter and
the coefficients γk are given by γk =

∑k
j=1

1
j . The role of the term added to BDFk is

illuminated by the identity

yn+1 − y(0)
n+1 = ∇k+1yn+1

and the approximation (3) to the truncation error of BDFk. It follows easily that for
any value of the parameter κ, the method is of order (at least) k and the leading term
of its truncation error is (

κγk +
1

k + 1

)
hk+1y(k+1).(5)
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TABLE 1
The Klopfenstein–Shampine NDFs and their efficiency and A(α)-stability relative to the BDFs.

Order NDF coeff Step ratio Stability angle Percent
k κ percent BDF NDF change
1 −0.1850 26% 90◦ 90◦ 0%
2 −1/9 26% 90◦ 90◦ 0%
3 −0.0823 26% 86◦ 80◦ -7%
4 −0.0415 12% 73◦ 66◦ -10%
5 0 0% 51◦ 51◦ 0%

For orders 3 to 6, Klopfenstein and Reiher found numerically the κ that max-
imizes the angle of A(α)-stability. Because BDF2 is already A-stable, Klopfenstein
considered how to choose κ so as to reduce the truncation error as much as possible
while still retaining A-stability. The optimal choice is κ = −1/9, yielding a truncation
error coefficient half that of BDF2. This implies that for sufficiently small step sizes,
NDF2 can achieve the same accuracy as BDF2 with a step size about 26% bigger.

The formulas derived by Klopfenstein and Reiher at orders higher than 2 are less
successful because the price of improved stability is reduced efficiency. Taking the
opposite tack, we sought values of κ that would make the NDFs more accurate than
the BDFs and not much less stable. Of course the leading term of the truncation
error cannot be made too small, otherwise it would not dominate and the formula
would not behave as expected at realistic step sizes. Because Klopfenstein’s second-
order formula optimally improves accuracy while retaining L-stability, it serves as the
order-2 method of our NDF family. Correspondingly, we sought to obtain the same
improvement in efficiency (26%) at orders 3 to 5. This comes at the price of reduced
stability and we were not willing to reduce the stability angle by more than 10%.
The search was carried out numerically. Our choices and the compromises made in
balancing efficiency and stability are shown in Table 1. The stability of BDF5 is so
poor that we were not willing to reduce it at all.

The first-order formula NDF1 has the form

yn+1 − yn − κ (yn+1 − 2yn + yn−1) = hF (tn+1, yn+1).

The boundary of the stability region of a linear multistep method consists of those
points z for which the characteristic equation ρ(θ) − zσ(θ) = 0 has a root θ of mag-
nitude 1. The root-locus method obtains the boundary as a subset of z = ρ(θ)/σ(θ)
as θ = exp(iψ) ranges over all numbers of magnitude 1. For NDF1 it is found that

Re(z) = 1− (1− 2κ) cos(ψ)− 2κ cos2(ψ)

and that a sufficient condition for the formula to be A-stable is 1− 2κ ≥ 0. As for
other orders, we chose an improvement in efficiency of 26%, leading to κ = −0.1850.

2.2. Changing the step size. Backward differences are very suitable for imple-
menting the NDFs in Matlab because the basic algorithms can be coded compactly
and efficiently. We develop here a way of changing step size that is also well suited to
the language.

When the integration reaches tn, there are available solution values y(tn−j) at
tn−j = tn − jh for j = 0, 1, ..., k . The interpolating polynomial is

P (t) = y(tn) +
k∑
j=1

∇jy(tn)
1
j!hj

j−1∏
m=0

(t− tn−m) .



4 L. F. SHAMPINE AND M. W. REICHELT

By definition ∇jP (tn) = ∇jy(tn). In this representation the solution is held in the
form of the current value y(tn) and a table of backward differences

D =
[
∇P (tn),∇2P (tn), . . . ,∇kP (tn)

]
.

Changing to a new step size h∗ 6= h amounts to evaluating P (t) at t∗ = tn − jh∗ for
j = 0, 1, . . . , k and then forming

D∗ =
[
∇∗P (tn),∇∗2P (tn), . . . ,∇∗kP (tn)

]
.

Here the asterisk on the backward difference ∇∗ indicates that it is for step size h∗.
Equating the two representations of P (t) leads to the identity

k∑
j=1

∇∗jP (tn)
1

j!h∗j

j−1∏
m=0

(
t− t∗n−m

)
=

k∑
j=1

∇jP (tn)
1
j!hj

j−1∏
m=0

(t− tn−m) .

Evaluating this identity at t = t∗n−r for r = 1, . . . , k leads to the system of equations

k∑
j=1

∇∗jP (tn)Ujr =
k∑
j=1

∇jP (tn)Rjr,

which is in matrix terms D∗U = DR. The entries of the k × k matrix U are

Ujr =
1

j!h∗j

j−1∏
m=0

(
t∗n−r − t∗n−m

)
=

1
j!

j−1∏
m=0

(m− r) .

Matrix U satisfies U2 = I. This implies that D∗ = D (RU), the scheme we use for
changing the step size. The entries of U are integers that do not depend on h nor on
k. In terms of ρ = h∗/h 6= 1, the entries of the k × k matrix R are

Rjr =
1
j!

j−1∏
m=0

(m− rρ) .

R must be formed each time the step size is changed. This is done in a single line of
Matlab code using the cumprod function. Likewise, changing the representation by
means of matrix multiplication is done in a single line. Accordingly, in Matlab this
way of changing the step size is both compact and efficient.

2.3. The ode15s program. The code ode15s is a quasi-constant step size im-
plementation of the NDFs in terms of backward differences. Options allow integration
with the BDFs and integration with a maximum order less than the default of 5.

