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Basic idea behind the techniques for 1st order ODEs: 

 divide the interval of interest into discrete steps (of fixed length h) 

and find approximations to the function y at all the points x1, … xn: 

Motivation for Numerical Methods for ODEs

Introductory Notes

4. ODE - IVP CLASS 20

o Engineering practice, science, real life frequently bring to consideration 

ODEs which are complex enough and cannot be solved with the use 

of analytical techniques.

o Or, they could be solved, but analytical solutions are too complicated and 

require special treatment. 

Key Concept

x1 x2 ...
--|--o--o--o--o--o--|->
x0 xn
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y

x

y = 3ex – x – 1

Exact Solution & First Two Steps of Euler’s Method

Euler’s Method (1)

4. ODE - IVP CLASS 20

1st Step 2nd Step

IVP: y′ = x + y, x0 = 0, y0 = 2; 0 < x < 1  
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Euler’s Method (2)

4. ODE - IVP CLASS 20

y

x

Exact Solution & Euler’ Solution

y′ = –0.5x4 + 4x3 – 10x2 + 8.5x + 1

y′ = –2x3 + 12x2 – 20x + 8.5; x0 = 0, y0 = 1; 0 < x < 4  IVP: 
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CLASS 204. ODE - IVP

Euler’s Method – MATLAB Script 

B’13
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4. ODE - IVP

Applications of Euler (1)

IVP: y′ = x + y, x0 = 0, y0 = 2; 0 < x < 1  

y = 3ex – x – 1
n = 20

n = 10

n = 5

n = 2

y

x

CLASS 20
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4. ODE - IVP

Applications of Euler (2)

IVP: y′ = –2xy, x0 = 0, y0 = 2; 0 < x < 1  

y = 2exp(-x2)

n = 2

n = 5

n = 10

n = 20

y

x

CLASS 20
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2
nd

Order Taylor Method

IVP: y′ = x + y, x0 = 0, y0 = 2; 0 < x < 1  

4. ODE - IVP

x

y = 3ex – x – 1

n = 2

n = 5

n = 10

n = 20
y

x

CLASS 20
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4. ODE - IVP

2
nd

Order Taylor Method – MATLAB Script 

CLASS 20

B’13
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Application of Taylor_2
4. ODE - IVP

IVP: y′ = –2xy, x0 = 0, y0 = 2; 0 < x < 1  

n = 20

n = 15

n = 5

n = 2

y

x

y = 2exp(-x2)

CLASS 21
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Errors of the Taylor Methods

4. ODE - IVP CLASS 21

 The 1st Order Taylor Method: O(h2) 

 The 2nd Order Taylor Method: O(h3) 

At each step, yi+1 is computed from the first terms of the Taylor series, and 

once we have them truncated, we get the truncation error – this is the 

Local T.E.

Accumulation effects of all local truncation errors: the calculated value 

of y(x+h) is used at the next step of approximation with the Taylor series as 

known, but (if it is not the first one) it is not exact – it is an approximated 

value – because of the previous truncation error; this is the Global T.E. 

Truncation Errors

Two Types of Errors

 Therefore, Taylor Methods of Higher Orders (3, 4, 5, …) with the 

explicitly known truncation errors cannot guarantee much higher 

accuracy – because of the Global T.E. 
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4. ODE - IVP CLASS 21

1
st

Order Runge-Kutta Method – MATLAB Script 

B’13

the 1st order Runge-Kutta method
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4. ODE - IVP CLASS 21

4
th

Order Runge-Kutta Method – MATLAB Script

B’13
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IVP: y′ = x + y, x0 = 0, y0 = 2; 0 < x < 1  

Application of RK2 and RK4 (1)

4. ODE - IVP CLASS 22
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Application of RK2 and RK4 (2)

4. ODE - IVP CLASS 22

IVP: (1+x2)y′ + 2xy = cosx, 0 < x < 2, y(0) = 0    

y

x

y

x

RK2 RK4

RK4
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Numerical Methods for IVPs – Some Observations

4. ODE - IVP CLASS 22

 Different versions of Runge-Kutta Methods are derived (conditioned by 

different circumstances or dictated by different attractive criteria ) 

differently and may work particularly efficiently with particular IVPs

 Many Runge-Kutta Methods are implemented in computer codes (can be 

found in many computer algebra systems – MATLAB, Mathematica, etc.) 

 The R.K. methods of the 5th and 6th order are called Lawson’s and 

Butcher’s Methods.

 Computationally, these methods are very fast – no big matrices, no 

multiple iterations, just a few algebraic formulas. (Very small steps and 

thousands of repetitions – not demanding for modern computer 

resources.) 

Runge-Kutta Methods

Other Methods

Taylor and Runge-Kutta methods use only one previous approximate 

solution value; in contract to that, the Multistep methods use more than 

one previous approximate solution taken from several previous points.
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Stability of Numerical Solution (1)

4. ODE - IVP CLASS 22

For some differential equations, any errors that occur in computation 

may be magnified – and this happens regardless “qualities” of the 

numerical method. Such problems are called ill-conditioned. 

Phenomenon of Numerical Instability

 A numerical method is called stable if errors uncured at one stage of the 

process do not tend to be magnified at later stages. 

…involves the investigation of the error for a simple problem, such as 

y’ = ly

If the method is unstable for the model equation, it is likely to behave badly 

for other problems as well.  

Analysis of Instability

• If l > 0, the true solution grows exponentially, and it is not reasonable 

to expect the error to remain small as x increases – but one can hope 

that the error remains small relative to the solution. 

• If l < 0, the exact solution is a decaying exponential, and one could 

expect the error to also go to 0 as x → oo.  
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IVP: y′ = –4y, x0 = 0, y0 = 1; 0 < x < 4  

Exact (and Accurate Numerical) Solution

y

x

Stability of Numerical Solution (2)

4. ODE - IVP CLASS 22

y

x

y

x

Weakly Stable Numerical Solutions

h = 0.1 h = 0.02

y = exp(-4x)


