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HIGH-FREQUENCY HOMOGENIZATION FOR
ELECTROMAGNETIC HEATING OF PERIODIC MEDIA\ast 

JOSEPH M. GAONE\dagger , BURT S. TILLEY\ddagger , AND VADIM V. YAKOVLEV\S 

Abstract. Electromagnetic heating is the process where a composite material absorbs applied
electromagnetic radiation and converts this energy to internal energy in the material. While homog-
enization models for electromagnetic heating have been around for decades, these approaches break
down when the wavelength of the electromagnetic wave is comparable to the characteristic microscale
length. Here we derive from Maxwell's equations and the energy equation effective equations for a
binary composite in the case where the characteristic microscale length and wavelength are compa-
rable. Under the assumption of small loss factors in the materials, high-frequency homogenization
results in a locally temperature dependent elliptic problem for the field amplitude via Floquet--Bloch
theory. The length scale for thermal transport is the macroscale, and classical homogenization ap-
plies. We characterize the results in terms of a complex wavenumber for propagation, and validate
our results for a lamellar structure for which an exact solution exists under isothermal conditions,
and characterize field strength needed to achieve thermal runaway in the composite as a function of
the resonant frequency and volume fraction of the lossless material.

Key words. mathematical modeling, microwave heating, heat exchanger, solar thermal collec-
tion, thermal runaway, photonic crystal
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1. Introduction. Electromagnetic (EM) heating has been widely used in indus-
trial applications including food processing [8, 42, 65, 50, 18, 12], microwave assisted
chemistry [39, 21, 43] including chemical vapor infiltration [56, 25, 6, 5], and material
processing [1, 15, 11, 53, 13, 7, 32, 61]. Many of these applications involve the heating
of inhomogeneous media such as composites [25, 47, 38], ceramics [29, 40, 3, 46], and
porous media [34, 37, 55, 31, 17]. The motivation of this work is to study the elec-
tromagnetic response to a porous EM heat exchanger, which converts EM radiation
to thermal energy by fluid transport through a porous medium subject to dielectric
heating. This study is performed through the application of homogenization theory.

Homogenization is a mathematical theory to model the macroscale behavior of
a physical process through some well defined averaging process over the microscale
structure. Homogenization in electromagnetics began with the development of mix-
ture formula including the well known Maxwell--Garnett and Bruggemann formulas
among others [51]. This approach attempts to find an appropriate averaging of the
parameters of each constituent to determine an effective parameter that when applied
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1286 J. M. GAONE, B. S. TILLEY, AND V. V. YAKOVLEV

to the governing equations can accurately approximate the macroscale behavior. This
approach has many limitations, which include being unable to account for the wave-
geometry interactions that occur at high frequencies. Most notably, however, is that
model accuracy decreases as the bulk and inclusion constituent materials approach
the percolation threshold, which is the state of most porous media. The EM heating
applications we consider require modeling both of these conditions.

In contrast multiple-scale homogenization attempts to average the governing
equations over the microscale to generate an effective equation instead of an effective
parameter. It has been widely applied to Maxwell's equations and include studies
involving lossless media at low-frequency [30, 23, 36, 34, 60, 54, 22, 57, 52], dissipa-
tive media at low-frequency [59, 4, 2, 9], lossless media at high-frequency [34, 14, 22],
and finally lossy media at high-frequency [2]. There are also a few studies into the
transition region between low- and high-frequency r\'egimes [2, 10]. Most of the homog-
enization models only consider the closed domain problem which assume an external
boundary of a perfect conductor. Of greater interest is the open domain scattering
problem, where there is an applied external field. It models applications such as solar
thermal heating or beamed energy more accurately. Hence, much of the literature
on EM homogenization is incompatible with high-frequency dielectric heating. High-
frequency dielectric heating is of interest because it has been shown that new stable
steady-state temperatures can be achieved under the application of Bragg resonance
with a defect cavity [20, 48, 19]. This is a well known phenomenon in the study of
photonic crystals; however, it has not been considered for heating applications until
now.

As a result we develop a high-frequency homogenization (HFH) capable of in-
cluding a temperature dependent dielectric loss. Craster, Kaplunov, and Pichugin
[14] developed a HFH for the lossless acoustic problem in two dimensions. It deter-
mines approximations to dispersion curves via perturbations away from the periodic
and antiperiodic solutions by applying the Floquet--Bloch theory. We extend this
work to the curl-curl formulation of Maxwell's equations for a low-loss dielectric in
three dimensions.

Section 2 reviews the EM theory utilized in the homogenization. We also discuss
three possible asymptotic regimes on the dielectric loss and when they are applica-
ble. Section 3 develops the general homogenization procedure for the low-loss high-
frequency materials in three dimensions. A one-dimensional (1D) example is verified
against the exact solution found by using the Transfer Matrix Method (TMM) in
section 4. In section 5, we consider the impact of the volume fraction of the loss-
less material in this example at these resonant frequencies for the onset of thermal
runaway. Finally, conclusions are discussed in section 6.

2. Problem formulation. Consider an infinite slab, thickness L, composed of
two different dielectric materials, and periodic in each spatial dimension, where \bfitxi is
our local coordinate system, as shown in Figure 1. One of the materials has a loss
factor which depends on temperature. An electromagnetic wave propagates through
the slab in the z-direction. We are interested in the heating of this slab by this
applied field for the case when the wavelength of the applied field is comparable to
the characteristic spatial microscale period \ell of the composite pattern.

Maxwell's equations, which govern the electromagnetic behavior of this system,
can be restated for the time harmonic solutions E(x) = e - i\omega t E(x), in the curl-curl

D
ow

nl
oa

de
d 

08
/2

2/
21

 to
 1

30
.2

15
.6

3.
23

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HFH OF EM HEATING OF PERIODIC MEDIA 1287

Fig. 1. Patterned microscale structure along with the macroscale coordinate systems/dimensions.

formulation

\nabla \cdot (\epsilon E) = 0,(1)

\nabla 2E+ \gamma \ast 2\epsilon E - \nabla (\nabla \cdot E) = 0,(2)

where E(x) is the time-harmonic electric field and \gamma \ast = \omega 
\surd 
\epsilon o \mu o is the free space

wavenumber of the applied plane wave.1 The nondimensional dielectric constant \epsilon 
depends on the local material:

(3) \epsilon =

\left\{   \epsilon 1 material 1,

\epsilon 2  - i \chi 2((T  - To)/To) material 2,

where \epsilon j is the permittivity of each material j = 1, 2, and the loss factor \chi j is zero
in material 1 and a function of temperature in the lossy material 2, referenced at
the ambient temperature To. In the analysis below, we used the index j = 1, 2 to
denote the domain of material 1, 2, respectively. While the dielectric constants can
depend on temperature, the loss factor's temperature dependence is more significant
and relevant in this electromagnetic-heating application.

The local temperature of the material is governed by the energy equation

\rho j cp,j
\partial T

\partial t
= kj\nabla 2T +

\epsilon o \omega \chi j((T  - To)/To)

2
| E(x)| 2 ,(4)

where \rho j is the mass density of material j, cp,j is the specific heat, and kj is the
thermal conductivity for j = 1, 2. Here, we assume that the time-scale of energy

1While this system appears to be overdetermined, both equations are required as per Jackson
[24, sect. 6.2ff].

D
ow

nl
oa

de
d 

08
/2

2/
21

 to
 1

30
.2

15
.6

3.
23

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1288 J. M. GAONE, B. S. TILLEY, AND V. V. YAKOVLEV

transport is much longer than the temporal period of the applied electromagnetic
plane wave.

We assume perfect thermal contact along the boundary \Omega between the two ma-
terials, and assume there is no free charge throughout the medium:

T | 21 = 0, kj\nabla T \cdot n| 21 = 0 , x \in \Omega ,(5)

\epsilon E \cdot n| 21 = 0, E\times n| 21 = 0 , (\nabla \times E) \cdot n| 21 = 0 , n\times (\nabla \times E)| 21 = 0 , x \in \Omega ,(6)

where the notation f | 21 = f2  - f1 is the jump condition in the quantity f from region
j = 2 to region j = 1, and n is a unit normal vector along \Omega .