The identity

k∑
m=1

1
m
∇myn+1 = γk

(
yn+1 − y(0)

n+1

)
+

k∑
m=1

γm∇myn

shows that equation (4) is equivalent to

(1− κ) γk
(
yn+1 − y(0)

n+1

)
+

k∑
m=1

γm∇myn − hF (tn+1, yn+1) = 0.
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In the simplified Newton iteration, the correction to the current iterate

y
(i+1)
n+1 = y

(i)
n+1 + ∆(i)

is obtained by solving(
I − h

(1− κ) γk
J

)
∆(i) =

h

(1− κ) γk
F (tn+1, y

(i)
n+1)−Ψ−

(
y

(i)
n+1 − y

(0)
n+1

)
.

Here J is an approximation to the Jacobian of F (t, y) and

Ψ =
1

(1− κ) γk

k∑
m=1

γm∇myn

is a quantity that is fixed during the computation of yn+1. Scaling the equation to
remove the scalar multiplying J offers some advantages [36]. It is much more accurate
to obtain the fundamental quantity ∇k+1yn+1 as the limit of

d(i) = y
(i)
n+1 − y

(0)
n+1

computed from

d(i+1) = d(i) + ∆(i),

y
(i+1)
n+1 = y

(0)
n+1 + d(i+1).

Many of the tactics adopted in the code resemble those found in the well-known
codes DIFSUB [17], DDRIV2 [24], LSODE [22], and VODE [7]. In particular, local
extrapolation is not done. The selection of the initial step size follows Curtis [10], who
observes that by forming partial derivatives of F (t, y) at t0, it is possible to estimate
the optimal initial step size.

In the context of Matlab it is natural to retain a copy of the Jacobian matrix.
Of the codes cited, only VODE exploits this possibility. It is also natural to form
and factor the iteration matrix every time the step size or order is changed. The
rate of convergence is monitored [34] and the iteration terminated if it is predicted
that convergence will not be achieved in four iterations. Should this happen and the
Jacobian not be current, a new Jacobian is formed. Otherwise the step size is reduced.

Our scheme for reusing Jacobians means that when the Jacobian is constant,
ode15s will normally form a Jacobian just once in the whole integration. Also, the
code will form very few Jacobians when applied to a problem that is not stiff. ode15s
competes rather well with the codes for nonstiff problems because of this and the
efficient linear algebra of Matlab.

3. Linearly implicit formulas for stiff systems. In this section it is con-
venient at first to consider differential equations in autonomous form, y′ = F (y).
Rosenbrock methods have the form

yn+1 = yn + h
s∑
i=1

biki,

where the ki are obtained for i = 1, 2, . . . , s by solving

Wki = F

yn + h
i−1∑
j=1

aijkj

+ hJ
i−1∑
j=1

dijkj .
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Here W = I−hdJ and J = ∂F (yn)/∂y. Such methods are said to be linearly implicit
because the computation of yn+1 requires the solution of systems of linear equations.

A number of authors have explored formulas of this form with J that only ap-
proximate ∂F (yn)/∂y. A second-order formula due to Wolfbrandt [40] is

Wk1 = F (yn) ,

Wk2 = F

(
yn +

2
3
hk1

)
− 4

3
hdJk1,

yn+1 = yn +
h

4
(k1 + 3k2) .

Here the parameter d = 1/
(
2 +
√

2
)
. It is characteristic of such W-formulas that the

order of the formula does not depend on J . The stability does depend on J , and if
J = ∂F/∂y, the formula is L-stable.

One of the attractions of Rosenbrock and W methods is that they are one step.
However, it is not easy to retain this property when estimating the error, and the
error estimate of [40] for Wolfbrandt’s formula gives it up. Scraton [33] achieved a
one-step error estimate without additional evaluations of F by assuming that

J =
∂F

∂y
(tn, yn) + hB +O

(
h2) .

We must assume that J ≈ ∂F/∂y if we are to apply the usual linear stability theory.
We describe formulas based on Scraton’s assumption as modified Rosenbrock formulas.
Scraton’s error estimate is inefficient for very stiff problems because the companion
formula of order 3 is not stable at infinity. Zedan [43], [42] derived a companion that
is A-stable and also requires no additional evaluations of F .

3.1. A modified Rosenbrock triple. In a step from tn to tn+1 with Wolf-
brandt’s formula and any of the error estimates cited, F is evaluated only at tn and
tn + 2h/3. It is possible that if a solution component changes sharply somewhere in
(tn + 2h/3, tn +h), a poor approximation to this component at tn+1 will be produced
and accepted. Very sharp changes in a solution component are common when solving
stiff problems and robust software ought to be able to deal with them. For this reason,
many authors attempt to derive pairs that evaluate at both ends of a step.

Wolfbrandt’s formula is a member of a family of second-order, L-stable W methods
[40] that involve two evaluations of F . By making the first evaluation of F for the
next step the same as the last of the current step (FSAL), we have at our disposal a
function evaluation that is usually “free” because most steps are successful. Exploiting
this we derived a pair of formulas that we present in a form that avoids unnecessary
matrix multiplications [36]. When advancing a step from (tn, yn) to tn+1 = tn + h,
the modified Rosenbrock pair is

F0 = F (tn, yn) ,
k1 = W−1 (F0 + hdT ) ,
F1 = F (tn + 0.5h, yn + 0.5hk1) ,
k2 = W−1 (F1 − k1) + k1,

yn+1 = yn + hk2,

F2 = F (tn+1, yn+1) ,
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k3 = W−1 [F2 − e32 (k2 − F1)− 2 (k1 − F0) + hdT ] ,

error ≈ h

6
(k1 − 2k2 + k3) .

Here W = I − hdJ with d = 1/
(
2 +
√

2
)

and e32 = 6 +
√

2,

J ≈ ∂F

∂y
(tn, yn) and T ≈ ∂F

∂t
(tn, yn) .

If the step is a success, the F2 of the current step is the F0 of the next. If J = ∂F/∂y,
the second-order formula is L-stable. Because the pair samples at both ends of the
step, it has a chance of recognizing very sharp changes that occur within the span of
a step.

