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PREFACE

Course Objectives

Numerical Methods is the course about

techniques by which mathematical problems are formulated
so that they can be solved with arithmetic operations.

The primary goal of the course:

(1) to introduce the students to a range of numerical algorithms related to
problems in Calculus and Differential Equations,

(2) to review their fundamental principles, and
(3) to illustrate their applications.

Upon completing this course you will be able

» 1o use numerical procedures for solving applied problems and [when
applying the algorithms to particular practical scenarios] control their
performance




PREFACE

Main Topics of the Course

1. Interpolation 7 classes

Polynomial & Spline Interpolation
Numerical Differentiation

2. Approximation 4 classes
3. Numerical Integration 6 classes
4. Initial Value Problems 4 classes

5. Boundary Value Problems 3 classes



PREFACE

Available MATLAB Resources

MATLAB Help: Video Tutorials/Demos on Specific Topics and Features

MathWorks Website: Interactive MATLAB & Simulink Based Tutorials
(http://www.mathworks.com/academia/student center/tutorials/)
Strongly Recommended: Interactive MATLAB Tutorial

MathWorks Recorded Webinars
(http://www.mathworks.com/company/events/webinars/index.html )
Recommended: Introduction to MATLAB
(http://www.mathworks.com/videos/introduction-to-matlab-81592.html)

Introduction to MATLAB — Short Course (November, 2014)
Instructor: Adriana Hera (ahera@wpi.edu)

Details at: http://www.wpi.edu/webapps/regi/sesa.html

0 First MA3457/CS4033 Conference (Wed, Oct 29, 2 pm) —
Intro to MATLAB by Kyle Dunn



http://www.mathworks.com/academia/student_center/tutorials/
http://www.mathworks.com/company/events/webinars/index.html
mailto:ahera@wpi.edu
http://www.wpi.edu/webapps/regi/sesa.html

PREFACE CLASS 1

Key Introductory Notes

From the earliest times, one of the most important aspects of
mathematical study — the search for solutions of real-world problems.

In many applications:

= an exact solution may be unattainable, or
= a solution may not give the answer in a convenient form.

So people are usually OK with:

o finding good approximate results, and
o spending a reasonable amount of computational effort to get them.
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CLASS 1

Historical Facts

Mathematics is the oldest science on Earth, and its branch related to
Numerical Methods (NM) is one of the oldest in math.

Some NM may be older than many key elements of many other human
cultures:

a

o 0O 0 O

The Babylonians (3700+ years ago) knew how to find numerical solutions
of quadratic equations and approximations to the square root of an integer.

Contributions to NM were made in China between 100 and 1000.
Important findings have been made by ancient Greeks (~1800 y. ago).
Middle Eastern and particularly Persian scholars (900 and 600 y. ago)

European mathematicians — especially from ~1200 to ~1800, e.g.,
Fibonacci, Kepler, Newton, Taylor, Lagrange, Leibniz, etc. etc.

Many issues that confront a scientist or engineer who uses numerical

methods are the same today as throughout the history of the subject.

In the past and nowadays, two primary considerations are:

« the computational effort required, and
« the accuracy of the resulting solution.



1. INTERPOLATION CLASS 1

1. INTERPOLATION

Polynomial Interpolation

Methods of interpolations — methods for representing a function based on
knowledge of its behavior at certain discrete points.

From this information:

o obtain estimates of functional values at other points, or

o use the closed-form representation of the function as the basis for
other numerical technigues (e.g., numerical differentiation or
integration).

Conceptually,
 interpolation produces a function that matches the given
data exactly; PR ® ®

* interpolating function provides a good approximation to
the data values at intermediate points.

The data comes from two sources:

» measured (experimental) values, or
» computed values (obtained by other numerical methods).



1. INTERPOLATION CLASS 1

Motivation for Interpolation

Temperature Characteristics of Thermal Parameters of
Zirconia
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Experimental data by Ceralink, Inc., from [1].

For modeling phenomena with variable/dynamic parameters, COMSOL
Multiphysics uses functional/analytical representations.

