
Section II: Methodology 

Role of Student vs. Mentor 

 All work was done by me over the course of the past 4 months (November 2023- February 

2024). Mentors guided the overall presentation and organization of this project. 

Equipment and Materials 

 All algorithms were coded and visually represented using Python. A remote API was established 

to facilitate communication between the Coppelia Robotics Simulation software and a Python 

Integrated Development Environment (IDE). Through this remote API, various data, including readings 

from ultrasonic sensors and Lidar sensors in the simulation, was exchanged. Furthermore, the drone 

within the simulation responded to commands dispatched from the Python IDE, enabling controlled 

movement. All algorithms and the Coppelia Simulation were executed remotely on a Dell Precision 

Tower 3420 computer. 

Mathematical Problem Statement 

In an unknown 3D space, an energy-efficient coverage path capable of effectively navigating and 

clearing obstacles within the space. The mathematical problem is formulated as an optimization task, 

where the goal is to minimize the total energy cost associated with traversing the coverage path. The 

unknown 3D space is represented as 𝑅 in a three-dimensional coordinate system, with a set of obstacles 

denoted as 𝑂. The optimization objective is expressed as the integral of the energy function  𝐸 along the 

coverage path 𝑃 where an optimal P is found such that the total energy cost, ∫ 𝐸
𝑃

𝑑𝑠 is minimized. In 

addition to that, path P is subject to the condition that  𝑃  ⊆  𝑅, 𝑃 ∩ 𝑂 =  ∅  and 𝑃 is a continuous and 

feasible coverage path in 𝑅. 

This paper will address the stated optimization problem. 



Figure 1: Drone's possible movements. 
The 4 corner movements have a length 

of √2 units while the other movements 
have a length of 1 unit. Image generated 
in Lucid. 

Figure 2: An image of the drone in the middle 
surrounded by 8 ultrasonic sensors for the 8 
movement directions. 

Objective 1: Obstacle avoidance  

The drone's movements were performed through predefined movement functions moving 1 

unit front, back, left, right and √2 units in the other 4 directions (Fig 1) .   The drone was set to navigate 

a grid-based landscape with a representation of 50x50 units and a grid size of 1 𝑢𝑛𝑖𝑡2. The drone was 

also equipped with 8 ultrasonic sensors for the 8 directions (Fig 2).  The ultra sonic sensors were 

equipped with a range of 1.05 m and a search angle of 45 degrees. Once the simulation environment 

was initialized, each movement in Fig. 1 was assigned an index  i. The optimal movement was chosen 

such that 𝑖𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖(𝐽𝑖) where  𝐽𝑖 = 𝑑𝑖(𝑃𝑖, 𝑇) + 1000α𝑖 , where 𝑑𝑖(𝑃𝑖, 𝑇) is the expected 

distance between the position of the drone and the target after movement 𝑖, and  α𝑖 is 1 if an object is 

detected in the ultrasonic sensor corresponding to movement 𝑖 or 0 otherwise. This process was 

repeated until the target position was reached. 

               

  



Figure 3i: An image of the environment in Coppelia 
Sim 

Figure 3ii: Corresponding occupancy grid map 

Objective 2: Mapping of the environment 

A Hokuyo URG-04LX-UG01 LiDAR sensor with a 3% margin of error was used in the simulation to 

map the environment. The sensor transmitted a set of detected points, {𝑆: 𝑆 = (𝑥, 𝑦, 𝑧)}, in 3D 

space to the IDE through a remote API. The algorithm then converted the set of points using the 

following logic (see Fig x). A unique rounding operation was performed on each element of 𝑆. 

The rounding operation was defined to be the following ⌊𝑥⌉ = ⌊𝑥⌋ + 0.5 if 𝑥 − ⌊𝑥⌋ ≥

0.5, otherwise ⌊𝑥⌋. Once this operation was performed, each element of the rounded set with 

exactly 1 integer coordinate was used as grid coordinates. These coordinates were then colored 

black to show that it was occupied using a colormap. 

  

 

Objective 3: Optimal Area Division 

An 𝑛 x 𝑛 grid was split into 𝑛2 cells. Two drones were initialized in 2 distinct cells (0,0, 𝑧) and 

(𝑛, 𝑛, 𝑧). The algorithm iterated through each cell and calculated a cost 𝐴 which is the distance between 

each drone’s current position and the current cell. The cell was then assigned to the drone to the with 

the minimum cost 𝐴. However, if the cell was already assigned to another drone, a penalty β was added 

to the cost. β was set to be 0.25. This algorithm was implemented in python and executed on a Dell 

Precision Tower 3420 computer. 