On p. 129 of his dissertation, Zedan describes briefly a scheme for interpolating
his modified Rosenbrock method. On [tn, tn + h] he approximates the solution with
the quadratic polynomial interpolating yn, yn+1, and F0 = F (tn, yn). Interpolating
F0 can be unsatisfactory when the problem is very stiff. A standard way to obtain
a continuous extension to a one-step method is to derive a family of formulas, each
of which provides an approximation at tn + h∗ for a given h∗ = sh. For any s, it is
easy to derive a formula that has the same form as that of the basic step to tn+1;
the trick is to reuse the computations of the basic step as much as possible. In the
new formula the matrix W ∗ = I − h∗d∗J , so if we take the parameter d∗ = d/s,
then W ∗ = W . It is easily found that with similar definitions, it is possible to
obtain a second-order W method for the intermediate value that requires no major
computations not already available from the basic step itself. Specifically, it is found
that a second-order approximation to y (tn + sh) is provided by

yn+s = yn + h

[
s (1− s)
1− 2d

k1 +
s (s− 2d)

1− 2d
k2

]
.

Though derived as a family of formulas depending on a parameter s, the continuous
extension turns out to be a quadratic polynomial in s. It interpolates both yn and
yn+1, and hence connects continuously with approximations on adjacent steps. This
interpolant behaves better for stiff problems than the one depending on F0, in essence
because of the W−1 implicit in the ki.

3.2. The ode23s program. The code ode23s based on the scheme derived here
provides an alternative to ode15s for the solution of stiff problems. It is especially
effective at crude tolerances, when a one-step method has advantages over methods
with memory, and when Jacobians have eigenvalues near the imaginary axis. It is a
fixed-order method of such simple structure that the overhead is low except for the
linear algebra, which is relatively fast in Matlab. The integration is advanced with
the lower-order formula, so ode23s does not do local extrapolation. To achieve the
same L-stability in ode15s, the maximum order would have to be restricted to 2.

We have considered algorithms along the lines of [11] for recognizing when a new
Jacobian is needed and we have also considered tactics like those of [40] and [42] for
this purpose. This is promising and we may revisit the matter, but the current version
of ode23s forms a new Jacobian at every step for several reasons. A formula of order 2
is most appropriate at crude tolerances. At such tolerances solution components often
change significantly in the course of a single step, so it is often appropriate to form a
new Jacobian. In Matlab the Jacobian is typically of modest size or sparse and its
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evaluation is not very expensive compared with evaluating F . Finally, evaluating the
Jacobian at every step enhances the reliability and robustness of the code.

For nonautonomous problems ode23s requires an approximation to ∂F/∂t in
addition to the approximation to ∂F/∂y. For the convenience of the user and to
make the use of all the codes the same, we have chosen always to approximate this
partial derivative numerically.

4. Stiff systems of more general form. A stiff problem M(t) y′ = f(t, y) with
a nonsingular mass matrix M(t) can always be solved by transforming the equation
to the equivalent form y′ = F (t, y) = M−1(t) f(t, y). Small modifications to the
methods avoid the inconvenience and expense of this transformation.

Because the modified Rosenbrock method was derived for autonomous systems,
it is awkward to accommodate matrices M that depend on t. Accordingly, we allow
only constant mass matrices in ode23s. The modification is derived by applying the
method to the transformed equation and then rewriting the computations in terms of
M and f(t, y). The first stage k1 is obtained from

Wk1 = (I − hdJ)k1 = F0 + hdT.

Here F0 = M−1f(t0, y0) = M−1f0,

J ≈ ∂F

∂y
= M−1 ∂f

∂y
, and T ≈ ∂F

∂t
= M−1 ∂f

∂t
.

Scaling the equation for k1 by M leads to(
M − hd∂f

∂y

)
k1 = f0 + hd

∂f

∂t
.

The remaining computations are treated similarly. The usual form of the method is
recovered when M = I. This modification of the method allows the user to pose the
problem in terms of M and f(t, y). It avoids the solution of linear equations that
arise when the equation is transformed.

The ode15s code allows the mass matrix to depend on t. This causes only one
difference in the modification of the methods of this code. The simplified Newton
method involves solution of linear systems with the iteration matrix

I − h

(1− κ)γk
J

and right-hand sides involving

F (tn+1, y
(i)
n+1) = M−1(tn+1)f(tn+1, y

(i)
n+1).

Here

J ≈ ∂F

∂y
(tm, ym) = M−1(tm)

∂f

∂y
(tm, ym)

for some m ≤ n. Because M depends on t, it is not possible to remove all the inverses
simply by scaling with M(tn+1). We approximate the scaled iteration matrix by

M(tm)− h

(1− κ)γk
J, where J ≈ ∂f

∂y
(tm, ym) .

With this approximation, the computations can be written in terms of M(t) and
f(t, y). The modified method reduces to the usual one when M(t) = I.
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FIG. 1. The rigid solution as computed by ode45. The continuous curves result from the
default output of ode45. The discrete values are the results at the end of each step. The dashed
curves show what happens when the new interpolation capability is disabled.

5. Explicit formulas for nonstiff systems. The two explicit Runge–Kutta
codes, ode23 and ode45, in previous versions of Matlab have been replaced by codes
with the same names that remedy some deficiencies in design and take advantage
of developments in the theory and practice of Runge–Kutta methods. A new code,
ode113, is a PECE implementation of Adams–Bashforth–Moulton methods.

The new ode23 is based on the Bogacki–Shampine (2, 3) pair [3] (see also [37])
and the new ode45 is based on the Dormand-Prince (4, 5) pair [12]. Workers in
the field employ a number of quantitative measures for evaluating the quality of
a pair of formulas. In the standard measures these pairs are of high quality and
significantly more efficient than those used in the earlier codes. Both pairs are FSAL
and constructed for local extrapolation.

