<u>MA3457/CS4033</u>: *Numerical Methods for Calculus and Differential Equations*

Course Materials

PART IV

B'14 2014-2015

Motivation for Numerical Methods for ODEs

- <u>Engineering practice</u>, <u>science</u>, <u>real life</u> frequently bring to consideration
 <u>ODEs which are complex enough and cannot be solved with the use</u>
 <u>of analytical techniques</u>.
- Or, they could be solved, but analytical solutions are <u>too complicated and</u> <u>require special treatment</u>.

Key Concept

Basic idea behind the techniques for 1st order ODEs:

divide the interval of interest into discrete steps (of fixed length h) and find approximations to the function y at all the points x₁, ... x_n:

Euler's Method (1)

Exact Solution & First Two Steps of Euler's Method

IVP:
$$y' = x + y, x_0 = 0, y_0 = 2; 0 \le x \le 1$$

Euler's Method (2)

Exact Solution & Euler' Solution

IVP:
$$y' = -2x^3 + 12x^2 - 20x + 8.5$$
; $x_0 = 0, y_0 = 1$; $0 \le x \le 4$

Euler's Method – MATLAB Script

LIBRARY OF MATLAB PROCEDURES

Euler

Solves differential equation y' = f(x, y) with initial condition $y(a) = y_0$ on the interval [a, b]

```
function [x, y] = \text{Euler}(f, \text{tspan}, y0, n)
ŝ
% The procedure solves d.e. y' = f(x, y) with initial
% condition y(a) = y0 using n steps of Euler's method.
÷
% Step size: h = (b-a)/n
                                                       [x, y] = Euler('fivp', int, ya, n)
<del>ç</del>
a = tspan(1); b = tspan(2); h = (b-a)/n;
x = (a+h : h : b);
y(1) = y0 + h*feval(f, a, y0);
                                                       function f i = fivp(x, y)
욹
                                                       f i = x + y;
for i = 2 : n
    y(i) = y(i-1) + h^*feval(f, x(i-1), y(i-1));
end
웅
x = [a x];
y = [y0 y];
```

Applications of Euler (1)

6

Applications of Euler (2)

IVP:
$$y' = -2xy, x_0 = 0, y_0 = 2; 0 \le x \le 1$$

2nd Order Taylor Method

IVP:
$$y' = x + y, x_0 = 0, y_0 = 2; 0 \le x \le 1$$

2nd Order Taylor Method – MATLAB Script

LIBRARY OF MATLAB PROCEDURES

Taylor_2

Solves differential equation y' = f(x, y) with initial condition $y(a) = y_0$ on the interval [a, b] by the 2nd order Taylor method

4. ODE - IVP

Application of Taylor_2

IVP:
$$y' = -2xy, x_0 = 0, y_0 = 2; 0 \le x \le 1$$

	n = 5	n = 10	n = 20			
х	Appr. Sol.	x Appr. Sol.	x Appr. Sol.			
0.2	1.6000	0.1 1.8000	0.05 1.9000			
0.4	1.4080	0.2 1.7460	0.1 1.8857			
0.6	1.1264	0.3 1.6587	0.15 1.8622			
1.0	0.5190	1.0 0.6211	1.0 0.6766			

Errors of the Taylor Methods

Truncation Errors

- ✓ The 1st Order Taylor Method: O(h²)
- ✓ The 2nd Order Taylor Method: O(h³)

Two Types of Errors

At each step, y_{i+1} is computed from the first terms of the Taylor series, and **once we have them truncated**, we get <u>the truncation error</u> – this is **the Local T.E**.

<u>Accumulation effects of all local truncation errors</u>: the calculated value of y(x+h) <u>is used at the next step of approximation with the Taylor series as</u> <u>known</u>, but (if it is not the first one) **it is not exact – it is an approximated value** – because of the previous truncation error; this is **the Global T.E.**

Therefore, <u>Taylor Methods of Higher Orders</u> (3, 4, 5, ...) with the explicitly <u>known truncation errors</u> cannot guarantee much higher accuracy – because of the Global T.E.

^{4. ODE - IVP} 1st Order Runge-Kutta Method – MATLAB Script

LIBRARY OF MATLAB PROCEDURES

RK.