To arrive at a nondimensionalization of (4)--(6), we scale E on Eo, the amplitude
of the applied electromagnetic wave in free space, T = To (1 + \theta ) is the temperature,
with To being the ambient temperature surrounding the slab, and \theta being the rela-
tive change of temperature from ambient. We are interested here in time-harmonic
solutions (or solutions that are steady-state on the heat transfer time scale), and we
scale lengths on the slab thickness L to arrive at the system

\nabla \cdot (\epsilon E) = 0,(7)

\nabla 2E+

\biggl( 
\gamma 

\eta 

\biggr) 2

\epsilon E - \nabla (\nabla \cdot E) = 0,(8)

kj
k1

\nabla 2\theta + P \chi j(\theta ) | E| 2 = 0,(9)

where \gamma = \ell \gamma \ast , P = \ell 2 \epsilon o \omega | Eo| 2/(k1 To) is the power parameter, and \eta = \ell /L \ll 1
is the aspect ratio of the geometric periodicity of the composite pattern and the slab
thickness. Boundary conditions (5), (6) can be written as

\theta j

\bigm| \bigm| \bigm| \bigm| 2
1

= 0 ,
kj
k1

\nabla \theta j \cdot n
\bigm| \bigm| \bigm| \bigm| 2
1

= 0 , x \in \partial \Omega ,(10)

\epsilon Ej \cdot n| 21 = 0, Ej \times n| 21 = 0 ,(11)

(\nabla \times Ej) \cdot n| 21 = 0 , n\times (\nabla \times Ej)| 21 = 0 , x \in \partial \Omega .

Note that the volume contained in \Omega is bounded above by \eta 3, or the volume of the
unit periodic cell structure.

3. Model derivation. Since we are interested in wavelengths that are compara-
ble to the spatial period of the microstructure, we consider a scale separation, where
\xi \xi \xi = x/\eta are the variables on the microscale when \eta \ll 1. We further restrict ourselves
to steady-state solutions, and assume that E = E(\bfitxi ,x), \theta = \theta (\bfitxi ,x) are now functions
of both \xi \xi \xi and x, with the \theta periodic on the microscale, but E being either periodic or
antiperiodic over each component \xi \ell , \ell = 1, 2, 3, resulting in eight different potential
solution states. In addition, we assume that \epsilon j = O(1), \chi 2(0) = O(\eta 2), or that the
amount of power absorbed by the lossy material is O(\eta 2).

We define the following asymptotic expansions for Maxwell's equations, analogous
to [14]

E = E(0) + \eta E(1) + \eta 2E(2) + \cdot \cdot \cdot , \gamma 2 = \gamma 2
o + \eta \gamma 2

1 + \eta 2\gamma 2
2 + \cdot \cdot \cdot ,

along with a similar expansion for the temperature \theta ,

\theta = \theta (0) + \eta \theta (1) + \eta 2\theta (2) + \cdot \cdot \cdot ,
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HFH OF EM HEATING OF PERIODIC MEDIA 1289

where each of the E(m), \theta (m) are functions of \bfitxi ,x, and t. Next, we apply multiple
scales in space so that the \nabla operator in (7)--(9) becomes

\nabla =
1

\eta 
\nabla \xi +\nabla x ,

where \nabla \xi is the gradient operator only on the microscale variables \bfitxi , and \nabla x is the
gradient operator only on the macroscale variables x. The Laplacian operator with
this assumption is given by

\nabla 2 =
1

\eta 2
\nabla 2

\xi +
1

\eta 
(divx\nabla \xi + div\xi \nabla x) +\nabla 2

x .

For scale separation, we require that E, \theta remain bounded as | \bfitxi | \rightarrow \infty . Classically,
boundedness requires that these quantities are periodic over the periodic cell \scrV , de-
fined as

\scrV = \{ \bfitxi |  - 1 \leq \xi i \leq 1 , i = 1, 2, 3\} .

However, in the propagation of electric fields through lossless composite media, it is of
interest to look at cases for which E is periodic over one component \xi i \in [ - 2, 2], while
the other components are periodic on [ - 1, 1] [27]. We say that E is the antiperiodic
in the \xi i-component. In fact, there are eight different sets of periodic boundary
conditions for which each component can be periodic or antiperiodic. The implications
of these different cases are addressed as we proceed through the asymptotic solution.

The leading-order problem at O(\eta  - 2) is given by

\nabla \xi \cdot (\epsilon jE(0)
j ) = 0,(12)

\nabla 2
\xi E

(0) + \gamma 2
0\epsilon jE

(0)
j  - \nabla \xi (\nabla \xi \cdot E(0)

j ) = 0,(13)

\nabla 2
\xi \theta 

(0)
j = 0,(14)

with E(0) one of the eight states described above on \scrV , and \theta (0) periodic on \scrV . Further,
the following boundary conditions on \Omega \subset \scrV are required:

\theta 
(0)
j

\bigm| \bigm| \bigm| \bigm| 2
1

= 0 ,
kj
k1

\nabla \xi \theta 
(0)
j \cdot n

\bigm| \bigm| \bigm| \bigm| 2
1

= 0 , \bfitxi \in \partial \Omega ,(15)

\epsilon j E
(0)
j \cdot n

\bigm| \bigm| \bigm| 2
1
= 0 , E

(0)
j \times n

\bigm| \bigm| \bigm| 2
1
= 0 ,(16) \Bigl( 

\nabla \xi \times E
(0)
j

\Bigr) 
\cdot n

\bigm| \bigm| \bigm| 2
1
= 0 , n\times 

\Bigl( 
\nabla \xi \times E

(0)
j

\Bigr) \bigm| \bigm| \bigm| 2
1
= 0 , \bfitxi \in \partial \Omega ,

where \epsilon j is the real part of the permittivity \epsilon in material j.
Note that at leading order the electric field and the temperature decouple, and

each quantity can be addressed individually. Coupling between these two quantities
do not appear until O(1), and so in the following we focus on the leading-order
solution and the O(\eta ) correction for the electric field. For the temperature, the result
is classical (e.g., see [45]), and we discuss the energy equation after determining the
effective equation for the electric field. Note that the leading-order temperature is

given by \theta 
(0)
j (\bfitxi ,x) = \theta (0)(x).

For the electric field we are interested in nontrivial solutions, and we define the
pair (U(0), \gamma 0) as the eigenfunction and corresponding eigenvalue to the solution of
(12), (13) subject to (16) and either periodic or antiperiodic boundary conditions in
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1290 J. M. GAONE, B. S. TILLEY, AND V. V. YAKOVLEV

each direction along \partial \scrV . This set contains eight different base-state solutions, each
with its corresponding eigenvalue \gamma 0. These form a subset of the Bloch modes which
are found in the study of photonic crystals [27]. Practically, this solution would need
to be computed numerically for a particular set of materials and \Omega , but we formally
proceed in our analysis assuming \gamma 0 has a geometric multiplicity of one.

The system (12)--(16) is linear, and the leading-order solution for E(0) in general
is a 3\times 3 tensor that depends on x times the base state in \xi 

(17) E(0) = F(x)U(0)(\bfitxi , \gamma o) ,

where the amplitude of the field depends on the macroscale, along with its polariza-
tion. For simplicity in its derivation, we consider polarizations that do not depend
on the macroscale at leading order, given by the net polarization of U(0) over \scrV , and
use the solution form

E(0) = f (0)(x)U(0)(\xi \xi \xi , \gamma 0).(18)

The set of solutions U(0)(\bfitxi , \gamma o), in general, are a collection of discrete states called
the Bloch states, with the eigenvalues denoted as the Bloch spectra [27]. These
states for lossless media are, in general, periodic along a lattice vector a, which gives
the additional constraint in the lossless case for f (0)(x) = f (0)(x + \eta R a), where R
is some distance, in terms of \bfitxi between the different cells. These results rely on
symmetry arguments of the media and Maxwell's equations at a fixed frequency, and
any dielectric loss in the components of the media break these symmetry arguments.
Our asymptotic approach here allows us to explore the impact of these thermal losses
on this family of solutions.

