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Numerical Methods is the course about

techniques by which mathematical problems are formulated

so that they can be solved with arithmetic operations.

The primary goal of the course: 

(1) to introduce the students to a range of numerical algorithms related to 

problems in Calculus and Differential Equations,

(2) to review their fundamental principles, and 

(3) to illustrate their applications.  

Course Objectives

PREFACE

Upon completing this course you will be able 

 to use numerical procedures for solving applied problems and [when 

applying the algorithms to particular practical scenarios] control their 

performance
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Main Topics of the Course

PREFACE

1.  Interpolation 7 classes

Polynomial & Spline Interpolation 

Numerical Differentiation 

2.  Approximation 4 classes

3.  Numerical Integration 6 classes

4.  Initial Value Problems 4 classes

5.  Boundary Value Problems 3 classes
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MATLAB Help: Video Tutorials/Demos on Specific Topics and Features

MathWorks Website: Interactive MATLAB & Simulink Based Tutorials 

(http://www.mathworks.com/academia/student_center/tutorials/)

Strongly Recommended: Interactive MATLAB Tutorial 

MathWorks Recorded Webinars

(http://www.mathworks.com/company/events/webinars/index.html )

Recommended: Introduction to MATLAB

(http://www.mathworks.com/videos/introduction-to-matlab-81592.html)

Available MATLAB Resources

PREFACE

Introduction to MATLAB – Short Course (November, 2014)

Instructor: Adriana Hera (ahera@wpi.edu)

Details at: http://www.wpi.edu/webapps/regi/sesa.html

 First MA3457/CS4033 Conference (Wed, Oct 29, 2 pm) –

Intro to MATLAB by Kyle Dunn

http://www.mathworks.com/academia/student_center/tutorials/
http://www.mathworks.com/company/events/webinars/index.html
mailto:ahera@wpi.edu
http://www.wpi.edu/webapps/regi/sesa.html
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From the earliest times, one of the most important aspects of 

mathematical study – the search for solutions of real-world problems. 

In many applications: 

Key Introductory Notes

PREFACE CLASS 1

 an exact solution may be unattainable, or 

 a solution may not give the answer in a convenient form. 

o finding good approximate results, and 

o spending a reasonable amount of computational effort to get them.

So people are usually OK with:



Some NM may be older than many key elements of many other human 

cultures:

Historical Facts

 The Babylonians (3700+ years ago) knew how to find numerical solutions 

of quadratic equations and approximations to the square root of an integer. 

 Contributions to NM were made in China between 100 and 1000. 

 Important findings have been made by ancient Greeks (~1800 y. ago).

 Middle Eastern and particularly Persian scholars (900 and 600 y. ago) 

 European mathematicians – especially from ~1200 to ~1800, e.g., 

Fibonacci, Kepler, Newton, Taylor, Lagrange, Leibniz, etc. etc. 
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PREFACE CLASS 1

Many issues that confront a scientist or engineer who uses numerical 

methods are the same today as throughout the history of the subject. 

In the past and nowadays, two primary considerations are: 

• the computational effort required, and

• the accuracy of the resulting solution.

Mathematics is the oldest science on Earth, and its branch related to 

Numerical Methods (NM) is one of the oldest in math. 
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Methods of interpolations – methods for representing a function based on 

knowledge of its behavior at certain discrete points. 

From this information:

o obtain estimates of functional values at other points, or

o use the closed-form representation of the function as the basis for 

other numerical techniques (e.g., numerical differentiation or 

integration). 

1.  INTERPOLATION

1. INTERPOLATION CLASS 1

Polynomial Interpolation

Conceptually, 

• interpolation produces a function that matches the given 

data exactly;

• interpolating function provides a good approximation to 

the data values at intermediate points. 

The data comes from two sources: 

 measured (experimental) values, or

 computed values (obtained by other numerical methods). 



Motivation for Interpolation
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1. INTERPOLATION

Temperature Characteristics of Thermal Parameters of 

Zirconia

[1].  V.V. Yakovlev, S.M. Allan, M.L. Fall, and H.S. Shulman, Computational study of thermal runaway in microwave 

processing of zirconia, In: Microwave and RF Power Applications, J. Tao, Ed., Cépaduès Éditions, 2011, pp. 