Solves differential equation y' = f(x, y) with initial condition $y(a) = y_0$ on the interval [a, b] by the 1st order Runge-Kutta method

```
function [x, y] = RK (f, tspan, y0, n)
<del>s</del>
% The procedure solves y' = f(x, y) with initial condition y(a) = y0
% using n steps of the 1th order Runge-Kutta (or the Midpoint) method
ŝ
a = tspan(1); b = tspan(2); h = (b-a)/n;
x = (a+h : h : b);
k1 = h \pm feval(f, a, y0);
k^{2} = h^{t}feval(f, a + h/2, y^{0} + k^{1}/2);
y(1) = y0 + k2;
8
for i = 1 : n-1
    k1 = h + feval(f, x(i), y(i));
    k^{2} = h^{t}feval(f, x(i) + h/2, y(i) + k1/2);
    y(i+1) = y(i) + k2;
end
ę,
x = [a x];
y = [y_0 y_1];
```

4. ODE - IVP 4th Order Runge-Kutta Method – MATLAB Script

LIBRARY OF MATLAB PROCEDURES

RK4

Solves differential equation y' = f(x, y) with initial condition $y(a) = y_0$ on the interval [a, b] by the 4st order Runge-Kutta method

```
function [x, y] = RK4(f, tspan, y0, n)
e
% The procedure solves y' = f(x, y) with initial condition y(a) = y0
% using n steps of the classic 4th order Runge-Kutta method
융
a = tspan(1); b = tspan(2); h = (b-a)/n;
x = (a+h : h : b);
k1 = h \star feval(f, a, y0);
k^{2} = h^{feval}(f, a + h/2, y^{0} + k^{1/2});
k3 = h + feval(f, a + h/2, y0 + k2/2);
k4 = h*feval(f, a + h, y0 + k3);
y(1) = y0 + k1/6 + k2/3 + k3/3 + k4/6;
<u>e</u>
for i = 1 : n-1
    k1 = h + feval(f, x(i), y(i));
    k^{2} = h^{+}feval(f, x(i) + h/2, y(i) + k^{1}/2);
    k3 = h + feval(f, x(i) + h/2, y(i) + k2/2);
    k4 = h*feval(f, x(i) + h, y(i) + k3);
    y(i+1) = y(i) + k1/6 + k2/3 + k3/3 + k4/6;
end
8
x = [a x];
v = [v_0 v_1];
```

Application of RK2 and RK4 (1)

IVP:
$$y' = x + y, x_0 = 0, y_0 = 2; 0 \le x \le 1$$

х	Exact solution	1 st Order RK.	4 th Order RK.		
0.2	2.4642	2.4600 (0.17%)	2.4642 (0.0003%)		
0.4	3.0755	3.0652 (0.33%)	3.0755 (0.0007%)		
0.6	3.8664	3.8475 (0.49%)	3.8663 (0.0010%)		
0.8	4.8766	4.8460 (0.63%)	4.8766 (0.0012%)		
1.0	6.1548	6.1081 (0.76%)	6.1548 (0.0015%)		

Application of RK2 and RK4 (2)

VP:
$$(1+x^2)y' + 2xy = \cos x, \ 0 \le x \le 2, \ y(0) = 0$$

RK4

x:	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2.0	
	Γ	0.3833		0.4201		0.3065		0.1816	(n = 4)
y:	0.2328	0.3835	0.4362	0.4207	0.3703	0.3069	0.2422	0.1818	(n = 8)
	0.2329	0.3835	0.4362	0.4207	0.3703	0.3069	0.2422	0.1819	(n = 16)

Numerical Methods for IVPs – Some Observations

Runge-Kutta Methods

- Different versions of Runge-Kutta Methods are derived (conditioned by <u>different circumstances or dictated by different attractive criteria</u>) differently and may work <u>particularly efficiently with particular IVPs</u>
- Many Runge-Kutta Methods are implemented in computer codes (can be found in many computer algebra systems – MATLAB, Mathematica, etc.)
 - The R.K. methods of <u>the 5th and 6th order</u> are called <u>Lawson's and</u> <u>Butcher's Methods</u>.
- Computationally, these methods are very fast <u>no big matrices, no</u> <u>multiple iterations</u>, just a few algebraic formulas. (Very small steps and thousands of repetitions – <u>not demanding for modern computer</u> <u>resources</u>.)

Other Methods

Taylor and Runge-Kutta methods <u>use only one previous approximate</u> <u>solution value</u>; in contract to that, *the Multistep methods* use *more than one previous approximate solution* taken from several previous points.

Stability of Numerical Solution (1)

Phenomenon of Numerical Instability

For some differential equations, <u>any errors that occur in computation</u> <u>may be magnified</u> – and this happens regardless "qualities" of the numerical method. Such problems are called <u>ill-conditioned</u>.

A numerical method is called stable if errors uncured at one stage of the process do not tend to be magnified at later stages.

Analysis of Instability

...involves the investigation of the error for a simple problem, such as

 $y' = \lambda y$

If the method is *unstable* for the model equation, it is likely to behave badly for other problems as well.

- If λ > 0, the true solution grows exponentially, and it is not reasonable to expect the error to remain small as x increases – but one can hope that the error remains small relative to the solution.
- If λ < 0, the exact solution is a decaying exponential, and one could expect the error to also go to 0 as x → oo.

Stability of Numerical Solution (2)

IVP:
$$y' = -4y, x_0 = 0, y_0 = 1; 0 \le x \le 4$$

Exact (and Accurate Numerical) Solution

Weakly Stable Numerical Solutions