At O(\eta  - 1), we have the system

\nabla \xi \cdot (\epsilon jE(1)
j ) =  - \nabla x \cdot (\epsilon j E(0)

j ),(19)

\nabla 2
\xi E

(1)
j + \gamma 2

0\epsilon jE
(1)
j  - \nabla \xi (\nabla \xi \cdot E(1)

j ) = \nabla \xi 

\Bigl( 
\nabla x \cdot E(0)

j

\Bigr) 
+\nabla x

\Bigl( 
\nabla \xi \cdot E(0)

j

\Bigr) 
 - \nabla x \cdot (\nabla \xi E

(0)
j ) - \nabla \xi \cdot (\nabla xE

(0)
j ) - \gamma 2

1 \epsilon jE
(0)
j ,(20)

subject to the jump conditions along \partial \Omega ,

\epsilon j E
(1)
j \cdot n

\bigm| \bigm| \bigm| 2
1
= 0, E

(1)
j \times n

\bigm| \bigm| \bigm| 2
1
= 0 ,(21) \Bigl( 

\nabla \xi \times E
(1)
j

\Bigr) 
\cdot n

\bigm| \bigm| \bigm| 2
1
=  - 

\Bigl( 
\nabla x \times E

(0)
j

\Bigr) 
\cdot n

\bigm| \bigm| \bigm| 2
1
,

n\times 
\Bigl( 
\nabla \xi \times E

(1)
j

\Bigr) \bigm| \bigm| \bigm| 2
1
=  - n\times 

\Bigl( 
\nabla x \times E

(0)
j

\Bigr) \bigm| \bigm| \bigm| 2
1
, \bfitxi \in \partial \Omega ,

along with the appropriate periodic boundary conditions on \partial \scrV , corresponding to
which of the eight states E(0) corresponds.

Before constructing the solution E(1), we require that the right-hand side of (20)
needs to be orthogonal to U(0) based on the inner product

(22) \langle U,W\rangle =
\int 
\scrV 
UHW dV ,

where UH is the Hermitian transpose of U. Compatability requires that no resonant
modes of the linear operator are driven by the inhomogeneity in the system. From
Appendix A, we find \gamma 2

1 = 0 in (20).
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Formally, (19)--(21) can be solved in terms of f and U(0), and from the details
shown in Appendix A we find

E(1) = f (1)U(0) +
\Bigl[ 
V  - U(0)\xi \xi \xi T

\Bigr] 
\nabla xf

(0) ,(23)

whereVj(\xi \xi \xi ) is the jth column vector of tensor V (\xi \xi \xi ) and represents solutions which are
neither periodic or antiperiodic solutions of the leading-order electromagnetic system
in the \xi i-direction. Requiring periodicity of E(1) yields the following conditions on V :
the tensor elements v21, v31, v22, v32, v23, v33 are periodic in \xi 1; tensor elements v11,
v31, v12, v32, v13, v33 are periodic in \xi 2; and tensor elements v11, v21, v12, v22, v13,
v23 are periodic in \xi 3. It also requires the application of jump conditions are

vji| \xi i=1  - vji| \xi i= - 1 = 2U
(0)
j

\bigm| \bigm| \bigm| 
\xi i=1

(24)

for i, j = 1, 2, 3. We also require that \partial \bfE (1)

\partial \xi k
is periodic in \xi k. This implies that

\partial vji
\partial \xi k

is
periodic in \xi k for k \not = i, and jump conditions

\partial vji
\partial \xi i

\bigm| \bigm| \bigm| \bigm| 
\xi i=1

 - \partial vji
\partial \xi i

\bigm| \bigm| \bigm| \bigm| 
\xi i= - 1

= 2
\partial U

(0)
j

\partial \xi i

\bigm| \bigm| \bigm| \bigm| \bigm| 
\xi i=1

.(25)

At O(1), we focus on the closure condition on f (0). The curl-curl relation (8) at
this order is given by

\nabla 2
\xi E

(2) + \gamma 2
0 \epsilon j E

(2)  - \nabla \xi 

\Bigl( 
\nabla \xi \cdot E(2)

\Bigr) 
= \nabla \xi (\nabla x \cdot E(1)) +\nabla x(\nabla \xi \cdot E(1)) +\nabla x(\nabla x \cdot E(0))

 - \nabla x \cdot (\nabla \xi E
(1)) - \nabla \xi \cdot (\nabla xE

(1)) - \nabla 2
xE

(0)

+ i\gamma 2
0 \chi j E

(0).(26)

The compatibility condition defines the differential equation for f (0)(x) as

\nabla x \cdot 
\Bigl[ 
T\nabla xf

(0)
\Bigr] 
+
\bigl[ 
\gamma 2
2 + iD

\bigr] 
f (0) = 0,(27)

where scalar D is given by
(28)

D =
 - 
\int 
\partial \scrV (\epsilon j)

 - 1
\bigl[ 
(\nabla \xi \chi j(\theta 

(0)(x))) \cdot U(0)
\bigr] \bigl( 

U(0) \cdot n
\bigr) 
dS + \gamma 2

0

\int 
\scrV \chi j(\theta 

(0)(x)) | U(0)| 2 dV\int 
\scrV \epsilon j | U(0)| 2 dV

,

and the elements of tensor T are Tij =
tij\int 

\scrV \epsilon j | \bfU (0)| 2 dV
, where

tjk =

\int 
\scrV 

\biggl[ 
\partial vik
\partial \xi j

U
(0)
i +

\partial vij
\partial \xi k

U
(0)
i

\biggr] 
dV,(29)

tkk = 2

\int 
\scrV 

\partial vik
\partial \xi k

U
(0)
i dV  - 2

\int \int \Bigl( 
U

(0)
i

\Bigr) 2
\bigm| \bigm| \bigm| \bigm| 
\xi k=1

d\xi pd\xi q,(30)

where p, q \not = k. Solving (27) for the macroscale dependence f (0)(x) closes the leading-
order problem, and providing a net representation for the electric field E(0).

To close the problem, we need to determine the effective equation for the tem-
perature \theta (0)(x). Following section 2.2 in Mei and Vernescu [45], the leading- and
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y
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Fig. 2. Left: Schematic of 1D example as a periodic array of slabs, with plane waves applied
from z \rightarrow  - \infty and propagating through the medium. Right: Cell problem for microscale solution.

first-order correction follows their derivation of the homogeneous problem. Since our
inhomogeneity enters at O(1), we arrive at the effective equation

(31) \nabla x

\Bigl\{ 
\scrK \nabla x \theta 

(0)
\Bigr\} 
+

1

8
P

\int 
\scrV 
\chi (\theta (0)(x)) | E(0)(\bfitxi ,x)| 2 dV = 0 .

The final set of coupled elliptic equations to solve are (28), (32), for the electric
field amplitude f (0) and the temperature \theta (0) over x, subject to appropriate boundary
conditions on the composite.

4. 1D example. We consider the 1D example of an alternate array of periodic
laminates shown by Figure 2. An electromagnetic wave, polarized in the y-direction,
propagates in the z-direction, with the lossy layer (gray in Figure 2 of unit length).
Here, \zeta = \xi 3, no dependence of the electric field on (\xi 1, \xi 2), with  - (\lambda  - 1) \leq \zeta \leq 1,
so the spatial period is given by \lambda . With these assumptions, the electric field is
guaranteed to be solenoidal. Applying the techniques from section 3 to this problem,
the leading-order solution is given by

E(0)(z, \zeta ) = f (0)(z)
U (0)(\zeta , p)\bigm| \bigm| \bigm| \bigm| U (0)(\zeta , p)

\bigm| \bigm| \bigm| \bigm| ,(32)

where the form of the cell solution is given by

(33) U (0)(\zeta , p) =

\biggl\{ \surd 
\epsilon 2 sin(\gamma 0

\surd 
\epsilon 1\zeta ) + p cos(\gamma 0

\surd 
\epsilon 1\zeta ),  - (\lambda  - 1) \leq \zeta \leq , 0,\surd 

\epsilon 1 sin(\gamma 0
\surd 
\epsilon 2\zeta ) + p cos(\gamma 0

\surd 
\epsilon 2\zeta ), 0 \leq \zeta \leq 1,

with

| | U (0)(\zeta , p)| | 2 =

\int 1

 - (\lambda  - 1)

\Bigl[ 
U (0)(\zeta , p)

\Bigr] 2
d\zeta .