303-306.

Experimental data by Ceralink, Inc., from [1].

For modeling phenomena with variable/dynamic parameters, COMSOL 

Multiphysics uses functional/analytical representations.  

CLASS 1
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P R O J E C T   T E A M S

CLASS 2

14

16
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Introductory Illustration 

Observed Concentration of the Product – Chemical Reaction

1. INTERPOLATION CLASS 2
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y

The Basis Functions – Linear Polynomials

Graphs of L1 & L2

L2: y = x

L1 : y = -x+1

x

1. INTERPOLATION CLASS 2
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The Basis Functions – Quadratic Polynomials

y

x

Graphs of C1, C2 and C3

C2: 

y = x(2-x)

C1 : 

y = (x-1)(x-2)/2

x1 = 0;  x2 = 1; x3 = 2;

C3 : 

y = x(x-1)/2

1. INTERPOLATION CLASS 2
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Lagrange Interpolation – MATLAB Script (1)

1. INTERPOLATION CLASS 2
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Lagrange Interpolation – MATLAB Script (2)

1. INTERPOLATION CLASS 2
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y

x

p(x) = x2 + x + 2

(x1, y1) = (-2, 4);  (x2, y2) = (0, 2);  (x3, y3) = (2, 8)

Lagrange Interpolation – Example with Three Points

1. INTERPOLATION CLASS 3
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p(x) = x2 + x + 2

y

x

(x1, y1) = (-2, 4); (x2, y2) = (-1, -1); (x3, y3) = (0, 2);  

(x4, y4) = (1, 1); (x5, y5) = (2, 8)

Lagrange Interpolation – Example with Five Points

1. INTERPOLATION CLASS 3
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For the Lagrange Interpolation, the more points you take, the higher order 

of the polynomial you work with. 

Polynomials of very high degree raise the difficulties: 

o It is necessary to completely rework the problem with the new 

expanded data set – a bigger computational effort is required, and

o Appearance of the curve is not improved - rather, it becomes 

fluctuating/non-smooth 

Lagrange Interpolation – Summary

1. INTERPOLATION CLASS 3

Observations

1) The Lagrange Interpolation is particularly convenient when the same 

values of the independent variable x may occur in different applications

(with only y values changed). 

2) Lagrange form is not convenient when: 

o additional data points may be added to the problem, or

o appropriate degree of the interpolating polynomial is unknown [i.e.,

when it may be better to use less than a full set of data]. 

Preliminary Conclusion
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Newton Interpolation – 5-Point Example

(x1, y1) = (-2, 4); (x2, y2) = (-1, -1); (x3, y3) = (0, 2);  (x4, y4) = (1, 1); (x5, y5) = (2, 8)

Divided-Difference Table

p(x) = a1 + a2(x-x1) + a3(x-x1)(x-x2) + a4(x-x1)(x-x2)(x-x3) + a5(x-x1)(x-x2)(x-x3)(x-x4) 

=  4 - (x+2) + (x+2)(x) - (x+2)(x)(x-2) + (x+2)(x)(x-2)(x+1) 

1. INTERPOLATION CLASS 3
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Newton Interpolation – Example with Five Points

1. INTERPOLATION

y

x

CLASS 3

 Compared to the polynomial obtained with the Lagrange approach, 

Newton interpolating expression looks different, however, the two are in 

fact equivalent. This can be shown algebraically; here, the equivalence 

is demonstrated graphically by plotting both functions (Newton 

Polynomial and Lagrange Polynomial) in the same axes. 