[1]. V.V. Yakovlev, S.M. Allan, M.L. Fall, and H.S. Shulman, Computational study of thermal runaway in microwave

processing of zirconia, In: Microwave and RF Power Applications, J. Tao, Ed., Cépadués Editions, 2011, pp.
303-306. 8
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1. INTERPOLATION CLASS 2

Introductory lllustration

Observed Concentration of the Product — Chemical Reaction
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1. INTERPOLATION CLASS 2

The Basis Functions - Linear Polynomials

Graphs of L; & L,
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1. INTERPOLATION CLASS 2

The Basis Functions - Quadratic Polynomials

Graphs of C,, C, and C,
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1. INTERPOLATION

Lagrange Interpolation - MATLAB Script (1)

LIBRARY OF MATLAB PROCEDURES

Lagrange coef

Finds coefticients of the Lagrange mterpolating polynomials

function c¢ = Lagrange coef (x,y)

o
i)

% Calculate coefficients of Lagrange interpolating polynomial

n = length(x);
for k=1 : n

d(k) = 1;
for 1 =1 : n
if i ~=k
d(k) = d(k) * (x(k) - x(1));
end

c(k) = y(k) / d(k);
end
end

13
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1. INTERPOLATION CLASS 2

Lagrange Interpolation - MATLAB Script (2)

LIBRARY OF MATLAB PROCEDURES
Lagrange_ Eval

Finds the Lagrange interpolating polynomial at x = ¢

function p = Lagrange Eval(t, x, c)

% Evaluate the Lagrange interpolation polynomial at point x = t
m = length (x);

for 1 = 1 : length(t)

p(i) = 0;
for 3 =1 :m
N(j) = 1;
for k=1 :m
it (3 ~= k)
N(J) = N(J) * (£(1) - x(k))-
end
end

p(i) = p(1) + N(3) * c(3)-
end
end

14



1. INTERPOLATION CLASS 3

Lagrange Interpolation - Example with Three Points

P(X) = X2+ X+ 2

(X1, Y1) = (-2, 4); (X5, ¥,) = (0, 2); (X3, ¥3) = (2, 8)

15



CLASS 3

1"NTERI:3\3';'ange Interpolation - Example with Five Points

P(X) = X2+ X+ 2
8 T T : ’) 1
, ; g : T () = -(0(cH)(x-1)(x-2) +
""""""" ?b 6
I S S S A f 1
) R L S S A A -(X+2)(x+1)(x-1)(x-2) +
4 [;' °
N | ------------- - :'r 1
Y 3N I g A o -(x+2)(x)(x-1)(x-2) -
p L S GO R - 6
1 “1, ______ ,.c"j ________ Tffré_,-:fj ________ 1
R : (x+2)(X)(x+1)(x-2) +
s At S S 6
) S W S S S — 1
5 - i i -(X+2)(X)(x+1)(x-1)
-2 1 0 1 2 3
X

(X1, Y1) = (-2, 4); (X5, ¥2) = (-1, -1); (X3, ¥3) = (O, 2);
(X4, ¥a) = (1, 1); (X5, Y5) = (2, 8)
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1. INTERPOLATION CLASS 3

Lagrange Interpolation - Summary

Observations

For the Lagrange Interpolation, the more points you take, the higher order
of the polynomial you work with.

Polynomials of very high degree raise the difficulties:

o Itis necessary to completely rework the problem with the new
expanded data set — a bigger computational effort is required, and

o Appearance of the curve is not improved - rather, it becomes
fluctuating/non-smooth

Preliminary Conclusion

1) The Lagrange Interpolation is particularly convenient when the same

values of the independent variable x may occur in different applications
(with only y values changed).

2) Lagrange form is not convenient when:

o additional data points may be added to the problem, or
o appropriate degree of the interpolating polynomial is unknown [i.e.,
when it may be better to use less than a full set of data].




1. INTERPOLATION

Newton Interpolation - 5-Point Example

(X1 Y1) = (-2, 4); (X5, Vo) = (-1, -1) (X3, ¥3) = (0, 2); (X4, va) = (1, 1); (Xs, ¥5) = (2, 8)

Divided-Difference Table

Vit1—Vi diy1—ds ddi+i—dd; ddd;.—ddds
Xi Vi di=—————- ddi=----—- dddij=——————-——- ddddij= --—-————--
Xi+1—X4 Xi+2—Xi Xi+3—Xi Xi+a—Xi
-2
Y2—VY1 2=4
e —
X2—X1 0-(-2)
d>—ds 3-(-1)
0 2 ———— = e =
X37X1 2-(-2) .
- g2 PO S A A Si—dd, 0-1
U -
X3—X2 2=0 E X4—X1 —1—(—2)
ds—d> 3-3 ddd.-ddd: 2-(-1)
2 8 i =0 e =——--- =
................................................... ° xe-x ~1-0 Xomx, 1-(=2)
Ya—V3 -1-8 dds;—-dd; 2=0
-——— = - =3  mm———— = -—— =2
Xa—X3 -1-2 X5—X 1-0
ds—ds 1-3
-1 - e — ——— =9
X5—X3 1-2
Ys5—Va4 1-(-1)
———m -1
X5—X%4 1-(-1)
1 1