For the periodic (antiperiodic) leading-order cell solution, p reduces to

po =

\surd 
\epsilon 2 sin(\gamma 0

\surd 
\epsilon 1(\lambda  - 1))\pm \surd 

\epsilon 1 sin(\gamma 0
\surd 
\epsilon 2)

cos(\gamma 0
\surd 
\epsilon 1(\lambda  - 1))\mp cos(\gamma 0

\surd 
\epsilon 2)

,(34)
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where the plus sign of \pm denotes the periodic solution while the negative sign denotes
the antiperiodic solution. For this case, the leading-order frequency \gamma o solves the
dispersion relation

2
\surd 
\epsilon 1 \epsilon 2 [cos [\gamma o

\surd 
\epsilon 1 (\lambda  - 1)] cos (\gamma o

\surd 
\epsilon 2)\mp 1]

= (\epsilon 1 + \epsilon 2) sin [\gamma o
\surd 
\epsilon 1 (\lambda  - 1)] sin (\gamma o

\surd 
\epsilon 2) .(35)

Following Craster, Kaplunov, and Pichugin [14], the macroscale dependence can
be determined by applying the Floquet--Bloch theory on the macroscale,

E(0)(z \pm \lambda \eta , \zeta ) = ei(k+i\kappa )\lambda \eta E(0)(z, \zeta ),(36)

which implies that

p =

\surd 
\epsilon 2 sin(\gamma 0

\surd 
\epsilon 1(\lambda  - 1)) + e\lambda \eta \kappa 

\surd 
\epsilon 1 sin(\gamma 0

\surd 
\epsilon 2)

cos(\gamma 0
\surd 
\epsilon 1(\lambda  - 1)) - e\lambda \eta \kappa cos(\gamma 0

\surd 
\epsilon 2)

(37)

if we ignore losses in the lossy medium. When losses are present, we let

f (0)(z) = e\pm ( - \kappa +ik)z(38)

for the periodic case and

f (0)(z) = e\pm ( - \kappa +i(k - \pi 
\lambda \eta ))z(39)

for the antiperiodic case. The equations relating \gamma 2 to k and \kappa are found by substi-
tuting f (0) into the 1D version of (27) yielding

k2  - \kappa 2 =
 - \gamma 2

2

\int 1

 - (\lambda  - 1)
\epsilon j (U

(0)(\zeta , po))
2 d\zeta \Bigl[ 

\lambda (U (0)(1, po))2  - 2A
\int 1

 - (\lambda  - 1)
V\zeta (\zeta , po)U (0)(\zeta , po) d\zeta 

\Bigr] = \gamma 2
2\epsilon eff ,(40)

 - 2k\kappa =
 - \gamma 2

0

\int 1

 - (\lambda  - 1)
\chi j(U

(0)(\zeta , po))
2 d\zeta \Bigl[ 

\lambda (U (0)(1, po))2  - 2A
\int 1

 - (\lambda  - 1)
V\zeta (\zeta , po)U (0)(\zeta , po) d\zeta 

\Bigr] = \gamma 2
0\chi eff(41)

for the periodic case and

\biggl( 
k  - \pi 

\lambda \eta 

\biggr) 2

 - \kappa 2 =
 - \gamma 2

2

\int 1

 - (\lambda  - 1)
\epsilon j(U

(0)(\zeta , po))
2 d\zeta \Bigl[ 

\lambda (U (0)(1, po))2  - 2A
\int 1

 - (\lambda  - 1)
V\zeta (\zeta , po)U (0)(\zeta , po) d\zeta 

\Bigr] = \gamma 2
2\epsilon eff ,

(42)

 - 2

\biggl( 
k  - \pi 

\lambda \eta 

\biggr) 
\kappa =

 - \gamma 2
0

\int 1

 - (\lambda  - 1)
\chi j(U

(0)(\zeta , po)
2 d\zeta \Bigl[ 

\lambda (U (0)(1, po))2  - 2A
\int 1

 - (\lambda  - 1)
V\zeta (\zeta , po)U (0)(\zeta , po) d\zeta 

\Bigr] = \gamma 2
0\chi eff

(43)

for the antiperiodic case.
For clarity, defining the quantities (40), (41) as effective dielectric constant and

effective dielectric loss they closely resemble similar equations for a homogeneous
medium

k2  - \kappa 2 = \epsilon ,(44)

 - 2k\kappa = \chi ,(45)
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Fig. 3. Complex wavenumber as a function of permittivity \epsilon and loss factor \chi . (a) Imaginary
part of the wavenumber, the Block number k from (46), and (b) real part of the wavenumber, or the
attenuation number \kappa from (47).

where
\lambda 2\eta 2\gamma 2

2\epsilon eff \rightarrow \epsilon , \lambda 2\eta 2\gamma 2
o\chi eff \rightarrow \chi , \lambda \eta k \rightarrow k , \lambda \eta \kappa \rightarrow \kappa .

Note that a similar transformation can be done for the effective dielectric loss in the
antiperiodic case (42), (43). The system (44), (45) for the homogeneous medium can
be solved for k and \kappa as

k = \pm 

\sqrt{} \sqrt{} 
\epsilon 2 + \chi 2 + \epsilon 

2
,(46)

\kappa = \pm 

\sqrt{} \sqrt{} 
\epsilon 2 + \chi 2  - \epsilon 

2
.(47)

The plots of (46) and (47) are shown in Figures 3a and 3b and provide insight into
the behavior of the homogenized solution.

The relationship between k, \kappa , \epsilon , and \chi can be classified into four different cases,
as observed in Figure 3. Case 1: all points along \epsilon > 0, \chi = 0 yield nonattenuated
traveling waves k \not = 0, \kappa = 0. Case 2: all points along \epsilon < 0, \chi = 0 yield strongly
attenuated nonpropagating waves k = 0, \kappa \not = 0. Case 3: points in the right half plane,
where \epsilon > 0, \chi \not = 0 yield traveling waves with weak attenuation, k large, \kappa small.
Case 4: points in the left half plane \epsilon < 0, \chi \not = 0 yield traveling waves with strong
attenuation.

The plots in Figure 3 convey some important consequences. There are only two
ways for waves to be attenuated: by loss to the material \chi \not = 0 and reflection of waves
\epsilon < 0. Case 1 refers to the waves produced from a lossless material outside a band
gap. Band gaps which are particular frequencies at which waves cannot propagate
through the medium only exist in case 2 for no dielectric losses [27]. The moment
dielectric losses are introduced k can no longer be zero, allowing for propagation of
waves. Despite this, the negative permittivity still yields large attenuation from re-
flections, called evanescent waves. This is a characteristic feature of the 1D photonic
crystal as they are also known as dielectric mirrors or Bragg mirrors since they are
nonmetallic materials that produce large reflections. No purely homogeneous mate-
rial is known to have a negative permittivity. The concept of negative permittivity
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Fig. 4. Comparison of dispersion curves for lossless and lossy effective materials in the 1D
example with \lambda = 2, \eta = 0.01, \epsilon 1 = 1, \epsilon 2 = 4. Dashed curves correspond to the computed dispersion
curve, while solid curves denote the asymptotic approximation. (a) Bloch number k as a function
of \gamma for a lossless materials; (b) attenuation number \kappa as a function of \gamma for lossless materials; (c)
Bloch number k as a function of \gamma for a lossy material, \chi 2 = 0.1; and (d) attenuation number \kappa for
a lossy medium with \chi 2 = 0.1. (Figure in color online.)

was first hypothesized by Veselago in the 1960s [58]. Since then many such mate-
rials possessing an effective negative permittivity have be made and are known as
metamaterials, negative index materials, or left-handed materials [41].

Returning to the 1D example, the variable groups \lambda \eta k and \lambda \eta \kappa represent the
Brillouin zone and attenuation variables. The eigenfrequency is plotted against these
variables to produce the dispersion curves shown in Figure 4 that relate \gamma to k and
\kappa . The exact dispersion relation between \gamma and the Bloch and attenuation numbers
are shown in dashed curves in this figure. The periodic base state corresponds to
\lambda \eta k = 0, while the antiperiodic base state corresponds to \lambda \eta k = \pi . The solid (blue)
curves are asymptotic approximations to the dispersion curve perturbed away from
the periodic base state, while the solid (red) curves are asymptotic approximations to
the dispersion curve perturbed away from the antiperiodic base state. Figures 4a and
4b plot the Brillouin zone and attenuation curves for a lossless medium. Figure 4a
reproduces the findings of [14]. The dispersion curves for the lossless case show the
existence of band gaps, i.e., frequency intervals, where no wave propagation can occur.
The curves show large attenuation within the band gap regions which correspond to
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large reflections. As mentioned previously it has been shown that band gaps possess
a negative effective permittivity [44, 16, 26]. Corresponding to case 2 of Figure 3a,
we expect k = 0 and \kappa to be large.

