MA3457/CS4033: Numerical Methods for Calculus and Differential Equations

Course Materials

PART III

B'14 2014-2015

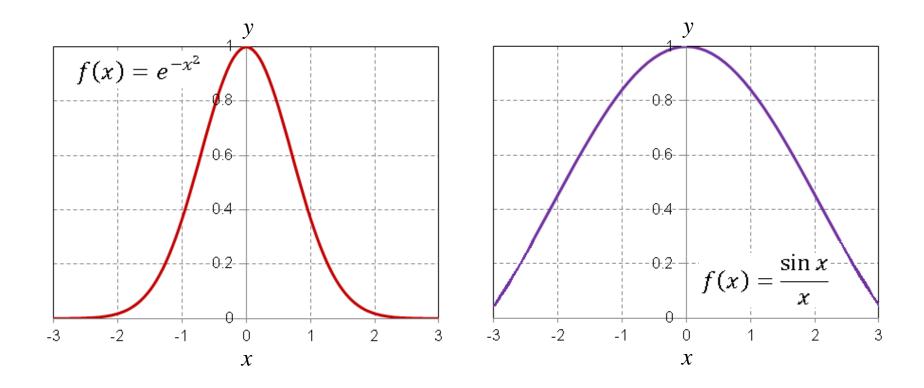
NUMERICAL INTEGRATION Numerical Integration – Conceptual Motivation

When do we need N. I.?

- If in an applied problem a Definite Integral turns out to be <u>too complex</u> its evaluation requires an <u>unreasonably strong effort</u>,
- (2) If a Definite Integral still <u>can be evaluated</u>, but results in **a very** complex formula (which could be difficult for analysis/computation)
- (3) If an <u>indefinite integral of some functions cannot be represented as an</u> <u>elementary function</u> (and there are many such functions in <u>popular</u> <u>applications</u>)

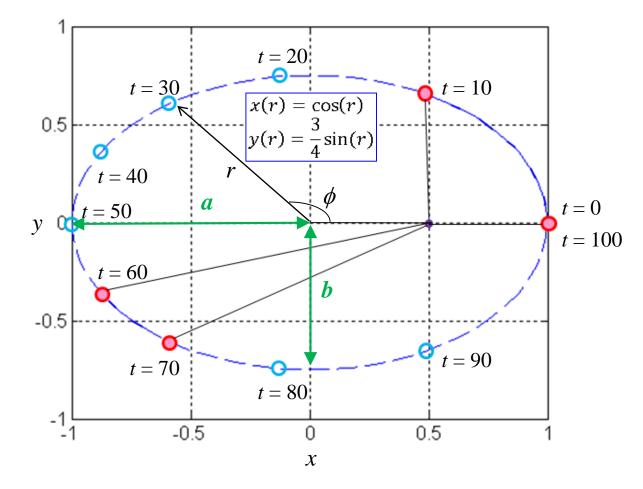
Introductory Illustrations

Functions That Cannot Be Obtained by Differentiation of Other Functions



Length of an Elliptical Orbit

<u>Question</u>: find the distance between certain positions on the orbit



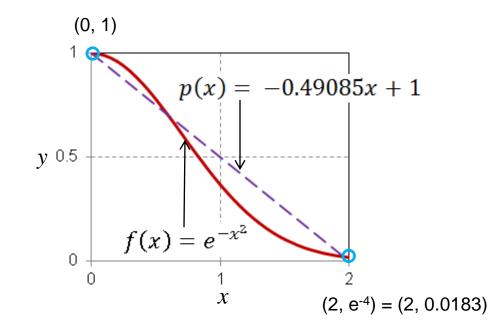
Planetary orbit – Kepler's Law: an elliptical orbit with an eccentricity e = 0.5, 10-day interval ($\Delta t = 10$)

$$b^2 = a^2(1-e^2)$$

4

Trapezoid Rule

The Function and its Linear Approximation



Trapezoid Rule – MATLAB Script

LIBRARY OF MATLAB PROCEDURES

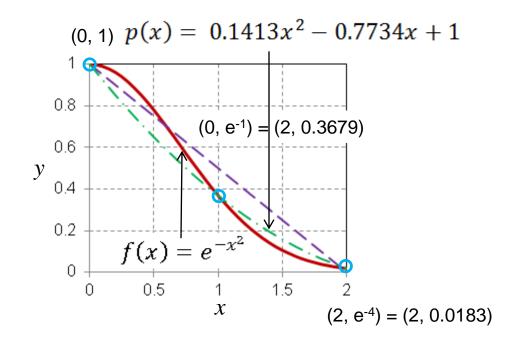
Trap

Performs numerical integration with the use of the Composite Trapezoid Rule

```
function I = Trap(f, a, b, n)
%
% The function finds integral of f using composite trapezoid rule
%
h = (b-a)/n; S = feval(f, a);
%
for i = 1 : n-1
    x(i) = a + h*i
    S = S + 2*feval(f, x(i))
end
%
S = S + feval(f, b); I = h*S/2
```

