MA3457/CS4033:
Numerical Methods
for Calculus and
Differential Equations

Course Materials

PART IV

B’14
2014-2015



4. ODE - IVP

CLASS 20

Introductory Notes

Motivation for Numerical Methods for ODEs

o Engineering practice, science, real life frequently bring to consideration
ODEs which are complex enough and cannot be solved with the use
of analytical techniques.

o Or, they could be solved, but analytical solutions are too complicated and
require special treatment.

Key Concept

Basic idea behind the techniques for 15t order ODES:

» divide the interval of interest into discrete steps (of fixed length h)
and find approximations to the function y at all the points Xy, ... X;:
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4. ODE - IVP

Euler’s Method (1)

Exact Solution & First Two Steps of Euler’s Method
IVP:  Y'=X+Y,%=0,y,=2,0<x<1
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4. ODE - IVP CLASS 20
Euler’s Method (2)
Exact Solution & Euler’ Solution
IVP: y'=-2x3+12x>-20x +8.5;X,=0,y,=1;0<x<4
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vdo

y'=-0.5x*+4x3 - 10x2 + 8.5x + 1

0 1 2 3 4
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4. ODE - IVP CLASS 20

Euler’s Method - MATLAB Script

LIBRARY OF MATLAB PROCEDURES

Euler

Solves differential equation y'= f(x,y) with initial condition y(a) =1y on the interval [a, b]

function [x, y] = Euler(f, tspan, v0, n)
%
% The procedure solves d.e. y' = f(%x,y) with initial
% condition y(a) = y0 using n steps of Euler's method.
%
& Step size: h = (b-a)/n
% [, v] = Euler('fivp', int, va, n)
a = tspan(l); b = tspan(2); h = (b-a)/n:
= (ath : h : b):
y(1) = y0 + h*feval(f, a, yo0);: | function £ i = fivp(x, y)
2 |f_i = x + yi?
for i =2 :tn
y(1) = y(1-1) + h*fewval(f, x(i-1), y(1i-1)):
end
%
z = [a x]:
y = [y0 yls




4. ODE - IVP

Applications of Euler (1)

IVP: Y =Xx+Y,%=0y,=2,0<x<1
n==>=5 n=10 n= 20
X Appr. Sol. X Appr. Sol. X Appr., Sol. |
0.2 2.4000 0.1 2.2000 0.05 2.1000 |
0.4 2.%200 0.2 Z2.4300 0.1 2.2075 |
0.6 3.5840 0.3 Z2.8%30 ~ 0.15 Z.3225 b
0.8 4.4208 0.4 2.9923 S0.2  2.4465°7 |
1.0 5.4650 _ b7
~1.0 5.7812 0.4 3.0324-" |
. i
S1.0 0 5.95997 |

Fxact Sol.
0.1 2.2155
’70.2 2.4642
0.3 Z2.7456
‘/70.4 3.0755
1.0 H.1548
n=20
n=10
n=>5
n=2

CLASS 20



4. ODE - IVP CLASS 20

Applications of Euler (2)

IVP: "= -2XY, % =0,¥,=2;0<x<1
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4. ODE - IVP

2" Order Taylor Method

0<x<1

y' =

IVP:

X+VY,%=0,Y,=2;

o o
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4. ODE - IVP CLASS 20

2" Order Taylor Method - MATLAB Script

LIBRARY OF MATLABE PROCEDURES
Taylor 2

Solves differential equation v'= f(x.y) withinitial condition y(a) = vy on the interval [a, b] by
the 2nd order Taylor method

[x, y] = Taylor 2('fivp', 'fdir', int, ya, n)

function £ i = fivp(x, V)
fi==x+y:

function £ d = fdir(x, y)
fd=1+x+ y:




4. ODE - IVP

Application of Taylor 2

IVP: Y =-2Xy,%=0,y,=2;0<x<1

n=>5 n =10 = 20
)4 Lppr. Sol. X Lppr. Sol. e Lppr.
0.2 1.6000 0.1 1.8000 0.05 1.9000
0.4 1.4080 0.2 1.7460 0.1 1.8857
0.6 1.1264 0.3 1.6587 0.15 1.8622
1.0 0.51%0 1.0 0.6211 1.0 0.6766
20 T T T
16 el TN
= y= 2exp( x2)
12 ---------------------------------
> i
08 -----------------------------
: n=20
§ n=15
; n=>5
s S S e n=2
0 ] I ] |
0 02 04 06 0.8
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4. ODE - IVP

CLASS 21

Errors of the Taylor Methods

Truncation Errors

v' The 15t Order Taylor Method: O(h?)
v The 2" Order Taylor Method: O(h?)

Two Types of Errors

At each step, y.,, is computed from the first terms of the Taylor series, and
once we have them truncated, we get the truncation error — this is the
Local T.E.

Accumulation effects of all local truncation errors: the calculated value
of y(x+h) is used at the next step of approximation with the Taylor series as
known, but (if it is not the first one) it is not exact — it is an approximated
value — because of the previous truncation error; this is the Global T.E.

O Therefore, Taylor Methods of Higher Orders (3, 4, 5, ...) with the
explicitly known truncation errors cannot guarantee much higher
accuracy — because of the Global T.E.