P(X) = a; + ay(X-X;) + ag(X-X1)(X-Xp) + @4(X-X1)(X-X3)(X-X3) + @5(X-X1)(X-X2)(X-X3)(X-X,)

= 4 - (x+2) + (x+2)(X) - (x+2)(X)(x-2) + (x+2)(X)(x-2)(x+1)

CLASS 3
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1. INTERPOLATION CLASS 3

Newton Interpolation - Example with Five Points

Newton form: Lagrange form:

8 ; : ; 1

p(x) = 4 - ]P0 = e oo +

1

-(X+2)(x+1)(x-1)(x-2) +

-(X+2)(x)(x+1)(x-2) +
6

1

-(X+2)(X)(x+1)(x-1)

3

0 Compared to the polynomial obtained with the Lagrange approach,
Newton interpolating expression looks different, however, the two are in
fact equivalent. This can be shown algebraically; here, the equivalence
Is demonstrated graphically by plotting both functions (Newton
Polynomial and Lagrange Polynomial) in the same axes.
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1. INTERPOLATION

Newton Interpolation - MATLAB Script (1)

LIBRARY OF MATLAB PROCEDURES

Newton_coef

Finds coefficients of the Newton interpolating polynomials

function a = Newton coef (x, vy)
n = length(x);

5 Calculate coefficients of Newton interpolating polynomial

a(l) = y(1);
for k =1 : n-1
d(k, 1) = (y(k+1) - y(k)) / (x(k+1l) - x(k));
% 1st divided diff

end
for 7 = 2 n-1

for k =1 : n-j

d(k, j) = (d(k+1, 3-1) - d(k,3-1)) / (x(k+j) - x(k));
% 2nd divided diff

end
end
d

20
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1. INTERPOLATION

Newton Interpolation - MATLAB Script (2)

LIBRARY OF MATLAB PROCEDURES

Newton_Eval

Finds the Newton mterpolating polynomuial at x = ¢

function p = Newton Eval(t, x, a)
n = length (x);
for 1 = 1 : length(t)
ddd (1) = 1; % Compute 1st term
c(l) = a(l);
for 7 =2 : n
ddd(j) = (t(i) - x(j-1)).*ddd(3-1);
% Compute jth term
c(j) = a(j) .* ddd(j):;
end
p(i) = sum(c);
end

21
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1. INTERPOLATION CLASS 3

Alternative Notation (1)

The 0™ DD of f with respect to x;:

Notation: f[x;] and Def.: flx;] = £(x;)

Other DD are defined recursively:

The 1s* DD of f with resp. to x; and xXji;i:

Notation: f[x;, Xi+1] and

DEf- . f [Xi, Xi-i-l] = -—— - —— ——
Xivr — X4

The 274 DD of f with resp. to x; and Xj.i:

Notation: f[x;, =Xi+1, Xi+2] and

FlRiv1, Xiw2l — £[Xi, Xisl
Def.: fI[x:, Xiy1, Xip2l = ——m—F———F—"—"—""—"—"—"——— ; and so on.

22



1. INTERPOLATION CLASS 3

Alternative Notation (2)

DD’s, when put in the DD Table, appear in the following positions:

X f(x) 1st DD 2nd DD

Xp f[xo]
f[Xo, Xi]

X1 f[xq] flxp, X1, Xz2] —> etc.
flx:1, X2l

X2 fx2]

23
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Difficulties with Polynomial Interpolation (1)

1. INTERPOLATION

Newton Interpolation

Bulge-Flat Data
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Difficulties with Polynomial Interpolation (2)

1. INTERPOLATION

Newton Interpolation

“Noisy” Straight Line

2.5
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1. INTERPOLATION

1 !
08} () =——
| T 1425%°

0.6
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0.2

The Runge’s Function
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1. INTERPOLATION CLASS 4

Polynomial Interpolation of the Runge’s Function (1)

Newton Interpolation

5 Equally Spaced Points 9 Equally Spaced Points
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1. INTERPOLATION CLASS 4

Polynomial Interpolation of the Runge’s Function (2)

Newton Interpolation with Chebyshev Nodes

9 Points
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1. INTERPOLATION

Spline Interpolation (1)

Piecewise Linear Interpolation

4 Points
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1. INTERPOLATION CLASS 5

Spline Interpolation (2)

Piecewise Quadratic Interpolation

4 Points

C o = . = O Z
X4 Xo X3 Xy
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1. INTERPOLATION CLASS 6

Cubic Spline Interpolation

Practical Problems from Computational Viewpoint

(1) Only some simplest problems dealing with cubic spline interpolation
could be fully solved manually

(2) Other simple problems require a computer for a central part of the
solution: corresponding linear system can be derived manually, but a
computer (e.g., a procedure of Gaussian elimination) is needed to solve
it for the coefficients.