Simpson's Rule

The Function and its Quadratic Approximation



Simpson's Rule – MATLAB Script

LIBRARY OF MATLAB PROCEDURES

Simp

Performs numerical integration with the use of the Composite Simpson Rule

function I = Simp(f, a, b, n) % % The function finds integral of f using composite Simpson rule **3. NUMERICAL INTEGRATION**

CLASS 16

Romberg Integration – MATLAB Script

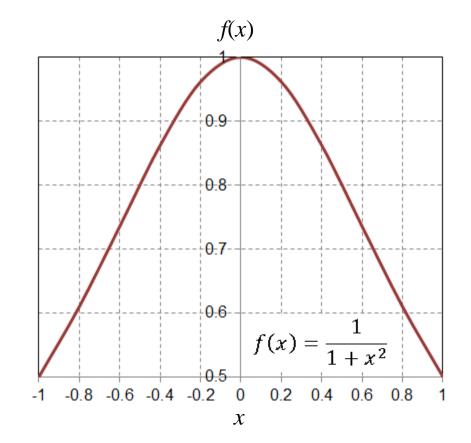
LIBRARY OF MATLAB PROCEDURES

Romb

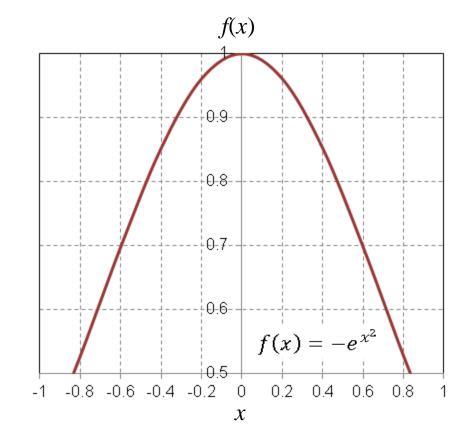
Performs numerical integration with the use of Romberg algorithm

```
function W = \text{Romb}(f, a, b, d)
%
% The function finds integral of f on the interval [a, b] using
% d steps of Romberg integration (or accelerated Simpson Rule)
%
T = zeros(d+1, d+1);
%
for k = 1 : d+1
    n = 2^k; T(1, k) = Simp(f, a, b, n);
end
%
for p = 1 : d
    q = 16^{p};
    for k = 0 : d-p
        T(p+1, k+1) = (q*T(p, k+2) - T(p, k+1))/(q-1);
    end
end
%
for i = 1 : d+1
    table = T(i, 1 : d-i+2); disp(table)
end
%
W = T(d+1, 1);
```

Romberg Integration – Example



Gaussian Quadratures – Example



3. NUMERICAL INTEGRATION

Gaussian Quadratures – MATLAB Script

LIBRARY OF MATLAB PROCEDURES

Gauss quad

Performs numerical integration with the use of Gaussian quadrature at 2 to 5 points

```
function I = Gauss quad(f, a, b, k)
     % The function finds integral of f on the interval [a, b] using
     % Gaussian quadrature at k (k = 2, ..., 5) points
     t = [-0.5773502692 - 0.7745966692 - 0.8611363116 - 0.9061798459;
                                    -0.3399810436 -0.5384693101;
        0.5773502692 0.0
               0.7745966692 0.3399810436 0.0;
        0.0
                                  0.8611363116 0.5384693101;
        0.0
                      0.0
                                          0.9061798459]
                                 0.0
5/9
        0.0
                      0.0
                    c = [1.0]
        1.0
8/9
                      0.555555556 0.6521451549 0.56888888889;
        0.0
                                  0.3478548451 0.4786286705;
        0.0
                      0.0
        0.0
                      0.0
                                    0.0
                                        0.23692688501
     % Transformation of the interval of integration
     x(1 : k) = 0.5*((b-a).*t(1:k,k-1) + b + a);
     ÷
     y = feval(f, x);
     ÷
     cc(1:k) = c(1:k, k-1);
     cd = cc';
     ÷
     int = y*cd;
     I = int*(b-a)/2
```

