
Section II: Methodology

Role of Student vs. Mentor

 All work was done by me over the course of the past 4 months (November 2023- February

2024). Mentors guided the overall presentation and organization of this project.

Equipment and Materials

 All algorithms were coded and visually represented using Python. A remote API was established

to facilitate communication between the Coppelia Robotics Simulation software and a Python

Integrated Development Environment (IDE). Through this remote API, various data, including readings

from ultrasonic sensors and Lidar sensors in the simulation, was exchanged. Furthermore, the drone

within the simulation responded to commands dispatched from the Python IDE, enabling controlled

movement. All algorithms and the Coppelia Simulation were executed remotely on a Dell Precision

Tower 3420 computer.

Mathematical Problem Statement

In an unknown 3D space, an energy-efficient coverage path capable of effectively navigating and

clearing obstacles within the space. The mathematical problem is formulated as an optimization task,

where the goal is to minimize the total energy cost associated with traversing the coverage path. The

unknown 3D space is represented as 𝑅 in a three-dimensional coordinate system, with a set of obstacles

denoted as 𝑂. The optimization objective is expressed as the integral of the energy function 𝐸 along the

coverage path 𝑃 where an optimal P is found such that the total energy cost, ∫ 𝐸
𝑃

𝑑𝑠 is minimized. In

addition to that, path P is subject to the condition that  𝑃  ⊆  𝑅, 𝑃 ∩ 𝑂 = ∅ and 𝑃 is a continuous and

feasible coverage path in 𝑅.

This paper will address the stated optimization problem.

Figure 1: Drone's possible movements.
The 4 corner movements have a length

of √2 units while the other movements
have a length of 1 unit. Image generated
in Lucid.

Figure 2: An image of the drone in the middle
surrounded by 8 ultrasonic sensors for the 8
movement directions.

Objective 1: Obstacle avoidance

The drone's movements were performed through predefined movement functions moving 1

unit front, back, left, right and √2 units in the other 4 directions (Fig 1) . The drone was set to navigate

a grid-based landscape with a representation of 50x50 units and a grid size of 1 𝑢𝑛𝑖𝑡2. The drone was

also equipped with 8 ultrasonic sensors for the 8 directions (Fig 2). The ultra sonic sensors were

equipped with a range of 1.05 m and a search angle of 45 degrees. Once the simulation environment

was initialized, each movement in Fig. 1 was assigned an index i. The optimal movement was chosen

such that 𝑖𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖(𝐽𝑖) where 𝐽𝑖 = 𝑑𝑖(𝑃𝑖, 𝑇) + 1000α𝑖 , where 𝑑𝑖(𝑃𝑖, 𝑇) is the expected

distance between the position of the drone and the target after movement 𝑖, and α𝑖 is 1 if an object is

detected in the ultrasonic sensor corresponding to movement 𝑖 or 0 otherwise. This process was

repeated until the target position was reached.

Figure 3i: An image of the environment in Coppelia
Sim

Figure 3ii: Corresponding occupancy grid map

Objective 2: Mapping of the environment

A Hokuyo URG-04LX-UG01 LiDAR sensor with a 3% margin of error was used in the simulation to

map the environment. The sensor transmitted a set of detected points, {𝑆: 𝑆 = (𝑥, 𝑦, 𝑧)}, in 3D

space to the IDE through a remote API. The algorithm then converted the set of points using the

following logic (see Fig x). A unique rounding operation was performed on each element of 𝑆.

The rounding operation was defined to be the following ⌊𝑥⌉ = ⌊𝑥⌋ + 0.5 if 𝑥 − ⌊𝑥⌋ ≥

0.5, otherwise ⌊𝑥⌋. Once this operation was performed, each element of the rounded set with

exactly 1 integer coordinate was used as grid coordinates. These coordinates were then colored

black to show that it was occupied using a colormap.

Objective 3: Optimal Area Division

An 𝑛 x 𝑛 grid was split into 𝑛2 cells. Two drones were initialized in 2 distinct cells (0,0, 𝑧) and

(𝑛, 𝑛, 𝑧). The algorithm iterated through each cell and calculated a cost 𝐴 which is the distance between

each drone’s current position and the current cell. The cell was then assigned to the drone to the with

the minimum cost 𝐴. However, if the cell was already assigned to another drone, a penalty β was added

to the cost. β was set to be 0.25. This algorithm was implemented in python and executed on a Dell

Precision Tower 3420 computer.