Because solution components can change substantially in the course of a single
step, the values computed at the end of each natural step may not provide adequate
resolution of the solution for plotting. This phenomenon is exacerbated when plotting
in the phase plane. A good way to deal with this is to form additional values by
means of a continuous extension (interpolant). A continuous extension also makes
possible event location, a valuable capability in ODE codes. We selected pairs for
which continuous extensions were available. In the case of the (2, 3) pair, accurate
solution values can be obtained for “free” (no additional evaluations of F ) by cubic
Hermite interpolation to the values and slopes computed at the ends of the step.
Dormand and Prince obtained a number of inexpensive interpolants for their pair in
[13]; they communicated to us another interpolant of order 4 that is of high quality
and “free.” The default in ode45 is to use this interpolant to compute solution values
at four points spaced evenly within the span of each natural step. Figure 1 shows the
importance of this development. We return to this issue in section 6.

ode113 is a descendant of ODE/STEP, INTRP [39]. Although the code differs
considerably in detail, its basic algorithms follow closely those of STEP. In particular,
it does local extrapolation. The authors of ODE/STEP, INTRP tried to obtain as
cheaply and reliably as possible solutions of moderate to high accuracy to problems
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function dy = vdpnsode(t,y)
dy = zeros(2,1); % preallocate column vector dy
dy(1) = y(2);
dy(2) = (1-y(1)^2)*y(2)-y(1);

FIG. 2. The MATLAB code for the initial value problem vdpnsode.

involving functions F that are expensive to evaluate. This was accomplished by mon-
itoring the integration very closely and by providing formulas of quite high orders. In
the present context the overhead of this monitoring is comparatively expensive. Al-
though more than graphical accuracy is necessary for adequate resolution of solutions
of moderately unstable problems, the high-order formulas available in ode113 are not
nearly as helpful in the present context as they are in general scientific computation.

6. User interface. Every author of an ODE code wants to make it as easy as
possible to use. At the same time the code must be able to solve typical problems.
It is not easy to reconcile these goals. In the Matlab environment we considered it
essential that it be possible to use all the codes in exactly the same way. However,
we also considered it essential to provide codes for the solution of stiff problems.
Methods for stiff problems make use of Jacobians. If a code for solving stiff problems
is to “look” like a code for nonstiff problems, it is necessary to approximate these
Jacobians inside the code. Unfortunately, it is difficult to do this reliably. Moreover,
when it is not inconvenient to supply some information about the structure of the
Jacobian, it can be quite advantageous. Indeed, this information is crucial to the
solution of “large” systems. Clearly a user interface to a code for stiff problems must
allow for the provision of additional information and this without complication when
users do not have the additional information or do not think it worth the trouble of
supplying. The same is true of other optional information, so a key issue is how to
make options unobtrusive. Further, the design must be extendable. Indeed, we have
already extended the functionality of our original design three times.

It is possible to use all the codes in the suite in precisely the same manner, so in
the examples that follow ode15s is generic. An initial value problem can be solved by

[t,y] = ode15s(’ydot’,tspan,y0);

The results can then be displayed with the usual plotting tools of Matlab, e.g., by
plot(t,y). Here ydot is the name of a function that defines the differential equation.
Figure 2 shows an example of the van der Pol equation coded as function vdpnsode.
The interval of integration is tspan=[t0,tfinal] and the initial conditions are y0.
The code obtains the number of equations by measuring the length of the vector y0.

The suite exploits the possibility of a variable number of arguments. For instance,
the codes monitor several measures of cost, such as the number of steps and the
number of Jacobian evaluations, and return them in an optional output argument,
viz. [t,y,stats]. It also exploits the possibility of empty arrays. For example, it is
possible to define the initial value problem in one file. Figure 3 illustrates this for the
CHM6 [14] stiff test problem of [28]. With the function coded as shown, if ode15s is
invoked with empty or missing arguments for tspan and y0, it will call chm6ode with
an empty argument for t to obtain the information not supplied in the call list.

Returning the independent variable and approximate solution at each step in
arrays [t,y] is natural in Matlab because it facilitates plotting and the sizes of
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function [out1,out2,out3] = chm6ode(t,y)
if isempty(t) % return default tspan, y0, options

out1 = [0; 1000];
out2 = [761; 0; 600; 0.1];
out3 = odeset(’atol’,1e-13);
return;

end
dy = zeros(4,1); % preallocate column vector dy
K = exp(20.7 - 1500/y(1));
dy(1) = 1.3*(y(3) - y(1)) + 10400*K*y(2);
dy(2) = 1880 * (y(4) - y(2) * (1+K));
dy(3) = 1752 - 269*y(3) + 267*y(1);
dy(4) = 0.1 + 320*y(2) - 321*y(4);
out1 = dy;

FIG. 3. The MATLAB code for the initial value problem chm6ode.

output arrays do not have to be specified in advance. The steps chosen by a code
tend to cluster where solution components change rapidly, so this design generally
results in satisfactory plots. However, this is not always the case, a point made by
Polking [30] for the old ode45 and illustrated by Figure 1 for the new. All the methods
implemented in the suite have free interpolants that can be evaluated at additional
points to obtain a smooth plot. In our design there is an option refine for specifying
the number of answers to be computed at points equally spaced in the span of each
step. By increasing refine, it is always possible to get a smooth plot. The additional
output is obtained inexpensively via a continuous extension of the formula.

To deal with output at specific points, we overload the definition of tspan and
use the length of this vector to dictate how its values are to be interpreted. An input
tspan with two entries means that output at the natural steps is desired. If tspan
contains more than two entries, the code is to produce output at the values of the
independent variable specified in tspan and only these values. Because output is
obtained by evaluating a polynomial, the number and placement of specified output
points has little effect on the cost of the integration.