CLASS 17

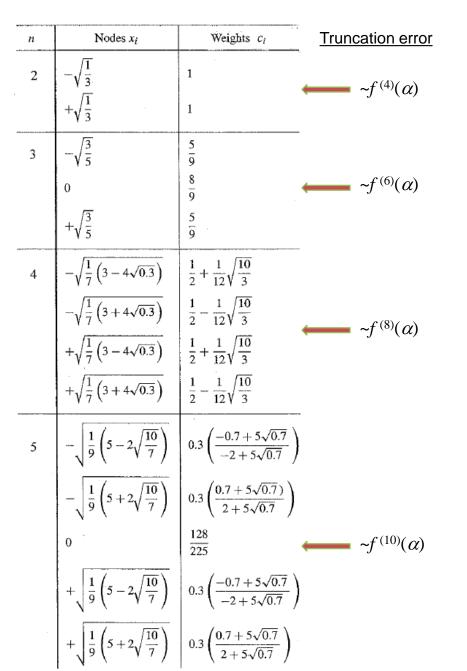
3. NUMERICAL INTEGRATION

Gaussian Quadratures – Key Features

Evaluation of function takes place at **specified points** which we choose so that, for a given *n*, the rule would be exact for polynomials up to and including degree (2n - 1).

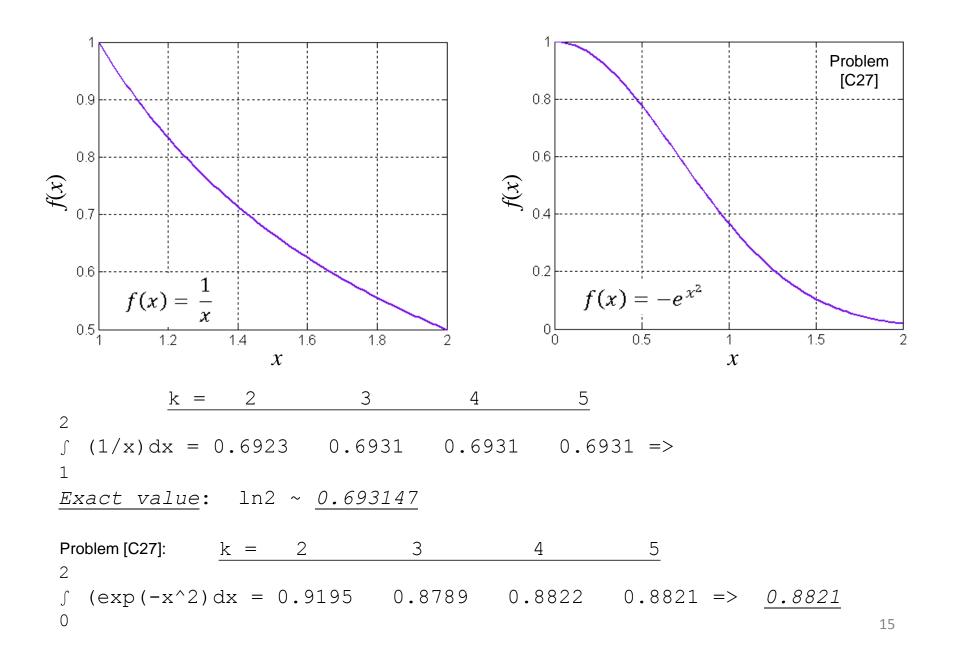
- Information about these points and corresponding coefficients are explicitly included in Gauss_quad – <u>it is always there</u>, regardless the function, regardless the interval.
- These points between -1 and 1 are always on the *fixed positions*, and those positions depend only on *n*, and either 2, or 3, or 4, or 5 points are used. (When integrating from *a* to *b*, conversion formulas are used.)
- Gauss_quad is a function in which integration can be performed only for *n* from 2 to 5.