However, this algorithm did not account for the issue of spatial disconnection. There were other

obstacles or another drone’s assignment in between the current drone’s assignment as illustrated in

Figure 4ii: Depiction of the area assignment
ensuring spatial connectivity. Image generated by
the algorithm.

Figure 4i: Depiction of suboptimal area assignment
with spatial disconnection. “1”s represent drone 1’s
assignment, “2”s represent drone 2’s assignment
and “0”s represent obstacles. Image generated by
the algorithm.

Figure 4i. To fix this issue, any assigned path, or a section of assigned path that does not contain the

drone’s current position was penalized by increasing the penalty β by the proportion of already assigned

cells of 𝑛2. β remained this value until updated. By incorporating a dynamic penalty β, the optimal area

assignment matrix ensured spatial connectivity (Fig. 4ii).

Energy-aware Coverage path generation

Coverage path generation

Coverage paths are defined as paths that enable the robot to visit every cell of a given area (Wu

et al., 2019).

The coverage path for a given drone for a given area is a path that wraps around the Minimum Spanning

Tree of said area (Kapoutsis et al., 2017). Given the properties of MST, it could also be proven that

travelling through every point of the MST with an appropriate width ensures a coverage path (Fig 5). The

coverage path in this paper was defined to be a path moved by a 1𝑥1 square through all the given points

of a generated energy-efficient MST. While a cyclic tree could be used for the drone to traverse across

assigned points, the time complexity for the algorithm is 𝑂(𝑛!)(Appendix 1) whereas the suggested MST

Figure 6: Image of a camera
view of the drone covering 1
unit square.

generation algorithm has a time complexity of 𝑂(𝑛2 + 𝐸 + 𝑙𝑜𝑔(𝐸))(Appendix 2) where n is the number

of input points and 𝐸 is the minimum number of edges required to connect the given 𝑛 points

To simulate the drone, the drone’s height was fixed at 5.5 m in the simulation environment. A camera

facing downwards was attached to the bottom of the drone (Fig 6). The camera’s view angle was set to

10.37 degrees given by 2 𝑎𝑟𝑐𝑡𝑎𝑛 (
0.5

5.5
).

Figure 5: Depiction of a minimum spanning tree incorporated in the

minimal coverage path for a given area.

Generating an energy efficient MST

A modified Kruskal's algorithm was used to generate a Minimum Spanning Tree (MST) for the assigned

cells. Kruskal's algorithm is renowned for its efficiency in constructing the most economical connections

between points in a graph. The implementation involved sorting edges based on their weights. The

weight, 𝑊, of an edge is calculated as follows:

𝑊 = λ ∗ 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑡𝑢𝑟𝑛 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑑𝑔𝑒 + μ if the edge is a straight line

else 𝑊 = λ ∗ 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑡𝑢𝑟𝑛 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑑𝑔𝑒 + √(2)μ   

where λ is the joules per degree turn of the drone and μ is the joules per unit traveled of the drone. λ

and μ were set to 0.01 and 0.1, respectively. These experimental values of energy consumption are

Figure 7: Algorithmic
flowchart of the integration
of methods.

derived in “UB-ANC planner: Energy efficient coverage path planning with multiple drones” (Modares et

al., 2017). The algorithm then proceeded by iteratively considering edges in ascending order of weight,

ensuring the inclusion of edges that connect cells without forming cycles. To achieve this, a Union-Find

data structure was utilized, allowing for the efficient tracking of connected components. This approach

facilitated the creation of a tree structure that is both acyclic and connects all assigned cells.

Furthermore, incorporating the energy variables and minimizing the cost will make this MST energy

aware.

Integration of methods

With the different objectives implemented, they were integrated together which

was then tested. The 4 different parts were integrated together as per the

algorithmic flowchart in Figure 7. The algorithm was then implemented in 4

different environments for both a single drone and a double drone instance.

Statistical Tests

Linear regressions were employed as a primary analytical tool to compare relationships within the

experimental dataset. Given the deterministic nature of the algorithm, the reliance on statistical tests

that traditionally account for randomness, such as randomization tests or Monte Carlo simulations, was

deemed unnecessary for direct comparisons. Unlike processes influenced by chance, the algorithm's

consistent and systematic operation allowed for a focused examination of linear relationships without

the need for additional stochastic considerations.