It is difficult to accommodate all the possibilities for optional input without com-
plicating the interface to the point that users despair. A traditional approach is to
use an options vector. We do this too, but with some innovations. The options vector
is optional. When it is employed, the syntax of a call to the solver is

[t,y] = ode15s(’ydot’,tspan,y0,options);

The vector options is built by means of the function odeset that accepts name-value
pairs. We make use of key words and exploit the fact that in Matlab we can specify
values for the options that are of different data types. Indeed, an option can have
more than one data type as a value. odeset allows options to be set in any order and
default values are used for any quantity not explicitly set by the user. A number of
things are done to make the interface more convenient, e.g., the name alone instructs
odeset to assign the value “true” to a Boolean variable.

The most commonly used options are rtol and atol, tolerances associated with
the error control. Specification of the error control is a difficult matter discussed in
[37], which explains how the simplifying assumptions made in the old ode23 and ode45
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can lead to unsatisfactory results. Polking [30] makes the same point. Unfortunately,
there seems to be no way to provide automatically a default control of the error that
is completely satisfactory.

In the suite, the local error ei in yi is estimated in each step and made to satisfy

|ei| ≤ r |yi|+ ai,

where r = rtol and ai = atol(i). The scalar relative error tolerance rtol has a
default value of 10−3. The vector of absolute error tolerances atol has by default
all its values equal to 10−6. If a scalar absolute error tolerance is input, the code
understands that the value is to be assigned to all entries of the atol vector.

As another example of setting options, suppose that we wish to solve a stiff prob-
lem with a constant Jacobian, that an absolute error tolerance of 10−20 is appropriate
for all components, and that we wish to impose a maximum step size of 3500 to ensure
that the code will recognize phenomena occurring on this time scale. This is done by

options = odeset(’constantJ’,’atol’,1e-20,’hmax’,3500);

An illuminating example is provided by the chm6ode function shown in Figure 3.
Its solution is discussed in [27]. Figure 5 is a log-log plot of y2(t). A fundamental
difficulty is that with an initial value of 0, there is no natural measure of scale for
y2(t). It turns out that the component never gets bigger than about 7× 10−10, so the
default absolute error tolerance of 10−6 is inappropriate. After an integration that
revealed the general size of this solution component, we solved the problem again
with the default relative tolerance of 10−3 and an optional absolute error tolerance
of 10−13. This is accomplished by ode15s in only 139 steps. The step sizes ranged
from 5 × 10−14 to 102! This is mainly due to y2(t) changing rapidly on a very short
time scale. Plotting the output shows that a logarithmic scale in t would be more
appropriate. Because all the solution values are provided to users in our design and
they are retained in Matlab, they can be displayed in a more satisfactory way without
having to recompute them.

To give all codes in the suite the same appearance to the user, the codes in-
tended for stiff problems by default compute internally the necessary partial deriva-
tives by differences. Users are given the option of providing a function for the an-
alytical evaluation of the Jacobian. They are also given the option of specifying
that the Jacobian is constant, a special case that leads to significant savings in
ode23s. The default is to treat the Jacobian as a full matrix. To take advantage
of a sparse Jacobian, the code must be informed of the sparsity pattern. The dis-
tinction between banded Jacobians and the much more complicated case of general
sparse Jacobians that is important in other codes is absent in the new suite. All
that a user must do is provide a (sparse) matrix S of zeros and ones that represents
the sparsity pattern of the Jacobian. There are a number of ways to create matrix
S. If there are neq equations, an neq × neq sparse matrix of zeros can be created
by

S = sparse(neq,neq);

Then for each equation i in F (t, y), if yj appears in the equation, the (i, j) entry
of S is set to 1, i.e., S(i,j) = 1. These quantities can be set in any order. If the
Jacobian has a regular structure, it may be possible to define S more compactly. For
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function dy = vdpex(t,y)
dy = zeros(size(y)); % preallocate column vector dy
dy(1,:) = y(2,:);
dy(2,:) = 1000*(1 - y(1,:).^2).*y(2,:) - y(1,:);

FIG. 4. The vectorized MATLAB code for the vdpex problem.

example, if the Jacobian is banded with bandwidth 2m + 1, it can be defined in a
single line

S = spdiags(ones(neq,2m+1),-m:m,neq,neq)

After defining the sparsity pattern, the value S is assigned to the option sparseJ with
odeset. No further action is required of the user.

As discussed in section 4, the two codes for stiff problems permit a more general
form of the differential equation, namely M(t) y′ = f(t, y), with a mass matrix M(t).
In other computing environments a mass matrix raises awkward questions about spec-
ification of M and its structure and how its structure relates to that of the Jacobian
of f(t, y). In our interface, the codes are informed of the presence of a mass matrix
by means of the mass option. The value of this option is the name of a function that
returns M(t). Or, if the mass matrix is constant, the matrix itself can be provided as
the value of the option. The language deals automatically with the structures of the
matrices that arise in the specification and solution of the problem [19].

7. Numerical partial derivatives. Methods for the solution of stiff problems
involve partial derivatives of the function defining the differential equation. The popu-
lar codes allow users to provide a routine for evaluating these derivatives analytically.
However, this is so much trouble for users and so prone to error that the default is to
approximate them internally by numerical differentiation. The new suite follows this
approach, using a function numjac to compute the numerical approximation.

The scaling difficulties that are possible when approximating partial derivatives
by differences are well known [37]. The numjac code implements a scheme of D.
E. Salane [32] that takes advantage of experience gained at one step to select good
increments for difference quotients at the next step. If it appears that a column might
consist mainly of roundoff, the increment is adjusted and the column recomputed.

The solvers invoke numjac by

[dFdy,fac,g] = numjac(’F’,t,y,Fty,thresh,fac,vectorized,S,g);

where the argument ’F’ is a string naming the function that defines the differential
equation and Fty is the result of ’F’ evaluated at the current point in the integration
(t,y). The vector thresh provides a threshold of significance for y, i.e., the exact
value of a component y(i) with magnitude less than thresh(i) is not important.