However, this algorithm did not account for the issue of spatial disconnection. There were other 

obstacles or another drone’s assignment in between the current drone’s assignment as illustrated in 



Figure 4ii: Depiction of the area assignment 
ensuring spatial connectivity. Image generated by 
the algorithm. 

Figure 4i: Depiction of suboptimal area assignment 
with spatial disconnection. “1”s represent drone 1’s 
assignment, “2”s represent drone 2’s assignment 
and “0”s represent obstacles. Image generated by 
the algorithm. 

Figure 4i. To fix this issue, any assigned path, or a section of assigned path that does not contain the 

drone’s current position was penalized by increasing the penalty β by the proportion of already assigned 

cells of 𝑛2. β remained this value until updated. By incorporating a dynamic penalty β, the optimal area 

assignment matrix ensured spatial connectivity (Fig. 4ii). 

 

   

 

Energy-aware Coverage path generation 

Coverage path generation 

Coverage paths are defined as paths that enable the robot to visit every cell of a given area (Wu 

et al., 2019). 

The coverage path for a given drone for a given area is a path that wraps around the Minimum Spanning 

Tree of said area (Kapoutsis et al., 2017). Given the properties of MST, it could also be proven that 

travelling through every point of the MST with an appropriate width ensures a coverage path (Fig 5). The 

coverage path in this paper was defined to be a path moved by a 1𝑥1 square through all the given points 

of a generated energy-efficient MST. While a cyclic tree could be used for the drone to traverse across 

assigned points, the time complexity for the algorithm is 𝑂(𝑛!)(Appendix 1) whereas the suggested MST 



Figure 6: Image of a camera 
view of the drone covering 1 
unit square. 

generation algorithm has a time complexity of 𝑂(𝑛2 + 𝐸 + 𝑙𝑜𝑔(𝐸))(Appendix 2) where n is the number 

of input points and 𝐸 is the minimum number of edges required to connect the given 𝑛 points 

To simulate the drone, the drone’s height was fixed at 5.5 m in the simulation environment. A camera 

facing downwards was attached to the bottom of the drone (Fig 6). The camera’s view angle was set to 

10.37 degrees given by 2 𝑎𝑟𝑐𝑡𝑎𝑛 (
0.5

5.5
). 

 

 

 

 

Figure 5: Depiction of a minimum spanning tree incorporated in the  

minimal coverage path for a given area. 

 

 

Generating an energy efficient MST 

A modified Kruskal's algorithm was used to generate a Minimum Spanning Tree (MST) for the assigned 

cells. Kruskal's algorithm is renowned for its efficiency in constructing the most economical connections 

between points in a graph. The implementation involved sorting edges based on their weights. The 

weight, 𝑊, of an edge is calculated as follows: 

𝑊 = λ ∗ 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑡𝑢𝑟𝑛 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑑𝑔𝑒 + μ if the edge is a straight line 

else 𝑊 = λ ∗ 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑡𝑢𝑟𝑛 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑑𝑔𝑒 + √(2)μ    

where λ is the joules per degree turn of the drone and μ is the joules per unit traveled of the drone. λ 

and μ were set to 0.01 and 0.1, respectively. These experimental values of energy consumption are 



Figure 7: Algorithmic 
flowchart of the integration 
of methods. 

derived in “UB-ANC planner: Energy efficient coverage path planning with multiple drones” (Modares et 

al., 2017). The algorithm then proceeded by iteratively considering edges in ascending order of weight, 

ensuring the inclusion of edges that connect cells without forming cycles. To achieve this, a Union-Find 

data structure was utilized, allowing for the efficient tracking of connected components. This approach 

facilitated the creation of a tree structure that is both acyclic and connects all assigned cells. 

Furthermore, incorporating the energy variables and minimizing the cost will make this MST energy 

aware. 

Integration of methods 

With the different objectives implemented, they were integrated together which 

was then tested. The 4 different parts were integrated together as per the 

algorithmic flowchart in Figure 7. The algorithm was then implemented in 4 

different environments for both a single drone and a double drone instance. 

 

 

Statistical Tests 

Linear regressions were employed as a primary analytical tool to compare relationships within the 

experimental dataset. Given the deterministic nature of the algorithm, the reliance on statistical tests 

that traditionally account for randomness, such as randomization tests or Monte Carlo simulations, was 

deemed unnecessary for direct comparisons. Unlike processes influenced by chance, the algorithm's 

consistent and systematic operation allowed for a focused examination of linear relationships without 

the need for additional stochastic considerations. 

 