3. NUMERICAL INTEGRATION Gaussian Quadratures – Nodes & Coefficients

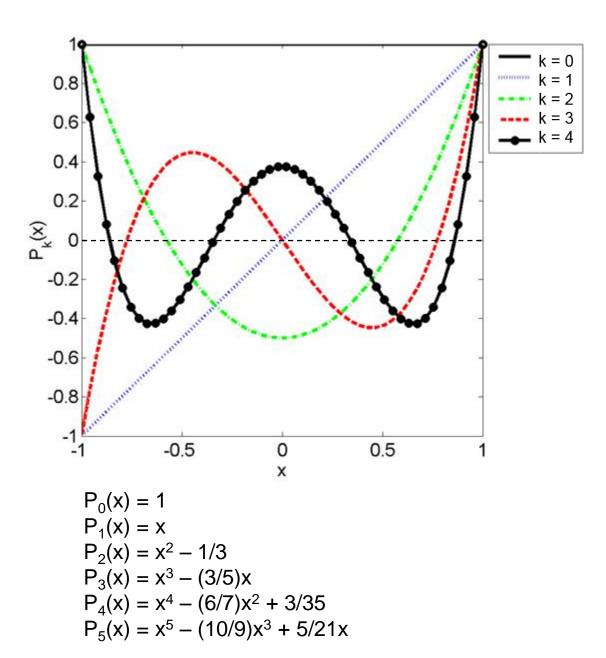


CLASS 18

Gaussian Quadratures – Examples



First Five Legendre Polynomials



Gaussian Quadratures – Errors

<u>Accuracy of integration</u> with Gaussian Quadratures – a subject of advanced courses; in a very condensed form:

- For Gaussian Quadratures, <u>the error term is not a simple function of</u> <u>step *h*</u>; it does, but *it is function of not only h*.
- The error in Gaussian Quadratures goes to 0 more rapidly for particular integrands – it gives much better accuracy than other techniques <u>for</u> <u>more smooth functions</u>!
 - Composite Trapezoid and Simpson Rules converge as $O(h^2)$ and $O(h^4)$ regardless of the smoothness of f(x)!

Gaussian Quadratures – Observations

Overall, Gaussian Quadratures

...is a **special technique** due to its basic feature – **an approximation based on the exact values for polynomials**.

...can be successfully used in manual computations, <u>as a part of analytical</u> <u>manipulations with integrals</u>, and

... can be used in combinations with other techniques of Num. Int.

...if used separately, **it works** <u>very well with smooth functions</u> – and that is **not a rare situation in applications**, BTW!

Difficulties in Numerical Integration

Difficulty

- a. The function is continuous in the range of integration, but its <u>derivatives are discontinuous or</u> <u>singular</u>*);
- b. <u>The function is discontinuous</u> in the range of integration;
- c. The function has <u>singularities</u> in the range of integration;
- d. <u>The range of integration is</u> <u>infinite</u>.

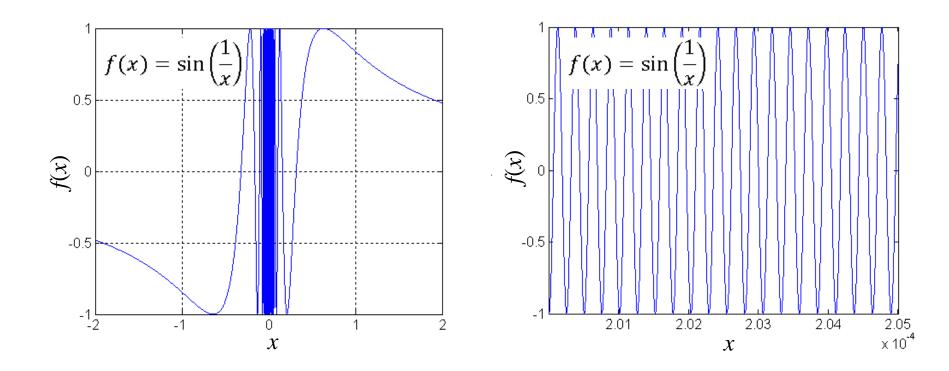
Treatment

- a. The discontinuity/singularity should be *located*, and the integral split into a sum of two/more integrals whose ranges avoid the discontinuities.
- b. The same as a.
- c. Different approaches; e.g., a change of variables, integration by parts, splitting the integral, etc.
- d. A method suitable for an infinite range of integration, e.g., Gauss-Laguerre and Gauss-Hermite formulas.

^{*)} Since the derivatives of polynomials are continuous, *polynomials cannot accurately represent functions with discontinuous derivatives*.

