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Basic idea behind the techniques for 1st order ODEs: 

 divide the interval of interest into discrete steps (of fixed length h) 

and find approximations to the function y at all the points x1, … xn: 

Motivation for Numerical Methods for ODEs

Introductory Notes

4. ODE - IVP CLASS 20

o Engineering practice, science, real life frequently bring to consideration 

ODEs which are complex enough and cannot be solved with the use 

of analytical techniques.

o Or, they could be solved, but analytical solutions are too complicated and 

require special treatment. 

Key Concept

x1 x2 ...
--|--o--o--o--o--o--|->
x0 xn
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y

x

y = 3ex – x – 1

Exact Solution & First Two Steps of Euler’s Method

Euler’s Method (1)

4. ODE - IVP CLASS 20

1st Step 2nd Step

IVP: y′ = x + y, x0 = 0, y0 = 2; 0 < x < 1  
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Euler’s Method (2)

4. ODE - IVP CLASS 20

y

x

Exact Solution & Euler’ Solution

y′ = –0.5x4 + 4x3 – 10x2 + 8.5x + 1

y′ = –2x3 + 12x2 – 20x + 8.5; x0 = 0, y0 = 1; 0 < x < 4  IVP: 
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CLASS 204. ODE - IVP

Euler’s Method – MATLAB Script 

B’13
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4. ODE - IVP

Applications of Euler (1)

IVP: y′ = x + y, x0 = 0, y0 = 2; 0 < x < 1  

y = 3ex – x – 1
n = 20

n = 10

n = 5

n = 2

y

x

CLASS 20
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4. ODE - IVP

Applications of Euler (2)

IVP: y′ = –2xy, x0 = 0, y0 = 2; 0 < x < 1  

y = 2exp(-x2)

n = 2

n = 5

n = 10

n = 20

y

x

CLASS 20



8

2
nd

Order Taylor Method

IVP: y′ = x + y, x0 = 0, y0 = 2; 0 < x < 1  

4. ODE - IVP

x

y = 3ex – x – 1

n = 2

n = 5

n = 10

n = 20
y

x

CLASS 20
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4. ODE - IVP

2
nd

Order Taylor Method – MATLAB Script 

CLASS 20

B’13
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Application of Taylor_2
4. ODE - IVP

IVP: y′ = –2xy, x0 = 0, y0 = 2; 0 < x < 1  

n = 20

n = 15

n = 5

n = 2

y

x

y = 2exp(-x2)

CLASS 21
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Errors of the Taylor Methods

4. ODE - IVP CLASS 21

 The 1st Order Taylor Method: O(h2) 

 The 2nd Order Taylor Method: O(h3) 

At each step, yi+1 is computed from the first terms of the Taylor series, and 

once we have them truncated, we get the truncation error – this is the 

Local T.E.

Accumulation effects of all local truncation errors: the calculated value 

of y(x+h) is used at the next step of approximation with the Taylor series as 

known, but (if it is not the first one) it is not exact – it is an approximated 

value – because of the previous truncation error; this is the Global T.E. 

Truncation Errors

Two Types of Errors

 Therefore, Taylor Methods of Higher Orders (3, 4, 5, …) with the 

explicitly known truncation errors cannot guarantee much higher 

accuracy – because of the Global T.E. 
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4. ODE - IVP CLASS 21

1
st

Order Runge-Kutta Method – MATLAB Script 

B’13

the 1st order Runge-Kutta method
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4. ODE - IVP CLASS 21

4
th

Order Runge-Kutta Method – MATLAB Script

B’13
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IVP: y′ = x + y, x0 = 0, y0 = 2; 0 < x < 1  

Application of RK2 and RK4 (1)

4. ODE - IVP CLASS 22
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Application of RK2 and RK4 (2)

4. ODE - IVP CLASS 22

IVP: (1+x2)y′ + 2xy = cosx, 0 < x < 2, y(0) = 0    

y

x

y

x

RK2 RK4

RK4
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Numerical Methods for IVPs – Some Observations

4. ODE - IVP CLASS 22

 Different versions of Runge-Kutta Methods are derived (conditioned by 

different circumstances or dictated by different attractive criteria ) 

differently and may work particularly efficiently with particular IVPs

 Many Runge-Kutta Methods are implemented in computer codes (can be 

found in many computer algebra systems – MATLAB, Mathematica, etc.) 

 The R.K. methods of the 5th and 6th order are called Lawson’s and 

Butcher’s Methods.

 Computationally, these methods are very fast – no big matrices, no 

multiple iterations, just a few algebraic formulas. (Very small steps and 

thousands of repetitions – not demanding for modern computer 

resources.) 

Runge-Kutta Methods

Other Methods

Taylor and Runge-Kutta methods use only one previous approximate 

solution value; in contract to that, the Multistep methods use more than 

one previous approximate solution taken from several previous points.



17

Stability of Numerical Solution (1)

4. ODE - IVP CLASS 22

For some differential equations, any errors that occur in computation 

may be magnified – and this happens regardless “qualities” of the 

numerical method. Such problems are called ill-conditioned. 

Phenomenon of Numerical Instability

 A numerical method is called stable if errors uncured at one stage of the 

process do not tend to be magnified at later stages. 

…involves the investigation of the error for a simple problem, such as 

y’ = ly

If the method is unstable for the model equation, it is likely to behave badly 

for other problems as well.  

Analysis of Instability

• If l > 0, the true solution grows exponentially, and it is not reasonable 

to expect the error to remain small as x increases – but one can hope 

that the error remains small relative to the solution. 

• If l < 0, the exact solution is a decaying exponential, and one could 

expect the error to also go to 0 as x → oo.  
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IVP: y′ = –4y, x0 = 0, y0 = 1; 0 < x < 4  

Exact (and Accurate Numerical) Solution

y

x

Stability of Numerical Solution (2)

4. ODE - IVP CLASS 22

y

x

y

x

Weakly Stable Numerical Solutions

h = 0.1 h = 0.02

y = exp(-4x)


