COMPLEX INUMRBERS

In algebra we encounter the problem of finding the roots of the polynomial
A+ al+b=0. ol

To find the roots, we use the quadratic formula to obtain

—a* Va* — 4b

If a* — 4b > 0, there are two real roots. If ¢? — 4p = 0, we obtain the single root
(of multiplicity 2) A = — 4. To deal with the case a* ~ 4 < 0, we introduce the
_imaginary number*

i=V-1. ‘ ' 3

Then for a* — 4b < 0,
Va? —db = Vb —aN(-1) = Vab — @ VT = Va5 ~ a2
and the two roots of (1) are given by

a  Vidb — a?, ‘ a V4b — a*,
/\lzm”z“f"*_z——-l and )LZE—E‘““—‘“Z—"_I.

* You should not be troubled by the term “imaginary.” It is just a name. The British
mathematician Alfred North Whitehead, in the chapter on imaginary numbers in his fntroduction
to Mathematics, wrote: ‘ :

At this point it may be useful to observe that a certain type of intellect is always worrying itself
and others by discussion as to the applicability of technical terms. Are the incommensurable
numbers properly called numbers? Are the positive and negative numbers really numbers? Are
the imaginary numbers imaginary, and are they numbers?—are types of such futile questions.
Now, it cannot be too clearly understood that, in science, technical terms are names arbitrarily
assigned, like Christian names to children. There can be no question of the names being right
wrong. They may be judicious or injudicious; for they can sometimes be so arranged as to be
easy to remember, or so as to suggest relevant and iportant ideas, But the essential principle
involved was quite clearly enunciated in Wonderland to Alice by Huropty Dumpty, when he told
her, apropos of his use of words, ‘I pay them extra and make them mean what I like’. So we
will not bother as to whether imaginary numbers are Imaginary, or as to whether they are
numbers, but will take the phrase as the arbitrary name of a certain mathematical idea, which
we will now endeavour to make plain. -
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 Remark
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P Finding rocts

Find the roots of the quadratic equation A* + 24 + 5 = 0.

We have a =2, b =5, and a®> — 4b = —16. Thus Va* — 4b = V16 =
V16V-1 = 4i, and the roots are

24 4
2

A= =-=1+2i and A, =—-1-—-2i =

A complex number is a number of the form

z=a + if3, 4

where « and § are real numbers. « is called the real part of z and is
denoted by Re z. B is called the imaginary part of z and is denoted by
Im z. Representation (4) is sometimes called the Cartesian form of the
complex number z.

If 5 = Oin Equation (4), then 7 = «is a real number. In this context we can regard
the set of real numbers as a subset of the set of complex numbers.

P Real and imaginary paris
In Example 1, Re A, = —landIm A, = 2. <«

We can add and multiply complex numbers by using the standard rules of
algebra.

P Adding, subtracting, and multiplying complex numbers
Letz =2+ 3iand w = 5 — 4i. Calculate (a) z + w, (b) 3w — 5z, and (c) zw.

@z+tw=02+3)+(5-4)=Q+5+B-4i=7—i

(b) 3w = 3(5 — 4i) = 15 — 12, 5z = 10 + 15i, and
3w — 5z = (15 — 12i) — (10 + 15{) = (15 - 10) + i{—12 — 15)
=5 - 27i.

(© zw = (2 + 3)(5 = 4) = (2)(5) + 2(—4i) + GD)(5) + Gi)(—41)
=10 — 8 + 15 — 12i* = 10 + 7i + 12 = 22 + 7i. Here we use the
fact that i* = —1. -« :

We can plot a complex number z in the xy-plane by plotting Re z along the
x-axis and Im z along the y-axis. Thus each complex number can be thought of as
a point in the xy-plane. With this representation the xy-plane is called the complex
plane. Some representative points are plotted in Figure AS.1.

If z = a + if, then we define the conjugate of z, denoted 7, by
Z=a— if. ' (5)

Figure A5.2 depicts a representative value of z and 7.
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EXAMPLE 4 P Conjugate of a complex number
Compute the conjugates of (@) 1 + 4, (b) 3 — 44, (¢) =7 + 5, and (d) —

Solution T
(b) 3 —4di=3+4i. () —7+5=-7—-35.

It is not difficult to show (see Problem 35) that
=1 if and only if z is real. (6)

If z = Bi with B real, then z is said to be pure imaginary. We can then show (see
Problem 36) that

A if and only if z is pure imaginary. (7N

Let p.{x) = a, + a,x + ax* + -+ + ag,x" be a polynomial with real
coefficients. Then it can be shown (see Problem 41) that the complex roots of the
equation p,{x) = 0 occur in complex conjugate pairs; that is, if z is a root of
p.(x) = 0, then so is 7. We saw this fact illustrated in Exarmple 1 in the case in which
n=72.