Once dielectric loss is nonzero, as shown by Figures 4c and 4d, the band gaps no
longer exist. Waves which are capable of propagating through the medium though still
possess a large attenuation, which corresponds to case 4, the homogeneous medium
classification (e.g., see Figure 3a). Finally, as in Case 3 for the homogeneous medium
shown in Figure 3a, outside a band gap k is large while \kappa is small. These curves
compare well to the dispersion curves produced by the HFH to those of the associated
1D laminate acoustic problem [28]. Band gaps which are present for lossless media
no longer exist once material losses are present. Small attenuation develops outside
the band gap regions when losses are present.

It has been shown that the effective permittivity within the band gap of a photonic
crystal is negative [44, 16, 26], which explains the large attenuation we see in Figure
4b. Once dielectric losses are introduced, there no longer exist any band gaps as
shown by Figure 4c. Despite this, the frequencies that were associated with the band
gaps still produce an effectively negative permittivity yielding large attenuation via
reflections, as shown by Figure 4d. The same figure also shows that off these band gap
frequencies (where there previously was no attenuation) now exhibit small amounts of
attenuation due to the dielectric loss. The nonperturbed solution for correction \gamma 2 = 0
occurs when k2  - \kappa 2 = 0 away from the periodic or antiperiodic cases. k2  - \kappa 2 > 0
correspond to positive permittivity and posses attenuation solely from dielectric loss,
and, conversely, k2  - \kappa 2 < 0 corresponds to a negative permittivity residing within
the band gap frequencies and possesses attenuation from dielectric losses as well as
reflections. Furthermore, even within the band gap frequencies, the Bloch parameters
corresponding to purely periodic (antiperiodic) solutions are no longer attainable in
the presence of a lossy material.

The same properties hold in the homogenized solution. The perturbations of the
dispersion curves away from the two base states are then given by

\gamma \approx \gamma 0 +
(\lambda \eta k)2

2\lambda 2\gamma 0\epsilon eff
 - \lambda 2\gamma 3

0(\eta 
2\chi eff )

2

8\gamma 0\epsilon eff (\lambda \eta k)2
(48)

for the periodic case and

\gamma \approx \gamma 0 +
(\lambda \eta k  - \pi )2

2\lambda 2\gamma 0\epsilon eff
 - \lambda 2\gamma 3

0(\eta 
2\chi eff )

2

8\epsilon eff (\lambda \eta k  - \pi )2
(49)

for the antiperiodic case. The perturbation curves in terms of the attenuation factor
are

\gamma \approx \gamma 0  - 
(\lambda \eta \kappa )2

2\lambda 2\gamma 0\epsilon eff
+

\lambda 2\gamma 3
0(\eta 

2\chi eff )
2

8\epsilon eff (\lambda \eta \kappa )2
.(50)

The parameter group \eta 2\chi eff represents the unscaled or natural effective dielectric
constant associated with a dielectric medium of this geometry. The Bloch number
expansions (48) and (49) and the attenuation expansion (50) reduce to those found
by [14] for the case of a lossless medium when \chi = 0. While the attenuation of
waves was not explicitly discussed in [14], it is trivial to derive the expression. The
perturbation approximations break down when k or \kappa are O(\eta ) making the third term
in (48)--(50) O(1). A similar break down of the approximation occurs when k or \kappa are
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O(\eta  - 1) making the second term in (48)--(50) O(1). The asymptotic approximations
derived are only valid for \gamma 0 that are simple roots of the characteristic equation. The
degenerate case when \gamma 0 has multiplicity two yields no attenuation to leading order
and yields a dispersion approximation as found by [14].

Now that we have an understanding of the dispersion relations for a particular
monochromatic wave with frequency corresponding to wavenumber \gamma , we can deter-
mine the k and \kappa that govern the macroscopic behavior and plot the solutions. To
test this approach, we consider a quantitative example where \epsilon 1 = 1 and \epsilon 2 = 4,
\chi 2 \not = 0. From the dispersion relation (35), the frequency of an incoming wave which
undergoes resonance is \gamma \approx 1.91063323. In terms of applications for beamed en-
ergy harnessing, for a characteristic microscale length of 1mm, this dimensionless
frequency corresponds to approximately 91.2GHz.

With these materials and operating conditions, we consider a composite slab of
N -cells, each cell of length \lambda > 1, where a plane electromagnetic wave applied at
\zeta = 0 and the transmitted wave propagates away from the slab at \zeta = \lambda N . Our
HFH approach above provides an asymptotic solution this this problem provided that
\eta N = O(1). However, this situation is amenable to an exact solution using the
Transfer Matrix Method (TMM) [41].

Given 0 < \zeta < \lambda N , we note for plane wave propagation normal to the slabs,
a polarization oriented parallel to any slab interface results in Gauss's law begin
automatically satisfied, and hence Helmholtz's equations need to be solved in each
material

\partial 2E1,j

\partial \zeta 2
+ \gamma 2\epsilon 1E1,j = 0 , j\lambda < \zeta < j\lambda + 1 ,(51)

\partial 2E2,j

\partial \zeta 2
+ \gamma 2\epsilon 2E2,j = 0 , j\lambda + 1 < \zeta < \lambda (j + 1) ,(52)

where j = 0, 1, . . . , N  - 1 denotes each cell. At each interface within the composite
slab, the field amplitudes are continuous, as are the amplitude gradients with respect
to \zeta ,

E1,j = E2,j ,
\partial E1,j

\partial \zeta 
=

\partial E2,j

\partial \zeta 
, \zeta = j\lambda + 1 ,(53)

E1,j+1 = E2,j ,
\partial E1,j+1

\partial \zeta 
=

\partial E2,j

\partial \zeta 
, \zeta = \lambda (j + 1) ,(54)

where j = 0, 2, . . . , N  - 1. To solve (51)--(54), we can write each solution

Em,j = cm,je
i \gamma 

\surd 
\epsilon m\zeta + dm,je

 - i \gamma 
\surd 
\epsilon m\zeta , m = 1, 2 , j = 0, 1, . . . , N  - 1 .

Applying the boundary conditions (53), (54) gives a matrix relation between (c1,j , d1,j)
and (c1,j+1, d1,j+1), \biggl( 

c1,j+1

d1,j+1

\biggr) 
= Mj

\biggl( 
c1,j
d1,j

\biggr) 
.

Hence the product MoM1, . . . ,MN - 1 is called the transfer matrix, and each Mj

is known in closed form. With the radiation boundary conditions outside the slab,
described below, the exact solution can be determined.