(3) For other problems (with more than 3-4 points — i.e., actually, for all
applied problems) a computer is needed to implement the algorithm at all
stages.




1. INTERPOLATION CLASS 6

Problem of Type (1)

Section 3.5, Example 1

Construct a natural cubic spline that passes through the points (1, 2),
(2, 3), and (3, 5).

The problem is about 3 points, 2 sub-intervals — thus, about 2 equations with
4 coefficients each, so — 8 unknown total.

8 conditions for 8 unknowns:

What to Set No of conditions

A * v Splines agree
1+2+1=]4
* ¢ ¢ with data [ ]
* 1st & 2nd derivatives
¢ ¢ ¢ at the mid-point
A v 2nd derivatives at
4 L 4 L 4 the end points 2

TOTAL: 8 32



1. INTERPOLATION

Cubic Spline Interpolation - MATLAB Script

LIBRARY OF MATLAE PROCEDURES

Spline_ test

Generates and plots cubic spline interpolation for a test function — the Runge function with ¢ =25

% Testing cubic spline interpolation by MATLAER's "spline"

%

% Interpolation of the Runge Function
%

xR = -1 - 0.01 : 1;

vR = 1./{1 + 25*xR.*xR);

%

% Five data points

%

3 [-1 -0.5 0.0 0.5 1.07];

W [ O.0285 0.137% 1.0 0.137% 0.0385 1;
%

s = spline{x, [0 v 01

%

¥¥ = linspace{-1, 1, 101;;

ploti{x, v, "o, =, ppvalics, =), '—', =R, ¥R,

k=T

function

CLASS 6



1. INTERPOLATION CLASS 6

Cubic Spline Interpolation of the Runge’s Function

1.2

1.2

5 Equally Spaced Points 9 Equally Spaced Points
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1. INTERPOLATION CLASS 6

Polynomial Interpolation - Summary

Main Idea

Find a function which y

= matches exactly the data points (which represent a
process/phenomenon and are obtained either
experimentally, or computationally) and

Product / Concentration
o
+*

= provides good estimates of the intermediate points not
included in the original data set. Time (min)

Uniqueness / Equivalence of Interpolations

The polynomials generated by Lagrange & Newton approaches may look different,
but they are in fact identical and represent the same function which is unigue
for the set of n distinct point; the order of this polynomial is at most n-1.

Dealing with Additional Points

v" In Lagrange Interpolation, when adding more points to the data set, one
has to rework the whole problem: each term in the Lagrange polynomial
contains information about all points.

v" There is no need to rework the problem with Newton Interpolation — with
new points, other terms in the polynomial are specified and those already
determined are used.




1. INTERPOLATION CLASS 6

Polynomial Interpolation - Summary (cont’d)

Key Concept

» Increasing the number of data points does not improve interpolation.

= Moreover, there are functions for which interpolation is always poorly
performed; unequally spaced data points (e.g., Chebyshev nodes) could be of
help.

What is So Special About Cubic Splines?

v" CSl, the product of XX century, appears to be, overall, most efficient,
flexible and accurate.

Computer Implementations

= All interpolation algorithms are convenient for implementations in
computer codes and practical use in different computational
environments (MATLAB, etc.)

36



1. INTERPOLATION CLASS 7

Why Numerical Differentiation?

Differentiation gives a measure of the rate at which a quantity changes.

Rates of change appear in many disciplines, practical applications, science,
engineering, etc.

A function to be differentiated can be given as:
a) An analytical expression

b) A set of discrete points (obtained from experimentation or prior
computation)

= For a), the derivative can be determined analytically

= When analytical differentiation difficult/not possible, Num. Diff. has to be
used

= When the function is specified as a set of discrete points, the derivative
also can be found by Num. Diff.

Objective of Numerical Differentiation

» find estimates for the derivatives, or a slope of a function, by using
the function values at a set of discrete points

37