For z = a + if we define the magnitude of z, denoted |z |, by

2| = Va® + B2, )

and we define the argument of z, denoted by arg z, as the angle  between the line
0z and the positive x-axis. From F1gure A5.3 we see that r = | z| is the distance
from z to the origin, and, if —5 < # < F

imz

_ — tan 1 P
0l a=rcosé Rez 0 = arg z = tan a 9
FIGURE A5.3 . By convention, we always choose values of arg z that lie in the interval
—7 < 0= ' ‘ (10)
[m z z

From Figure A5.4 we see that |

z] = |2 (11)
i and
0 -8 Rez arg 7 = —arg z. (12)
We can use | z| and arg z to describe what is often a mwre convenient way to
represent complex numbers, From Figure A5.3 1t is evident that, if z = a + i,
. r =lz|, and 8 = arg z, then

FIGURE AS5.4 =rcos® and B =rsin0. (13)
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EXAMPLE 5

Eolution

We see at the end of this appendix that

e” = cos 6 + isin 6. - (14)
Since cos(—8) = cos § and sin(—6) = —sin @, we also have
e = cos(—0) + i sin(—6) = cos 8 ~ i sin 6. - (14"

Formula (14) is called the Euler formula. Using the Euler formula and Equa-
tions (13), we have

z=a +iff =rcos @+ irsin 6 = r(cos § + isin 6),
or |

e

zZ=re"”, (15)

- Representation (15) is called the polar form of the complex number z.

b Fiﬁding the polar form of complex numbers

Determine the polar forms of the following complex numbers: (@)1, (b) —1, (©) 1,
@1+i6—-1-V3iand ) -2+ 7i

The six points are plotted in Figure A5.5.

(a) From Figure A5.5(a) it is clear that arg 1 = 0. Since Rel = 1, we see that, in
polar form,

1=Te® = 10 = ¢°,
(b) Since arg(—1) = = [Figure A5.5(b)] and |—1| =1, we have °
—1 = l1le™ = ¢

(¢) From Figure A5.5(c) we see that arg i = Z. Since |i| = V02 + 12 =1, it
follows that ‘

i = em/z
y=Ilmz y=lnz y=lmz
r
rs -\ li'\l
x=Rez f x=Rez x=Re:z
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() arg{l + i) = tan”'}) =Z,and |1 +i| = V1T + 2= V2, 50
1+i=V2e™
(e) Here tan () = tan™' V3 = Z. However, arg z is in the third quédrant, )

arg 7z = (2) — 7 = — £,

Also, 3z|—\/12+( =V1+3 =250
V= 2o,

(f) To compute this complex number, we need a calculator. A calculator indicates
that

tan”'(—2) = tan~'(—3.5) = —1.2925.

But tan™' x is defined as a number in the interval (— 3, 7). Since from Fig-
ure A5.5(f) 0 1is in the second quadrant, we see that arg z = tan™"(—3.5) +
7 = 1.8491. Next, we see that

| =2 + 7i| = V(=2)*+ 7" = V53.
Hence

—2 + Ti = V53 N 4

P Converting from polar to Cartesian form
Convert the following complex numbers from polar to Cartesian form:
(a) 26111'/3 (b) de 311'!/2

, IAVE) .
(a) e = cos(:g) + isin(—g) = 2 + (7)1 Thus 26 = 1 4+ /3 i,

(b) ¥/% = cos(?%r) 4 isin(?)—;) =0+ i(~1) = —i. Thus 4¢’* =~4i,

<4
If @ = arg z, then by Equation (12), arg 7 = —f0. Thus, since |Z | = |z|, we
have the following: |
If z = re”, thenz = re ™. {16)
Suppose we write a complex number in its polar form z = re”. Then
2" = (re®)y = y(e® = r"e™ = r™cos nf + i sin nd). (a7

Formula (17) is useful for a variety of computations. In particular, when r = |z| =
1, we obtain the ‘

cos n# + { sin no.

*Abraham De Moivre (1667-1754) was a French mathematician well known for his work in
probability theory, infinite series, and trigonometry. He was so highly regarded that Newten often
told those who came to him with questions on mathematics, “Go to M. De Moivre; he knows these
things better than I do.”
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EXAMPLE 7 P Using De Moivre’s formula
Compute (1 + 7)°.

Solution In Example 5(d) we showed that 1 + [ = V2 e™* Then

(1 + i) = (V2 ™y = (V2) e 4 = 4\/2 (cos 57:' + i sin —S—:L—T)
= 4V?2 (w% - —~1——i> = —4 — 4i.

This can be checked by direct calculation. If the direct calculation seems no more
difficult, then try to compute (1 + i)*° directly. Proceeding as above, we obtain

(1 + 2 = (V2)Pe®* = 2(cos 5 + i sin 57)
=210(—1 + 0) = —1024. <

Proot of Evler’s formula

We now show that

e? =cosf +i+sind (19)
by using power series. We have '
. x2 x?:
€—1+x+5—!‘+§—!+...,* _ (20)
. x? N x° . ,
smx—x—a a-..., (21
x* . x*
cosx=1—2-5+am.... (22)
Then
. . @F Gy G Gy
iz - .
e =1+ (i0) + 2 + 31 + T + 5 +. . (23)
Now i? = —1, i* = —i, i* =1, i = i, and so on. Thus (23) can be written

. PR LR ¢ - AR (/&
i - 0 — —
e’ =1+ if X 3!+4!+5!

= cos # + isin 6.

This completes the proof. ¢