We now compare the solutions generated by the HFH against the exact solutions
determined by the TMM. There are three domains to consider: \zeta < 0, 0 < \zeta < \lambda N,
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and \zeta > \lambda N . We can write the form of each of these solutions directly,

E1(\zeta ) = a1e
i\gamma \zeta + b1e

 - i\gamma \zeta ,  - \infty < \zeta \leq 0,(55)

E2(\zeta ) = a2e
i(k+i\kappa )\eta \zeta U (0)(g(\zeta ), p) + b2e

 - i(k+i\kappa )\eta \zeta U (0)(g(\zeta ), p) , 0 \leq \zeta \leq \lambda N,(56)

E3(\zeta ) = a3e
i\gamma \zeta + b3e

 - i\gamma \zeta , \lambda N \leq \zeta < \infty ,(57)

where the coefficients am, bm are determined using the following conditions:

lim
\zeta \rightarrow  - \infty 

\biggl( 
\partial 

\partial \zeta 
+ i\gamma 

\biggr) 
(E1  - 1) = 0,(58)

E1(0) = E2(0),(59)

\partial E1

\partial \zeta 
(0) =

\partial E2

\partial \zeta 
(0),(60)

E2(\lambda N) = E3(\lambda N),(61)

\partial E2

\partial \zeta 
(\lambda N) =

\partial E3

\partial \zeta 
(\lambda N),(62)

lim
\zeta \rightarrow \infty 

\biggl( 
\partial 

\partial \zeta 
 - i\gamma 

\biggr) 
E3 = 0,(63)

where g(\zeta ) = mod(\zeta , \lambda )  - (\lambda  - 1) since the argument for U (0)(\zeta , p) is restricted to
the cell domain  - (\lambda  - 1) \leq \zeta \leq 1. Note that in our results below, we consider two
different values of p below. Solving the system yields coefficients

a2 =
4 i \gamma 

C Q
,(64)

b2 =  - B

D
e2i(k+i\kappa )\eta \lambda Na2,(65)

where

Q =

\biggl[ 
1 - AB

C D
e2i(k+i\kappa )\eta \lambda N

\biggr] 
,(66)

A = [i\gamma  - i(k + i\kappa )\eta ]U (0)( - (\lambda  - 1), p) + U
(0)
\zeta ( - (\lambda  - 1), p),(67)

B = [i\gamma  - i(k + i\kappa )\eta ]U (0)(1, p) - U
(0)
\zeta (1, p),(68)

C = [i\gamma + i(k + i\kappa )\eta ]U (0)( - (\lambda  - 1), p) + U
(0)
\zeta ( - (\lambda  - 1), p),(69)

D = [i\gamma + i(k + i\kappa )\eta ]U (0)(1, p) - U
(0)
\zeta (1, p).(70)

Figure 5 compares solutions found by the HFH model with p = po against the
exact solutions of the TMM. The plots show solutions with very good agreement
between the two methods even for O(1) dielectric loss where the HFH begins to break
down. Figure 5a has no dielectric loss which reduces our model to that of [14] which
we validated against an exact solution. A plot of the absolute error as a function of
the asymptotic parameter \eta for several different loss factors is shown in Figure 6a. It
shows the error is linear in \eta which is what we expect from a leading-order asymptotic
solution. It also demonstrates that the error increases as the dielectric loss increases
since the lossy solutions are perturbed away from the lossless solutions.

One aspect about the HFH solutions is that the amplitude at \zeta = 0 is the same
for all of the solutions. Examining the equation for the leading-order solution (32),
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Fig. 5. Comparison of HFH solutions to those of the TMM for a one-sided incident wave of
nondimensional wavenumber \gamma = 1.91063323, which for a characteristic microscale of l = 1mm is a
frequency f = 91.2 GHz, impinging a single slab of a heterogeneous laminate of 2N layers; selected
solutions include a two-phase laminate with permittivity \epsilon 1 = 1 and \epsilon 2 = 4, \chi 2 given below. In all
cases, p = po. (a) N = 500, \chi 2 = 0, (b) N = 500, \chi 2 = 0.01, (c) N = 50, \chi 2 = 0.1, and (d)
N = 50, \chi 2 = 1.
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Fig. 6. Logarithmic plot of the absolute error between the HFH and the TMM solutions as a
function of \eta and several different values for the dielectric loss: (a) solutions using p = po, (b)
solutions using p = p\ast .
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Fig. 7. Comparison of HFH solutions to those of the TMM with p = p\ast : (a) N = 50, \chi 2 = 0.1,
(b) N = 50, \chi 2 = 1.

we note that the only dependence on the dielectric loss appears in the macroscale
function f(z) = e( - \kappa +ik)z through the Bloch number k and attenuation number \kappa . It
shows that the amplitude at \zeta = 0 remains constant; however, we know that a large
dielectric loss will produce large reflections at each of the layer interfaces, increasing
the field at \zeta = 0, as seen by the TMM in Figures 5c and 5d. Up to this point, we
have considered solutions by using (32) with (34). In contrast, now that we have
an approximation for k and \kappa , we substitute these approximations directly into (37),
which would then allow the solution to vary its amplitude at \zeta = 0. We define this
value p = p\ast . Solutions attained by applying this modification are shown in Figure 7.
This substitution yields solutions that fail to satisfy the boundary conditions imposed
on the cell problem. Though solutions from this approach fail to satisfy the boundary
conditions exactly, since (34) and (37) are asymptotic as \eta \rightarrow 0, they appear to capture
the full solution asymptotically away from the boundary. This alternate method does
produce solutions away from the boundary with significantly less error as shown by
Figure 6b.

5. Onset of thermal runaway. If one of the component materials in this com-
posite is a ceramic, then the loss factor can vary significantly over temperature. From
the analysis above for periodic media, this suggests that the Bloch parameter and the
attenuation parameter both change over temperature, since these parameters both
depend on the effective loss factor. Further, the amount of energy absorbed in the
effective media depends on this loss factor, and this coupling can result in a phenome-
non called thermal runaway [64, 63, 62], in which a positive feedback loop is initiated:
as temperature increases, the material can better convert the electromagnetic energy
to internal energy, which then increases the temperature. The approach used here as-
sumes that the nondimensional temperature deviation from an ambient temperature
varies only on the macroscale, and that thermal transport from the medium to the
surrounding environment is poor.

We extend the 1D example of section 4 with the inclusion of the energy equation
(31). Of particular interest is to determine the power needed for thermal runaway
to take place as a function of the cell size \lambda , and to determine if these values vary
based on either a periodic or antiperiodic mode. Since for millimeter-wave applica-
tions, the temperature variations in composites scale on lengths much longer than the
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wavelength of the radiation, which is the spatial periodicity of the microscale in this
example. Then the leading-order nondimensional energy equation for this example is
given by (e.g., [35])

(71)
\partial \theta 

\partial t
= Ahar

\partial 2 \theta 

\partial z2
+

Pl

\lambda 
\chi eff (\theta )(t22)| f | 2 ,

where \theta is the nondimensional temperature deviation from the ambient temperature,
and the effective thermal conductivity

Ahar =
\alpha 1\alpha 2\lambda 

\alpha 1 + \alpha 2(\lambda  - 1)
,

where \alpha i is the thermal conductivity of material i, and t22 is the denominator in the
definition (41), (43) of \epsilon \prime \prime eff (\theta ).

Further, we consider a unit width effective material on the macroscale 0 < z < 1
which is subjected to a plane wave of amplitude 1 at z = 0 and transmission conditions
at z = 1. The envelope f(z) of this electric field is governed by the differential equation

(72) f \prime \prime (z) +
\bigl\{ 
\gamma 2
2 \epsilon eff  - i \gamma 2

0 \chi eff (\theta )
\bigr\} 
f(z) = 0 .

Hence, the steady-state transmission problem is given by the system

f \prime \prime (z) +
\bigl\{ 
\gamma 2
2 \epsilon eff  - i \gamma 2

0 \chi eff (\theta )
\bigr\} 
f(z) = 0 ,(73)

Ahar\theta 
\prime \prime (z) +

Pl

\lambda 
\epsilon \prime \prime eff (\theta )(t22)| f | 2 = 0 ,(74)

subject to the boundary conditions

z = 0 : Ahar \theta 
\prime (0) = B \theta (0) ,(75)

f \prime (0) + i \gamma 2
\surd 
\epsilon efff(0) = 2 i \gamma 2

\surd 
\epsilon eff ,(76)

z = 1 : \theta \prime (1) = 0 ,(77)

f \prime (1) - i\gamma 2
\surd 
\epsilon eff f(1) = 0 ,(78)

where B is the Biot number, or the nondimensional heat transfer coefficient from the
effective material to the environment.