One aspect of the formation of partial derivatives special to the suite is the
Boolean option vectorized. It is generally easy to code ’F’ so that it can return an
array of function values. A vectorized version of the van der Pol example is shown
in Figure 4. If ’F’ is coded so that F(t,[y1 y2 ...]) returns [F(t,y1) F(t,y2)
...] and vectorized is set true, numjac will approximate all columns of the Ja-
cobian with a single call to ’F’. This avoids the overhead of repeatedly calling the
function and it may reduce the cost of the evaluations themselves.
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Another special aspect of numjac is that it computes sparse Jacobians as well as
full ones. The structure of the Jacobian is provided by means of a sparse matrix S of
zeros and ones. The first time that a solver calls numjac, the function finds groups
of columns of dFdy that can be approximated with a single call to ’F’. This is done
only once and the grouping is saved in g. Two schemes are tried (first-fit and first-fit
after reverse column minimum-degree ordering [19]) and the more efficient grouping
is adopted. This may not result in an optimal grouping because finding the smallest
packing is an NP-complete problem equivalent to K-coloring a graph [9].

The modified Rosenbrock code requires the partial derivative dFdt every time
it requires dFdy. On reaching t, the step size h provides a measure of scale for the
approximation of dFdt by a forward difference. The computation is so simple that it
is done in the solver itself.

8. Examples. The first question a user must ask is, which of the five codes in
the suite should I use and which, if any, of the options? By design it is very easy
simply to try the most promising codes, but it is useful to have some insight. The
method implemented suggests circumstances in which a code might be particularly
efficient or not. This section presents some experiments with test problems from
classic collections that illustrate the performance of the solvers and the effects of
using certain options. We report how much it costs to solve a problem for a given
tolerance, usually the default tolerance. This is ordinarily what users of Matlab want
to know. A discussion of some of the issues that arise in comparing solvers is found in
[37], where this approach is called the first measure of efficiency. Implicit in the use
of this measure is the assumption that for routine problems, the codes compared will
produce solutions with accuracy at least comparable to the tolerance. No credit is
given for producing solutions with much more accuracy than requested. Because the
solvers control local errors, the true, or global, error can be sensitive to the method
and the details of its implementation. We have tuned the step size selection algorithms
so that for a wide range of test problems, consistent global accuracies comparable to
the tolerance are delivered by the various solvers applied to the same problem.

From our experience with writing solvers in other computing environments, we
believe that our implementations of the methods are comparable in quality to popular
codes based on the same or related methods. Naturally we tested this by comparing
the new Runge–Kutta codes to the old Matlab ones. Also, we report here tests show-
ing that the NDF code is comparable to a popular BDF code written in FORTRAN.

The experiments reported here and others we have made suggest that except in
special circumstances, ode45 should be the code tried first. If there is reason to believe
the problem to be stiff, or if the problem turns out to be unexpectedly difficult for
ode45, the ode15s code should be tried. When solving stiff problems, it is important
to keep in mind the options that improve the efficiency of forming Jacobians.

8.1. Stiff examples. In Matlab it is advantageous to vectorize computations
whenever possible. Accordingly, all stiff problems were coded to use the vectorized
option when computing numerical Jacobians. Also, the advantages of the constantJ
option are so obvious that we used it when solving the stiff problems with constant
Jacobians, namely a2ex, a3ex, b5ex, and hb3ex.

The ode15s code was developed for the NDFs. Because it was easy to provide for
the BDFs, they are allowed as an option. Some experiments show the consequences
of exercising this option. Table 2 gives the number of steps and the real time required
for the two choices when applied to a set of 13 stiff problems. For all but one problem
the default NDFs result in fewer steps than the BDFs (an average of 10.9% fewer),
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TABLE 2
Comparison of the NDFs and BDFs in ode15s. Times are measured as seconds on a Sparc2.

BDF NDF Percent BDF NDF Percent
steps steps fewer time time faster

a2ex 118 101 14.4 3.60 3.14 12.8
a3ex 134 130 3.0 3.96 3.87 2.4
b5ex 1165 936 19.7 32.58 25.95 20.4
buiex 57 52 8.8 2.05 1.92 6.4
chm6ex 152 139 8.6 4.05 3.63 10.3
chm7ex 57 39 31.6 1.82 1.48 18.4
chm9ex 910 825 9.3 30.53 29.38 3.8
d1ex 67 62 7.5 2.35 2.29 2.5
gearex 20 19 5.0 1.12 1.08 3.5
hb1ex 197 179 9.1 5.57 5.09 8.5
hb2ex 555 577 -4.0 13.49 13.45 0.3
hb3ex 766 690 9.9 19.79 17.77 10.2
vdpex 708 573 19.1 20.75 19.33 6.9

and for all problems, the code is faster when using the NDFs (an average of 8.2%
faster).

To verify that the performance of ode15s is comparable to that of a modern
BDF code, we have compared ode15s using the NDFs to DDRIV2 [24] on some
relatively difficult problems. DDRIV2 is an easy-to-use driver for a more complex
code with an appearance not too different from ode15s. It is a quasi-constant step
size implementation of the BDFs of orders 1 to 5 that computes answers at specified
points by interpolation. It approximates Jacobians internally by differences with an
algorithm related to that of ode15s.

It is not possible to compare DDRIV2 and ode15s in detail because they cannot
be used to solve exactly the same computational problem. For one thing, the error
controls are different. DDRIV2 uses a root-mean-square norm to measure the error
in a solution component relative to the larger of the magnitude of the component and
a threshold. We made the controls roughly equivalent by taking the threshold to be
equal to the desired absolute error and dividing the tolerances given to DDRIV2 by
the square root of the number of equations. In addition the two codes handle output
differently. DDRIV2 provides answers wherever requested, but only at those points.
We asked the codes to produce 150 answers equally spaced within the interval of
integration. This is inadequate for some of the examples, but asking for more answers
could increase the cost in DDRIV2 because it has an internal maximum step size
that is twice the distance between output points. Accepting a possible reduction in
efficiency in ode15s, we used an option to impose the same maximum step size.