Difficulties in Numerical Integration

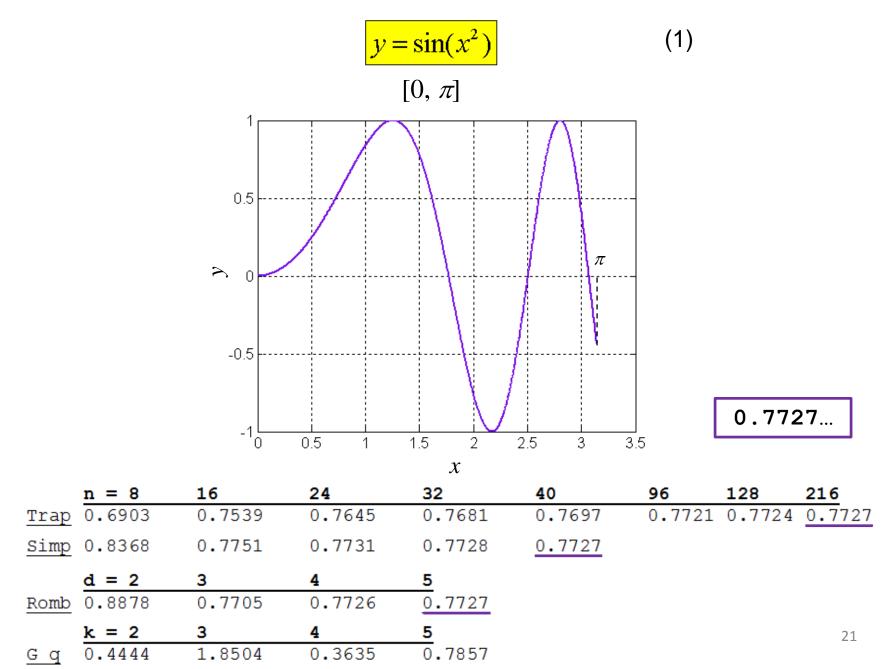
Example of a Difficult Function



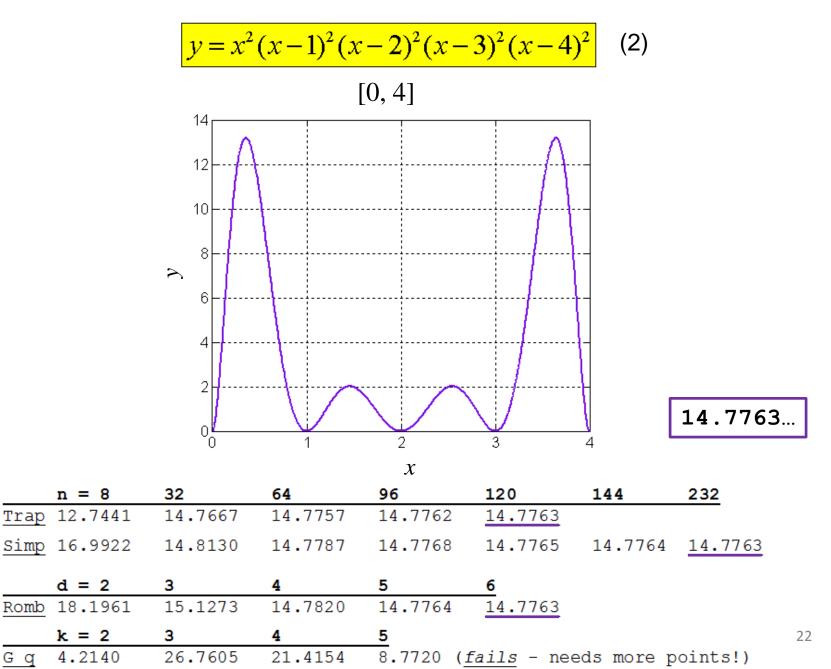
Rapid change of the function for small changes in the independent variable!