To characterize the solutions for P > 0, consider the bifurcation diagrams shown
in Figure 8 for \lambda = 2, \epsilon 1 = 1, \epsilon 2 = 4, B = 0.2, \gamma 2 = 1, and \beta = 3. In these
diagrams, also known as power response curves, we plot the average temperature
\theta as a function of P for each solution at a given P . Solid portions of the curve
correspond so stable solution branches, while dashed curves correspond to unstable
branches. In Figure 8a, we consider the bifurcation diagrams for the periodic solutions,
where the blue curves corresponds to the lower branch at \gamma o \approx 1.91, while the red
curve corresponds to the upper branch at \gamma o \approx 2.3. Note that the form of these
bifurcation diagrams corresponds to an S-shaped bifurcation diagram, which is typical
in microwave heating applications [33, 49]. Thermal runaway is predicted by the first
turning point, where the lowest stable branch containing (P, \theta ) = (0, 0) becomes
unstable at (P, \theta ) = (Pc, Tc). We note that the lower value of \gamma o becomes unstable
at lower values of P compared to the larger values of \gamma o for both the periodic and
antiperiodic cases (as shown in Figure 8). Note that solutions corresponding to the
upper branch for any of these solutions could result in loss factors which exceed our
initial assumption that \epsilon \prime \prime 2 = O(\eta 2). Hence, in what follows, we focus only on the
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Fig. 8. Power response curves for \lambda = 2, \gamma 2 = 1, \epsilon 1 = 1, \epsilon 2 = 4, B = 0.2, and \beta = 3 for (a)
the periodic modes and (b) the antiperiodic modes. (Figure in color online.)
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Fig. 9. (a) Dependence of \gamma o on \lambda for the two periodic modes shown in Figure 4a, k = 0. (b)
Dependence of \gamma o on \lambda for the two antiperiodic modes shown in Figure 4a, \lambda \eta k = \pi .

turning-point bifurcation between the lowest and middle branches of the bifurcation
diagram.

To avoid thermal runaway, we need to understand how (Pc, Tc) depends on differ-
ent volume fractions \lambda of the material. Changing this parameter changes the nature
of the cell solution U(\zeta ), and we need to evaluate the corresponding \gamma o for each of
these cases. For clarity, we keep the remaining parameters fixed as in the cases shown
in Figure 8. Figure 9 shows the behavior of \gamma o for 1.1 < \lambda < 10. Note that for the
periodic case shown in Figure 9a that a degeneracy appears for \lambda = 3. In this case,
\gamma o = \pi /2, and closure on the cell problem occurs at O(\eta ) instead of O(\eta 2). This case
is beyond the scope of our current study.

In Figure 10a, we plot the critical power Pc at which the system becomes unstable
for the two periodic modes. Note that for sufficiently large values of \lambda , the second
periodic mode corresponding to \gamma o \approx 2.3 at \lambda = 2 has a lower critical power than that
for the first periodic mode. For the antiperiodic case, we see in Figure 10b that the
first antiperiodic mode has a lower critical power than that for the second antiperiodic
mode. In both of these cases, it is clear from Figure 11 that the temperature Tc at
thermal runaway takes place over a relatively small range of values.
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Fig. 10. Critical power Pc as a function of \lambda \epsilon 1 = 1, \epsilon 2 = 4, B = 0.2, and \beta = 3 for (a) the
periodic modes, and (b) the antiperiodic modes.
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Fig. 11. Critical temperature Tc as a function of \lambda for \epsilon 1 = 1, \epsilon 2 = 4, B = 0.2, and \beta = 3 for
(a) the periodic modes, and (b) the antiperiodic modes.

6. Conclusions. In this work, we consider the composite of two materials, one
pure dielectric and the second a lossy dielectric. We determine the effective equa-
tions for wave propagation and energy transport when the loss factor in the lossy
dielectric material is small. Since we study applications on beamed energy harnessing
center on mm-wave frequencies, our analysis looks at the case when the wavelength
of the applied field scales on the characteristic scale of the spatial periodicity of the
microscale spatial pattern. We apply high-frequency homogenization for the electro-
magnetic problem and standard homogenization for the energy balance. The result
is a coupled system of equation for the electric field amplitude and the temperature,
where the parameters in these effective equations depend on different moments of
the solutions to the cell problem. A 1D example is explored, where we validate this
asymptotic solution computationally with an exact solution for the isothermal case.
In this example, we also find that the presence of a nonzero loss factor eliminates
band gaps, and better approximations to the wave propagation problem result when
implementing the leading-order Bloch and attenuation parameters in the cell problem
solution. Finally, for the 1D, we characterize how the volume fraction of the lossless
material affects the transition to thermal runaway.

There are several repercussions as a result of this study. There are situations
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where the cell problem solution is not unique. In the 1d example presented in section
4, this corresponds to the periodic solutions when \lambda = 3. The effective equations
reduce to the same ones found by Craster, Kaplunov, and Pichugin [14], but this is
one order of \eta larger than the loss factor. This implies for loss factors which depend
on temperature, a temperature scale at which energy loss is significant scales on \eta in
order for the asymptotic solution to be pertinent. For example, for an exponentially
dependent loss factor discussed in section 4, this steady-state temperature scales on
log 1/\eta for any P > 0. A separate local analysis near these specific spatial periods
is needed to determine the steady-state behavior. Multimode interactions will lead
to thermal runaway at lower power levels, provided that the net energy applied in
the multimode case is larger than that for the monochromatic case. This is clear
since the amplitude equation for the field strength of each mode is coupled only
through the temperature. The presence of both modes in the material results in a
larger effective power term in the energy equation, so thermal runaway takes place
at lower temperatures compared to the monochromatic case. However, the critical
temperature at which thermal runaway takes place depends on the relative amplitude
of each mode.

In addition, one expects that for cases \lambda 1 < \lambda < \lambda 2, where \lambda 1, \lambda 2 are two spatial
periods at which multiple solutions exist for the monochromatic cell problem, there is
a value of \lambda such that the critical temperature at which thermal runaway takes place
is minimized. This information can be useful depending on the choice of promoting
or avoiding thermal runaway within the composite.

Importantly, this work points the way for developing a method to find effective
equations for general periodic media. Provided that the cell problem can be solved
computationally, then integrals of this solution provide the parameters to the effective
media equations, along with the corresponding Bloch and attenuation parameters.
The framework allows for the development of smart materials by manipulating the
cell problem geometry to determine the macroscale response as described in Figure 3.
Future work in this area will center in this area.

Appendix A. \bfitO (\bfiteta  - \bfone ) analysis. Consider the cell problem for E(1) with \bfitxi \in \scrV ,

\nabla \xi \cdot (\epsilon jE(1)
j ) =  - \nabla x \cdot (\epsilon jE(0)

j ) ,(79)

\nabla 2
\xi E

(1)
j + \gamma 2

0\epsilon jE
(1)
j  - \nabla \xi (\nabla \xi \cdot E(1)

j ) =  - 2(\nabla x \cdot \nabla \xi )E
(0)
j  - \gamma 2

1\epsilon jE
(0)
j(80)

+\nabla \xi (\nabla x \cdot E(0)
j ) +\nabla x(\nabla \xi \cdot E(0)

j ) ,

subject to the boundary conditions (21) for \bfitxi \in \partial \Omega and appropriate periodic boundary
conditions on \scrV depending on the periodic/antiperiodic state of E(0). Note that since
E(0) = f (0)(x)U(0)(\bfitxi , \gamma o), then

\nabla x \cdot (\nabla \xi E
(0)) = \nabla \xi \cdot (\nabla xE

(0)) =
\Bigl( 
\nabla \xi U

(0)
\Bigr) T

(\nabla xf
(0)) .

Since the permittivity is constant, (79) becomes

(81) \nabla \xi \cdot E(1) =  - \nabla x \cdot E(0) =  - (\nabla xf
(0)) \cdot U(0) ,

and along with \nabla \xi \cdot E(0) = 0, this then gives us the following nonhomogeneous
Helmholtz problem for E(1):

(82) \nabla 2
\xi E

(1)
j + \gamma 2

0\epsilon jE
(1)
j =  - 2

\Bigl( 
\nabla \xi U

(0)
j

\Bigr) T

(\nabla xf
(0)) - \gamma 2

1\epsilon jf
(0)(x)U

(0)
j .
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We require that the right-hand side of (82) must be orthogonal to U(0) according to
(22), and through this we find that\int 

\scrV 

\Bigl( 
U(0)

\Bigr) H
\biggl\{ \Bigl( 

\nabla \xi U
(0)

\Bigr) T \Bigl( 
\nabla xf

(0)
\Bigr) \biggr\} 

dV =

\int 
\scrV 

1

2

\biggl\{ 
\nabla \xi 

\bigm| \bigm| \bigm| U(0)
\bigm| \bigm| \bigm| 2\biggr\} \cdot 

\Bigl( 
\nabla xf

(0)
\Bigr) 
dV

=
1

2

\biggl\{ \int 
\partial \scrV 

| U(0)| 2 n dS

\biggr\} 
\cdot 
\Bigl( 
\nabla xf

(0)
\Bigr) 
= 0

by periodicity of U(0) on \scrV . Hence for compatability, \gamma 2
1 = 0.

