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ABSTRACT

Electromagnetic (EM) heat exchangers (HX) are systems that convert EM energy into heat or mechanical work. One potential design
consists of a porous lossy ceramic material heated by EM waves with a compressible gas coolant. EM heating of ceramics is nonlinear, since
the loss factor is temperature dependent. Designing such EM HXs requires an understanding of coupling between temperature, the electric
field, and gas dynamics at the pore scale. To mimic this microscale phenomenon, a single channel with a high-speed gas coolant in perfect
thermal contact with a thin solid ceramic layer is considered, with an applied plane-wave electric field propagating normal to the channel
walls. From a thin-domain asymptotic analysis, the conservation laws reduce to a Rayleigh flow in the gas coupled with averaged thermal
energy conservation equations at leading order. The model predicts that the kinetic energy of the gas increases up to 12.5 times the inlet
value when thermal runaway occurs in the ceramic region for the cases considered, and thermal choking is possible when the coolant
reaches the sonic state. Local maxima of efficiency occur on a discrete set of ceramic thicknesses that correspond to Fabry–Bragg resonances
of the electric field.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0139723

I. INTRODUCTION

Electromagnetic (EM) heating has been used for decades in
thermal food applications,1 chemical processes,2 materials process-
ing,3 and a range of industrial heating applications.4 The character-
istic of this energy transfer is the conversion of EM energy into
internal energy within the desired material. A phenomenon that
occurs in this context is thermal runaway. In many EM lossy
ceramic materials, such as zirconia or silicon carbide, the loss
factor of the material increases with increasing temperature. At suf-
ficiently high temperatures and sufficiently large applied electric
field strengths, the average temperature in the medium can increase
uncontrollably.5 While this phenomenon may lead to significant
destruction of the absorbing material, where this power able to be
transferred at a sufficiently high rate to a coolant, a potentially
large source of energy with a minimum increase in marginal
applied power would be beneficial in a variety of applications.

The motivation for this work is the viability of utilizing
thermal runaway in an electromagnetic heat exchanger (EM HX)
where a ceramic absorber converts electromagnetic radiation to
internal energy, and then this internal energy is transferred to a
coolant. These devices are being considered in energy collection
applications6 and possibly a way to harness beamed energy.7–10

A similar approach has been considered in beamed energy propul-
sion applications,7 where NASA implemented a millimeter wave
thermal launch system (MTLS) experiment.11 An array of ceramic
tubes is heated by high-power EM waves,11 through which a high-
pressure gas flows. The energy absorbed from EM waves provides a
heat flux to this gas, which undergoes thermal expansion and pro-
vides thrust. For ground-to-ground power beaming applications,
we are interested in understanding how much mechanical power
can be generated at the outlet since the compressible gas dynamics
is coupled with nonlinear EM heating of ceramic.
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Distinctive in EM HX is that the rate of thermal absorption
depends nonlinearly on the rate of energy transfer from the mate-
rial, either through thermal losses or through the energy converted
for useful work. Unlike classical resistive heating applications for
heat exchangers, where the power source is independent of temper-
ature and heat fluxes (e.g., Rostami et al.12), the electric field
strength and the absorbed power are coupled nonlinearly to tem-
perature in EM HXs: the electric field amplitude and temperature
need to be solved simultaneously. Furthermore, steady-state tem-
peratures that are predicted for these systems depend critically on
the wavelength of the applied field and the geometry of the ceramic
absorber.

For example, consider one-dimensional solutions of this
coupled system for a lossy ceramic slab, infinite in extent and
whose loss factor increases with increasing temperature.
Kriegsmann13 found that there are two stable thermal states when
the slab thickness is much smaller than the wavelength of the
applied electric field. For small applied electric field strengths,
the absorbed energy in the ceramic balances energy losses from
the slab via advection and radiation, and the resulting average
slab temperature remains moderate. As the applied electric field
strength is increased, however, a critical temperature is reached
where energy losses to the environment are not sufficient to
balance the absorbed power, and thermal runaway takes place.
The second stable state results when the average slab temperature
is large, on the order of 1800K, such that the loss factor of the
ceramic is significant. In this situation, the applied field is
completely absorbed in a thin layer in the ceramic near the
slab-air interface (i.e., the skin effect), and this absorbed power is
balanced by radiation and convective losses to the environment.
The transition between these two steady states is represented by a
hysteresis diagram in the average temperature/applied external
power plane, where the transition from the high-temperature state
to the low temperature state occurs at lower applied electric field
strengths compared to the transition from the low-temperature
state to the high-temperature state. Extensions to these studies are
found in multi-layer systems.14–16

