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Numerical Integration – Conceptual Motivation 

3. NUMERICAL INTEGRATION CLASS 12

(1) If in an applied problem a Definite Integral turns out to be too complex –

its evaluation requires an unreasonably strong effort, 

(2) If a Definite Integral still can be evaluated, but results in a very 

complex formula (which could be difficult for analysis/computation)

(3) If an indefinite integral of some functions cannot be represented as an 

elementary function (and there are many such functions in popular 

applications)

When do we need N. I.? 
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Introductory Illustrations 

Functions That Cannot Be Obtained by Differentiation of         

Other Functions

3. NUMERICAL INTEGRATION CLASS 12
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Planetary orbit – Kepler’s Law: an elliptical orbit with an eccentricity e = 0.5, 

10-day interval (Dt = 10)
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Length of an Elliptical Orbit 
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Question: find the distance between certain positions on the orbit
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Trapezoid Rule 

3. NUMERICAL INTEGRATION CLASS 14

The Function and its Linear Approximation

(0, 1)

(2, e-4) = (2, 0.0183)
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Trapezoid Rule – MATLAB Script  

3. NUMERICAL INTEGRATION CLASS 14
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(0, 1)

(2, e-4) = (2, 0.0183)

(0, e-1) = (2, 0.3679)

The Function and its Quadratic Approximation

Simpson’s Rule 

3. NUMERICAL INTEGRATION CLASS 15



8

Simpson’s Rule – MATLAB Script 

3. NUMERICAL INTEGRATION CLASS 15
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Romberg Integration – MATLAB Script 

3. NUMERICAL INTEGRATION CLASS 16
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Romberg Integration – Example 
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Gaussian Quadratures – Example 
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3. NUMERICAL INTEGRATION CLASS 17

Gaussian Quadratures – MATLAB Script 
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Evaluation of function takes place at specified points which we choose so 

that, for a given n, the rule would be exact for polynomials up to and including 

degree (2n - 1). 

 Information about these points and corresponding coefficients are 

explicitly included in Gauss_quad – it is always there, regardless 

the function, regardless the interval. 

 These points between -1 and 1 are always on the fixed positions, and 

those positions depend only on n, and either 2, or 3, or 4, or 5 points 

are used. (When integrating from a to b, conversion formulas are 

used.) 

 Gauss_quad is a function in which integration can be performed only 

for n from 2 to 5. 

3. NUMERICAL INTEGRATION CLASS 18

Gaussian Quadratures – Key Features 
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3. NUMERICAL INTEGRATION CLASS 18

Gaussian Quadratures – Nodes & Coefficients 

Truncation error

~f (4)(a)

~f (6)(a)

~f (8)(a)

~f (10)(a)
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Gaussian Quadratures – Examples 

k = 2 3 4 5

2

∫ (1/x)dx = 0.6923   0.6931   0.6931   0.6931 =>  

1

Exact value: ln2 ~ 0.693147

k = 2 3 4        5 

2

∫ (exp(-x^2)dx = 0.9195   0.8789   0.8822   0.8821 =>  0.8821

0

Problem 

[C27]

Problem [C27]:
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First Five Legendre Polynomials

3. NUMERICAL INTEGRATION CLASS 18

P0(x) = 1

P1(x) = x

P2(x) = x2 – 1/3

P3(x) = x3 – (3/5)x

P4(x) = x4 – (6/7)x2 + 3/35 

P5(x) = x5 – (10/9)x3 + 5/21x
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Accuracy of integration with Gaussian Quadratures – a subject of 

advanced courses; in a very condensed form: 

• For Gaussian Quadratures, the error term is not a simple function of 

step h; it does, but it is function of not only h.

3. NUMERICAL INTEGRATION CLASS 18

Gaussian Quadratures – Errors 

• The error in Gaussian Quadratures goes to 0 more rapidly for particular 

integrands – it  gives much better accuracy than other techniques for 

more smooth functions! 

o Composite Trapezoid and Simpson Rules converge as O(h2) and O(h4) 

regardless of the smoothness of f(x)! 
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3. NUMERICAL INTEGRATION CLASS 18

Gaussian Quadratures – Observations 

…is a special technique due to its basic feature – an approximation 

based on the exact values for polynomials. 

…can be successfully used in manual computations, as a part of analytical 

manipulations with integrals, and 

…can be used in combinations with other techniques of Num. Int. 

…if used separately, it works very well with smooth functions – and that 

is not a rare situation in applications, BTW!

Overall, Gaussian Quadratures
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Difficulties in Numerical Integration  

3. NUMERICAL INTEGRATION CLASS 18

a. The function is continuous in the 

range of integration, but its 

derivatives are discontinuous or 

singular*);

b. The function is discontinuous in 

the range of integration;

c. The function has singularities in 

the range of integration;

d. The range of integration is 

infinite. 

a. The discontinuity/singularity 

should be located, and the integral 

split into a sum of two/more 

integrals whose ranges avoid the 

discontinuities.

b. The same as a.

c. Different approaches; e.g., a 

change of variables, integration by 

parts, splitting the integral, etc.

d. A method suitable for an infinite 

range of integration, e.g., Gauss-

Laguerre and Gauss-Hermite

formulas.

Difficulty Treatment

*)  Since the derivatives of polynomials are continuous, polynomials cannot accurately 

represent functions with discontinuous derivatives.
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Difficulties in Numerical Integration  

Example of a Difficult Function

 Rapid change of the function for small changes in the independent variable!

 Check for the built-in MATLAB function quad8
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Test Functions for Methods of Numerical Integration  

[0, p]

(1)

p

0.7727…
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[0, 4]

3. NUMERICAL INTEGRATION CLASS 18

Test Functions for Methods of Numerical Integration  

y

x

(2)

14.7763…
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Test Functions for Methods of Numerical Integration  

0 < x < 1 0 < x < 0.0001

x10-4

(3)

y

x
y

x

[0, 1]

0.9901… 
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3. NUMERICAL INTEGRATION CLASS 18

Test Functions for Methods of Numerical Integration  

[0, 1]

(4)

y

x
y

x

0 < y < 1 0 < y < 0.01

0.0135…
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3. NUMERICAL INTEGRATION CLASS 18

Numerical Integration – Comparison of Performance  

 Gauss_quad gives best result for very coarse approximations 

(of smooth functions!), is very quick – computation happens 
momentarily [e.g., Romb for d = 10 took 2½ min (a machine 

with Duo 1.8 GHz processor)]. It fails with (2), (4) – due to the 

unlucky choice of the points (nodes). 

 Simp and Trap perform practically identically with (3): don’t 

need too many points for the result of not high accuracy, but 
converge slowly for the a high accurate result. Trap may 

be better for oscillating functions like in (2) - better 

approximated by straight lines.

 Romb seems to be strong procedure, but it requires more  

computational time than other techniques. 

Some Observations