Next, let us consider the two boundary conditions in (21) involving \nabla \xi \times E(1).
First, consider

(\nabla \xi \times E
(1)
j ) \cdot n

\bigm| \bigm| \bigm| 2
1
=  - (\nabla x \times E

(0)
j ) \cdot n

\bigm| \bigm| \bigm| 2
1
, \bfitxi \in \partial \Omega .(83)

Note that \Bigl( 
\nabla x \times E

(0)
j

\Bigr) 
\cdot n

\bigm| \bigm| \bigm| 2
1
=

\Bigl( 
f\nabla x \times U

(0)
j +\nabla xf \times U

(0)
j

\Bigr) 
\cdot n

\bigm| \bigm| \bigm| 2
1

=
\Bigl( 
\nabla xf \times U

(0)
j

\Bigr) 
\cdot n

\bigm| \bigm| \bigm| 2
1

=
\Bigl( 
U

(0)
j \times n

\Bigr) \bigm| \bigm| \bigm| 2
1
\cdot \nabla xf

(0) = 0 ,

since U(0) \times n is continuous across \partial \Omega . Hence
\bigl( 
\nabla \xi \times E

(1)
j

\bigr) 
\cdot n

\bigm| \bigm| \bigm| 2
1
= 0 for \xi \in \partial \Omega .

Next, consider

n\times 
\Bigl( 
\nabla \xi \times E

(1)
j

\Bigr) \bigm| \bigm| \bigm| 2
1
=  - n\times 

\Bigl( 
\nabla \xi \times E

(0)
j

\Bigr) \bigm| \bigm| \bigm| 2
1
.(84)

From the form (18) for E(0) we find that

 - n\times 
\Bigl( 
\nabla \xi \times E

(0)
j

\Bigr) \bigm| \bigm| \bigm| 2
1
=  - n\times (\nabla xf \times U(0))

\bigm| \bigm| \bigm| 2
1

(85)

since U(0) is independent of x.
Therefore, the reduced set of equations at O(\eta  - 1) are

\nabla \xi \cdot E(1)
j =  - \nabla xf \cdot U(0)

j , \bfitxi \in \scrV ,(86)

\nabla 2
\xi E

(1)
j + \gamma 2

0\epsilon jE
(1)
j =  - 2

\Bigl( 
\nabla \xi U

(0)
j

\Bigr) T

\nabla xf
(0) ,(87)

with boundary conditions for \bfitxi \in \partial \Omega ,

n \cdot (\epsilon jE(1)
j )

\bigm| \bigm| \bigm| 2
1
= 0, n\times E

(1)
j

\bigm| \bigm| \bigm| 2
1
= 0,(88)

n \cdot (\nabla \xi \times E
(1)
j )

\bigm| \bigm| \bigm| 2
1
= 0, n\times (\nabla \xi \times E

(1)
j )

\bigm| \bigm| \bigm| 2
1
=  - n\times 

\Bigl( 
\nabla xf \times U

(0)
j

\Bigr) \bigm| \bigm| \bigm| 2
1

(89)

subject to periodicity conditions

E(1)
\bigm| \bigm| \bigm| 
\xi i=1

= E(1)
\bigm| \bigm| \bigm| 
\xi i= - 1

, i = 1, 2, 3,(90)

\partial E(1)

\partial \xi i

\bigm| \bigm| \bigm| \bigm| 
\xi i=1

=
\partial E(1)

\partial \xi i

\bigm| \bigm| \bigm| \bigm| 
\xi i= - 1

, i = 1, 2, 3.(91)
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The general solution to the leading-order problem has the form

E(1) = f (1)U(0) +
\Bigl[ 
V  - U(0)\bfitxi T

\Bigr] 
,(92)

where the column vectors of V given by v1, v2, and v2 are nontriply periodic solutions
of the leading-order cell problem. Next, we show (92) is a solution of the governing
equations. Plugging (92) into (86) shows

\nabla \xi \cdot E(1) = f (1)\nabla \xi \cdot U(0) +\nabla \xi \cdot 
\Bigl[ \Bigl[ 
V  - U(0)\bfitxi T

\Bigr] \Bigl( 
\nabla xf

(0)
\Bigr) \Bigr] 

= 0 +\nabla \xi \cdot V (\nabla xf
(0)) - \nabla \xi \cdot 

\Bigl( 
U(0)\bfitxi T

\Bigr) \Bigl( 
\nabla xf

(0)
\Bigr) 

= 0 - U(0)T (\nabla xf
(0)) =  - \nabla xf

(0) \cdot U(0) .

Therefore, we have shown that (92) solves Gauss' law at the first correction (86).
Next, we do the same for the Helmholtz equation at the first correction. Plugging
(92) into (87) shows

\nabla 2
\xi E

(1)
j + \gamma 2

0\epsilon jE
(1)
j = f (1)\nabla 2

\xi U
(0)
j +\nabla 2

\xi 

\Bigl\{ \Bigl[ 
V  - U(0)\bfitxi T

\Bigr] \Bigl( 
\nabla xf

(0)
\Bigr) \Bigr\} 

+\gamma 2
0\epsilon j

\Bigl\{ 
f (1)U

(0)
j +

\Bigl[ 
V  - U

(0)
j \bfitxi 

\Bigr] \Bigl( 
\nabla xf

(0)
\Bigr) \Bigr\} 

=
\bigl\{ 
\nabla 2

\xi V + \gamma 2
o\epsilon jV

\bigr\} 
(\nabla xf

(0))

 - 
\Bigl\{ 
\nabla 2

\xi 

\Bigl[ 
U

(0)
j \bfitxi T

\Bigr] 
+ \gamma 2

0\epsilon j

\Bigl[ 
U

(0)
j \bfitxi T

\Bigr] \Bigr\} \Bigl( 
\nabla xf

(0)
\Bigr) 

=  - 2
\Bigl( 
\nabla \xi U

(0)
j

\Bigr) T \Bigl( 
\nabla xf

(0)
\Bigr) 

,

which is the right-hand side of the first correction Helmholtz equation.
Next, we show that the inhomogeneous jump condition (89) is also satisfied au-

tomatically by the bulk solution and thus causes no additional issue when it comes
to closing the homogenized solution:

n\times (\nabla \xi \times E
(1)
j )

\bigm| \bigm| \bigm| 2
1
= f (1) n\times (\nabla \xi \times U(0))

\bigm| \bigm| \bigm| 2
1

(93)

+ n\times 
\Bigl( 
\nabla \xi \times 

\Bigl\{ \Bigl[ 
V  - U(0)\xi T

\Bigr] \Bigl( 
\nabla xf

(0)
\Bigr) \Bigr\} \Bigr) \bigm| \bigm| \bigm| 2

1

= 0 + n\times 
\bigl[ 
\nabla \xi \times V

\bigr] \bigm| \bigm| 2
1

\Bigl( 
\nabla xf

(0)
\Bigr) 
 - n\times 

\Bigl( 
\nabla \xi \times 

\Bigl[ 
U(0)\xi T\nabla xf

(0)
\Bigr] \Bigr) \bigm| \bigm| \bigm| 2

1
(94)

= 0 - n\times 
\Bigl\{ \Bigl[ 

\xi T\nabla xf
(0)

\Bigr] \Bigl( 
\nabla \xi \times U(0)

\Bigr) \Bigr\} \bigm| \bigm| \bigm| 2
1

(95)

+ n\times 
\Bigl\{ 
\nabla \xi 

\Bigl[ 
\xi T\nabla xf

(0)
\Bigr] 
\times U(0)

\Bigr\} \bigm| \bigm| \bigm| 2
1

= 0 - n\times 
\Bigl( 
\nabla xf

(0) \times U(0)
\Bigr) \bigm| \bigm| \bigm| 2

1
.(96)

This closes the first correction problem in terms of the leading-order solutionU(0).
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