Lagrange form:Newton form:
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Newton Interpolation – MATLAB Script (1)

1. INTERPOLATION CLASS 3
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Newton Interpolation – MATLAB Script (2)

1. INTERPOLATION CLASS 3
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Alternative Notation (1)

1. INTERPOLATION CLASS 3
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Alternative Notation (2)

1. INTERPOLATION CLASS 3
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Bulge-Flat Data

1. INTERPOLATION CLASS 4

y

x

Difficulties with Polynomial Interpolation (1)

Newton Interpolation
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y

x

“Noisy” Straight Line

Difficulties with Polynomial Interpolation (2)

1. INTERPOLATION CLASS 4

Newton Interpolation
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The Runge’s Function

1. INTERPOLATION

y

x

CLASS 4
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1. INTERPOLATION

Polynomial Interpolation of the Runge’s Function (1)

Newton Interpolation

5 Equally Spaced Points 9 Equally Spaced Points 

y

x

y

x

CLASS 4
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Polynomial Interpolation of the Runge’s Function (2)

Newton Interpolation with Chebyshev Nodes

y

x

9 Points 

1. INTERPOLATION CLASS 4



29

Spline Interpolation (1)

Piecewise Linear Interpolation

4 Points 

1. INTERPOLATION

y

x

CLASS 4
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Piecewise Quadratic Interpolation

4 Points 

Spline Interpolation (2)

y

x

P2(x)

P4(x)

P3(x)

P1(x)

1. INTERPOLATION CLASS 5
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(1) Only some simplest problems dealing with cubic spline interpolation 

could be fully solved manually

(2) Other simple problems require a computer for a central part of the 

solution: corresponding linear system can be derived manually, but a 

computer (e.g., a procedure of Gaussian elimination) is needed to solve 

it for the coefficients. 

(3) For other problems (with more than 3-4 points – i.e., actually, for all 

applied problems) a computer is needed to implement the algorithm at all 

stages.

Cubic Spline Interpolation

1. INTERPOLATION CLASS 6

Practical Problems from Computational Viewpoint 
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Problem of Type (1)

Section 3.5, Example 1

The problem is about 3 points, 2 sub-intervals – thus, about 2 equations with 

4 coefficients each, so – 8 unknown total. 

8 conditions for 8 unknowns:  

Construct a natural cubic spline that passes through the points (1, 2),  

(2, 3), and (3, 5). 

1. INTERPOLATION CLASS 6
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Cubic Spline Interpolation – MATLAB Script

1. INTERPOLATION CLASS 6
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y

x

y

x

5 Equally Spaced Points 9 Equally Spaced Points 

Cubic Spline Interpolation of the Runge’s Function

1. INTERPOLATION CLASS 6
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Find a function which

 matches exactly the data points (which represent a 

process/phenomenon and are obtained either 

experimentally, or computationally) and 

 provides good estimates of the intermediate points not 

included in the original data set.

Polynomial Interpolation – Summary

1. INTERPOLATION CLASS 6

Main Idea

The polynomials generated by Lagrange & Newton approaches may look different, 

but they are in fact identical and represent the same function which is unique 

for the set of n distinct point; the order of this polynomial is at most n-1. 

Uniqueness / Equivalence of Interpolations

 In Lagrange Interpolation, when adding more points to the data set, one 

has to rework the whole problem: each term in the Lagrange polynomial 

contains information about all points. 

 There is no need to rework the problem with Newton Interpolation – with 

new points, other terms in the polynomial are specified and those already 

determined are used. 

Dealing with Additional Points
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 Increasing the number of data points does not improve interpolation. 

 Moreover, there are functions for which interpolation is always poorly 

performed; unequally spaced data points (e.g., Chebyshev nodes) could be of 

help.

Polynomial Interpolation – Summary (cont’d)

1. INTERPOLATION CLASS 6

Key Concept

 CSI, the product of XX century, appears to be, overall, most efficient, 

flexible and accurate. 

 All interpolation algorithms are convenient for implementations in 

computer codes and practical use in different computational 

environments (MATLAB, etc.)

What is So Special About Cubic Splines?

Computer Implementations
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Why Numerical Differentiation?

1. INTERPOLATION CLASS 7

Rates of change appear in many disciplines, practical applications, science, 

engineering, etc.

A function to be differentiated can be given as:

a) An analytical expression

b) A set of discrete points (obtained from experimentation or prior 

computation)

Differentiation gives a measure of the rate at which a quantity changes.

 For a),  the derivative can be determined analytically

 When analytical differentiation difficult/not possible, Num. Diff. has to be 

used

 When the function is specified as a set of discrete points, the derivative 

also can be found by Num. Diff.

Objective of Numerical Differentiation 

 find estimates for the derivatives, or a slope of a function, by using 

the function values at a set of discrete points