4. ODE - IVP

1st Order Runge-Kutta Method - MATLAB Script

LIBRARY OF MATLAB PROCEDURES

Solves differential equation y'= f(x.y) withinitial conditiony{a) =1y on the interval [a. b] by
the 1%t order Runge-Kutta method

function [x, y] = RK (f, tspan, vy0, n)

The procedure solwves y' = £(x,v) with initial condition y(a) = y0
using n steps of the 1lth order Runge-Kutta (or the Midpoint) method

U oo o o o

= tspan(l); b = tspan(2); h = (b-a)/n;
X = (ath : h : b);

k1l = h*feval(f, a, y0);

k2 = h*feval(f, a + h/2, v0 + k1/2);
y(1l) = y0 + kZ;

%

for i =1 : n-1
k1l = h*feval(f, x(i), v(i));
k2 = h*feval(f, (i) + h/2, y(i) + k1/2);
yvi{i+l) = y(i) + k2Z;

end

%

x = [a x];

y = [y0O vy I;
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4. ODE - IVP

CLASS 21

4t" Order Runge-Kutta Method - MATLAB Script

LIBRARY OF MATLAB PROCEDURES

Solves differential equation y'= f(x,y) withinitial condition y(a) = yp on the interval [a, b] by
the 4t order Runge-Kutta method

function [x, v] = REK4(f, tspan, v0, n)

%

% The procedurs scolves y' = f(x,vy) with initial condition y(a) = yo0
% using n steps of the classic 4th order Runge-Kutta method

%

a = tspan(l); b = tspan(2); h = (b-a)/n;

x = (ath : h : b);

k1l = h*feval(f, a, v0);

k2 = h*feval(f, a + h/2, v0 + k1/2);
k3 = h*feval(f, a + h/2, v0 + k2/2);
k4 = h*feval(f, a + h, y0 + k3);

vi(l) = v0 + k1/6 + k2/3 + k3/3 + k4/¢&;

%

for i =1 : n-1
kl = h*feval(f, =x(i), v(i));
k2 = h*feval(f, x(i) + h/2, v(i) + k1/2);
k3 = h*feval(f, x(1) + h/2, v(1) + k2/2);
kd = h*feval(f, (i) + h, v(i) + k3);
yv(i+l) = v(i) + k1/é + k2/3 + k3/3 + kd4/¢;

end

%

®x = [a x];

y = [¥0O vy 1;
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4. ODE - IVP

Application of RK2 and RK4 (1)

IVP:

y':X+y;Xo:O,yO:2;OSX51

X Exact sclution 1st Order R.-K. 4th order R.-K.

0.2 2.4642 2.4600 (0.17%) 2.4642 (0.0003%)
0.4 3.0755 3.0652 (0.33%) 3.0755 (0.0007%)
0.6 3.8664 3.8475 (0.49%) 3.8663 (0.0010%)
0.8 4.8766 4.8460 (0.63%) 4.8766 (0.0012%)
1.0 6.1548 6.1081 (0.76%) 6.1548 (0.0015%)

CLASS 22
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4. ODE - IVP CLASS 22

Application of RK2 and RK4 (2)

IVP:  (1+x?)y’ +2xy = cosx, 0 <x < 2,y(0) =0

RK4
X 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
0.3833 0.4201 0.3065 0.1816 (n = 4)
Vi 0.2328 0.3835 0.4362 0.4207 0.3703 0.306%9 0.2422 0.1818 (n = 8)
0.2329 0.3835 0.4362 0.4207 0.3703 0.3069 0.2422 0.1819 (n = 16)
RK2 RK4

0.5 : : : 0.5 : : :
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4. ODE - IVP CLASS 22

Numerical Methods for IVPs - Some Observations

Runge-Kutta Methods

= Different versions of Runge-Kutta Methods are derived (conditioned by
different circumstances or dictated by different attractive criteria)
differently and may work particularly efficiently with particular IVPs

= Many Runge-Kutta Methods are implemented in computer codes (can be
found in many computer algebra systems — MATLAB, Mathematica, etc.)

0 The R.K. methods of the 5t and 6" order are called Lawson’s and
Butcher’s Methods.

= Computationally, these methods are very fast — no big matrices, no
multiple iterations, just a few algebraic formulas. (Very small steps and
thousands of repetitions — not demanding for modern computer
resources.)

Other Methods

Taylor and Runge-Kutta methods use only one previous approximate
solution value; in contract to that, the Multistep methods use more than
one previous approximate solution taken from several previous points.




4. ODE - IVP

CLASS 22

Stability of Numerical Solution (1)

Phenomenon of Numerical Instability

For some differential equations, any errors that occur in computation
may be magnified — and this happens regardless “qualities” of the

numerical method. Such problems are called ill-conditioned.

» A numerical method is called stable if errors uncured at one stage of the
process do not tend to be magnified at later stages.

Analysis of Instability

...Involves the investigation of the error for a simple problem, such as

y =2y
If the method is unstable for the model equation, it is likely to behave badly
for other problems as well.

« If >0, the true solution grows exponentially, and it is not reasonable
to expect the error to remain small as x increases — but one can hope
that the error remains small relative to the solution.

 If <0, the exact solution is a decaying exponential, and one could
expect the error to also go to 0 as x — 00.




4. ODE - IVP CLASS 22

Stability of Numerical Solution (2)
IWVP: Y =-4y,%=0,y,=1,0<x<4

Exact (and Accurate Numerical) Solution

3 , ; 5
2ty =exp(-4x) — :
NG
B I S— — —
) A ................................
2 1| é é 4
X
Weakly Stable Numerical Solutions
h=0.1 h=0.02
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