Check for the built-in MATLAB function quad8

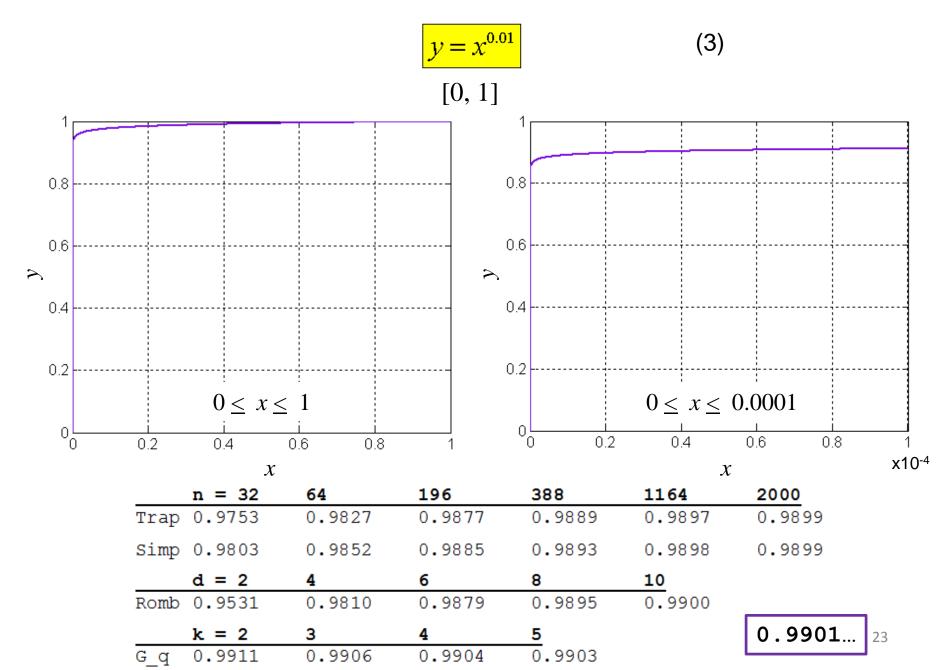
3. NUMERICAL INTEGRATION Test Functions for Methods of Numerical Integration



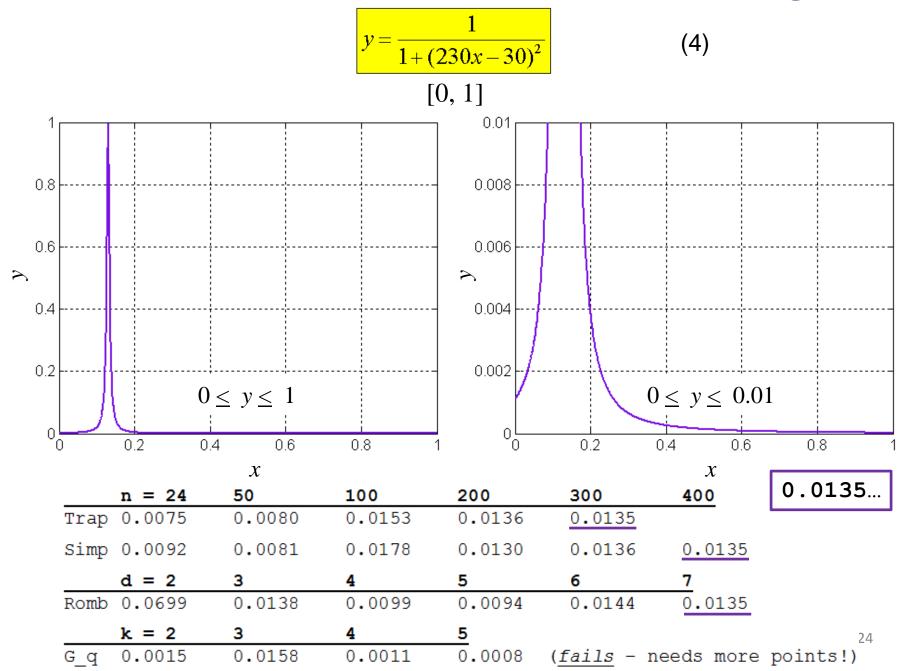
3. NUMERICAL INTEGRATION Test Functions for Methods of Numerical Integration



3. NUMERICAL INTEGRATION Test Functions for Methods of Numerical Integration



Test Functions for Methods of Numerical Integration



3. NUMERICAL INTEGRATION Numerical Integration – Comparison of Performance

Some Observations

- Gauss_quad gives best result for very coarse approximations (of smooth functions!), is <u>very quick</u> – computation happens momentarily [e.g., Romb for d = 10 took 2½ min (a machine with Duo 1.8 GHz processor)]. It fails with (2), (4) – due to the unlucky choice of the points (nodes).
- Simp and Trap perform practically identically with (3): don't need too many points for the result of <u>not high</u> accuracy, but converge slowly for the a high accurate result. Trap may be better for oscillating functions like in (2) - better approximated by straight lines.
- Romb seems to be strong procedure, but it requires more computational time than other techniques.