Table 3 compares DDRIV2 to ode15s using the NDFs. We interpret these com-
parisons as showing that ode15s is an effective code for the solution of stiff problems.
DDRIV2 does not save Jacobians and the numerical results indicate that to a degree
ode15s is trading linear algebra for a smaller number of approximate Jacobians. This
is appropriate in Matlab, but because these examples involve just a few equations,
the benefits of reusing Jacobians are masked.

The chemical reaction problem chm6ex is given in section 6. A plot of one com-
ponent is displayed in Figure 5. ode15s is able to solve the problem effectively using
a remarkably small number of Jacobians. Problem chm9ex is a scaled version of the
Belousov oscillating chemical reaction [14]. A discussion of this problem and plots are
found in [1, p. 49ff]. The limit solution is periodic and exhibits regions of very sharp



16 L. F. SHAMPINE AND M. W. REICHELT

TABLE 3
Comparison of DDRIV2 to ode15s using the NDFs. The table shows the number of successful

steps, the number of failed steps, the number of function calls, the number of partial derivative
evaluations, the number of LU decompositions, and the number of linear system solutions. Note
that the integration parameters of ode15s were changed from their default values.

Time Failed f ∂f/∂y Linear
Example Code steps steps evals evals LUs solves
chm6ex DDRIV2 218 6 404 33 33 271

ode15s 177 4 224 2 29 213
chm9ex DDRIV2 1073 217 2470 220 220 1802

ode15s 750 227 2366 83 322 2033
hb2ex DDRIV2 1370 162 2675 176 176 2316

ode15s 939 70 1321 4 165 1308
vdpex DDRIV2 871 185 1836 167 167 1497

ode15s 724 197 1965 33 261 1865
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FIG. 5. A log–log plot of the second component of the solution of chm6ex.

change. We chose the interval [0, 650] so as to include two complete periods and part
of another. ode15s is trading some linear algebra for a reduction in the number of
Jacobians. Because there are only three solution components, reducing the number
of Jacobians does not have much effect on the number of function evaluations.

Hindmarsh and Byrne [23] present the nonautonomous problem coded in hb2ex
that arises in a diurnal kinetics model and they discuss its solution with EPISODE.
The scaling of one component is such that an absolute error tolerance of 10−20 is
needed. The problem is also discussed at length in [24] where it is solved with
DDRIV2. As the measures of cost given in Table 3 show, ode15s performs quite
well in comparison to a good BDF code. For this problem, reuse of Jacobians proved
to be quite advantageous. With only two equations, numerical evaluation of a Jaco-
bian is so cheap that the difference in cost cannot be due entirely to saving Jacobians.

Example vdpex is the van der Pol equation in relaxation oscillation in the form
specified in [35]. The tradeoffs in the tuning of ode15s as compared to DDRIV2 are
clear. Because this problem involves only two solution components, forming Jacobians
more often would probably have been a bargain in ode15s.
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TABLE 4
Comparison of ode23s to ode15s. For vdpex, the relative accuracy was changed from the default

of 0.1% to 1%. Times are measured as seconds on a Sparc2.

Time Failed f ∂f/∂y Linear
Example Code Time steps steps evals evals LUs solves
vdpex ode15s (BDF) 17.06 525 203 1594 45 266 1458

ode15s (NDF) 15.83 490 179 1514 46 249 1375
ode23s 14.21 302 96 1706 303 398 1194

b5ex ode15s (BDF) 32.58 1165 124 2586 1 319 2578
ode15s (NDF) 25.95 936 97 2074 1 263 2066
ode23s 15.38 549 17 1689 1 566 1698
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FIG. 6. The vdpex solution computed by ode23s and ode15s at 1.0% accuracy, and by ode15s at
0.1% accuracy. The latter indicates that the 1.0% solution by ode15s is less accurate than ode23s.

Now we compare the modified Rosenbrock code ode23s to ode15s. Table 4 pro-
vides statistics for two stiff problems. Note that ode15s was run with both the NDFs
and the BDFs. The fact that NDF1 and NDF2 are more efficient than BDF1 and
BDF2 is evident for the b5ex experiments in which the maximum order was limited.

As a first example we solved vdpex with a relative accuracy tolerance of 1.0%.
At this tolerance ode23s was faster than ode15s, even though it made many more
Jacobian evaluations, and the plot of y(t) in Figure 6 obtained with ode23s is notably
better than that of ode15s. However, when the tolerance is tightened to the default
of 0.1%, ode15s is faster than ode23s and the plot of y(t) is just as good.

Problem b5ex [15] has a Jacobian with eigenvalues near the imaginary axis. The
popular variable-order BDF codes do not deal with this well. Gaffney [16] compares
BDF and other kinds of codes on this and similar problems. ode15s recognizes auto-
matically that this problem has a constant Jacobian. For a fair comparison, we used
the option of telling both codes that the Jacobian is constant. We also restricted
the maximum order of the NDFs used by ode15s to 2, so that both codes would be
L-stable. Evidently ode23s is to be preferred for the solution of this problem.

Supplying a function for evaluating the Jacobian can be quite advantageous, both
with respect to reliability and cost. Table 5 shows the effects of using the analyticJ
option for some of the most expensive of our examples. Because ode23s evaluates
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TABLE 5
The solutions of four problems by ode23s and ode15s showing the effect of using the analyticJ

option to supply a function for evaluation of the Jacobian (time2). The brussex problem is 100×100
and its Jacobian function returns a sparse matrix. Times are measured as seconds on a Sparc2.

ode23s ode15s
Problem Time Time2 Time Time2
brussex 80.00 13.82 23.37 9.70
chm9ex 47.12 27.32 29.38 25.86
hb2ex 140.78 87.29 13.45 13.40
vdpex 28.61 16.36 19.33 19.21

TABLE 6
The solutions of various size brussex problems by ode45, ode23s, ode23s using the sparseJ

option (time2), ode15s, and ode15s using the sparseJ option (time2). Times are measured as
seconds on a Sparc2.

ode45 ode23s ode15s
Size Steps Time Steps Time Time2 Steps Time Time2
100 629 143.95 59 80.00 15.04 82 23.37 10.36
200 2458 4052.99 59 499.44 24.50 82 104.49 17.78
400 NA NA 59 3398.47 43.00 85 574.42 32.19
600 NA NA 59 NA 62.84 85 1703.68 49.21
800 NA NA 59 NA 83.91 85 NA 63.51
1000 NA NA 59 NA 105.93 85 NA 80.74

the Jacobian at every step, reducing this cost by means of an analytical Jacobian has
an important effect on the overall cost. It is much less significant when using ode15s
because it makes comparatively few evaluations of the Jacobian.

Next, we examine the role of Jacobian sparsity. The brussex example is the
classic “Brusselator” system modelling diffusion in a chemical reaction [21],

u′i = 1 + u2
i vi − 4ui + α(N + 1)2(ui−1 − 2ui + ui+1),

v′i = 3ui − u2
i vi + α(N + 1)2(vi−1 − 2vi + vi+1),

and is solved on the time interval [0, 10] with α = 1/50 and

ui(0) = 1 + sin(2πxi)
vi(0) = 3

}
with xi = i/(N + 1) for i = 1, . . . , N.

There are 2N equations in this system, but the Jacobian is banded with a constant
width 5, if the equations are ordered as u1, v1, u2, v2, . . . .

For progressively larger values of N , Table 6 shows the number of steps taken and
compares the number of seconds required to solve the brussex problem by ode45,
ode23s, and ode15s. The ode45 results indicate that the system becomes quite stiff
for the largerN . The first columns of the results for ode23s and ode15s were produced
using the default numerical approximation of Jacobians. As the second columns show,
the sparseJ option makes a tremendous difference. Until N becomes large, ode15s is
efficient even without the sparseJ option because it forms relatively few Jacobians.

The fem2ex example involves a mass matrix. The system of ODEs, found in [41],
comes from a method of lines solution of the partial differential equation

e−t
∂u

∂t
=
∂2u

∂x2

with initial condition u(0, x) = sin(x) and boundary conditions u(t, 0) = u(t, π) = 0.
An integer N is chosen, h is defined as 1/(N + 1), and the solution of the partial
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FIG. 7. The fem2ex solution with N = 9 as computed by ode15s.

TABLE 7
Comparison of ode23s to ode15s for a problem with a constant mass matrix, fem2ex with N = 9.

Times are measured as seconds on a Sparc2.

Time Failed f ∂f/∂y Linear
Example Code Time steps steps evals evals LUs solves
fem2ex ode15s 4.71 46 14 175 5 21 124

ode23s 5.35 40 1 493 41 41 123

differential equation is approximated at xk = kπh for k = 0, 1, . . . , N + 1 by

u(t, xk) ≈
N∑
k=1

ck(t)φk(x).

Here φk(x) is a piecewise linear function that is 1 at xk and 0 at all the other xj . The
Galerkin discretization leads to the system of ODEs

A(t) c′ = Rc where c(t) =

 c1(t)
...

cN (t)


and the tridiagonal matrices A(t) and R are given by

Aij =

 exp(−t)2h/3 if i = j,
exp(−t)h/6 if i = j ± 1,
0 otherwise,

and Rij =

 −2/h if i = j,
1/h if i = j ± 1,
0 otherwise.

The initial values c(0) are taken from the initial condition for the partial differential
equation. The problem is solved on the time interval [0, π].

Because the mass matrix A depends on t, this equation cannot be solved directly
with ode23s. However, scaling by exp(t) results in an equivalent system with a
constant mass matrix that can be solved with both codes. As is typical of the method
of lines, the mass matrix is sparse, but in this instance we have followed [41] in taking
N = 9, which is too small to take advantage of the sparsity. The solution of fem2ex
is shown in Figure 7 and statistics are presented in Table 7.
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TABLE 8
Comparison of all five of the ODE solvers on a set of four nonstiff problems. Times are

measured as seconds on a Sparc2.

Time Failed f ∂f/∂y Linear
Example Code Time steps steps evals evals LUs solves
rigid ode23s 2.76 58 10 373 59 68 204

ode15s 2.08 82 17 184 1 30 179
ode113 2.12 65 4 135 0 0 0
ode23 0.92 55 13 205 0 0 0
ode45 0.57 19 2 127 0 0 0

r3body ode23s 22.79 372 1 2612 373 373 1119
ode15s 8.74 321 48 575 1 87 569
ode113 10.72 237 20 495 0 0 0
ode23 6.19 301 4 916 0 0 0
ode45 3.84 73 27 601 0 0 0

twobody ode23s 44.45 871 1 6105 872 872 2616
ode15s 13.66 584 64 963 2 135 952
ode113 18.46 396 29 822 0 0 0
ode23 11.51 727 0 2182 0 0 0
ode45 4.98 133 35 1009 0 0 0

vdpns ode23s 6.65 158 21 836 159 179 537
ode15s 4.48 192 35 426 1 60 422
ode113 5.33 162 12 337 0 0 0
ode23 2.10 146 19 496 0 0 0
ode45 1.43 51 11 373 0 0 0

8.2. Nonstiff examples. In this section we consider four nonstiff examples
drawn from the collections [15, 39]. vdpns is the van der Pol equation with µ = 1.
rigid is the Euler equations of a rigid body without external forces as proposed by
Krogh. The solution is displayed in Figure 1. twobody, D5 of [15], is the two-body
problem with an elliptical orbit of eccentricity 0.9. r3body describes a periodic orbit
for a restricted three-body problem [39]. Because the problems are nonstiff, they can
be solved with all the MATLAB ODE solvers. Table 8 compares the costs of solution.
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