More recently, we have been considering a third stable
thermal state in multilayered slab systems. Consider three slabs of
finite uniform thicknesses but infinite in extent, which are symmet-
rically irradiated by plane waves of equal electric field amplitude.
The exterior slabs are lossless and have the same thickness, while
the loss factor of the central ceramic increases with increasing
temperature.17–20 For appropriate choices of the slab thicknesses
relative to the applied wavelength of the electric field and when the
permittivity of exterior slabs is larger than the permittivity of the
ceramic, a Fabry–Bragg resonance occurs within the ceramic.
The loss factor results in a bounded electric field amplitude, and
the resulting absorbed power in the ceramic is dissipated through
either radiation or advection from the exterior of the external slabs.
This phenomenon is also found in a grounded two laminate
lossless-lossy system.21 The average temperature of this state is
intermediate to two equivalent states from the single-slab case: for
materials like silicon carbide or zirconia, the average temperature is
on the order of 1000 K, well below any temperature where struc-
tural material changes take place. While this intermediate solution
branch is not pertinent to the situation we report here, the

Fabry–Bragg resonance conditions do play a role in the energy
absorption and transfer between the ceramic and the dielectric
gaseous coolant.

This resonance condition has been utilized in other beamed
energy contexts. In the NASA MTLS experiment,11 an array of
ceramic tubes is heated with an incident high-power beam of EM
waves to realize the viability of beamed energy propulsion. When
the ceramic tubes reach a sufficiently high temperature, a high-
pressure compressed gas is expanded through tubes. Heat transfer
from the energy absorbed by the ceramic tubes into the gas results
in thermal expansion and provides the thrust of propulsion. The
authors report that the maximum absorbed power by the ceramic
tubes takes place when the tube thickness is one-quarter of the
wavelength of the applied electric field: exactly the first mode of the
Fabry–Bragg resonance.11

One potential design for an EM HX is inspired by the beamed
propulsion experiment of Beach et al.7 and to use an lossy porous
medium through which the gaseous coolant flows and expands
thermally as EM waves are applied. As a first effective model, the
ceramic tube configuration in the NASA MTLS experiment can be
represented as an ideal porous media, which obeys the capillary
tubes model of porosity and permeability.22 Generally, porous heat
exchangers allow for a larger contact area between the fluid and the
heated matrix, allowing better heat exchange between them.
However, a viable EM HX design requires the understanding on
coupling between the compressible gas dynamics and EM heating
of the ceramic region at the pore scale. Buoyancy effects can be
ignored at this scale since the characteristic Rayleigh number is
negligible. However, thermal runaway is a phenomenon that is
expected to occur.20 Our goal in this work is to quantify the impact
of coupling between thermal runaway and work of expansion
taking place at the pore scale.

For this quantification, we focus on dominant physical pro-
cesses to better understand the changes in energy and momentum
transfer. We consider the case when the coolant Reynolds number
is large, and inertia in the coolant flow is much larger than the
effects of viscous stresses. The geometry of an idealized single pore
of the EM HX is shown in Fig. 1. We exclusively consider gaseous
coolants, as the temperatures post-thermal runaway (greater than
1000 K) make any known coolant remaining in the liquid phase
highly unlikely. We assume that the coolant gas enters the channel
with a known temperature, pressure, density, and flow velocity such
that gas is subsonic at the inlet. Through conduction from the
EM-heated ceramic, the gas undergoes thermal expansion and
accelerates as it moves from the inlet to the outlet. The resultant
increase in kinetic energy of the coolant at the output provides a
measure by which the efficiency of the energy conversion can be
quantified.

An outline of this paper is as follows. In Sec. II, we formulate
the mathematical problem in dimensionless form. In Sec. III, we
consider the thin domain limit, where the thicknesses of the
channel and ceramic are much smaller than their lengths. In
Sec. IV, we show that the compressible coolant problem follows a
Rayleigh flow and identify the connection between fluid inertia and
temperature. In Sec. V, we discuss the computational results of our
model and explore the connections between EM heating and the
increase in the fluid kinetic energy. We conclude in Sec. VI.
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II. PROBLEM FORMULATION

Consider an idealized two-layer EM HX of length L, as shown
in Fig. 1. In the left layer, labeled region 1 in Fig. 1 is a channel
through which a gaseous coolant flows from bottom to top. In the
right layer, labeled region 2 is a lossy dielectric material, such as
silicon carbide or zirconia, whose right surface is electrically
grounded. The layer thicknesses l1 and l2 are assumed to be much
smaller than length L. Plane EM waves, polarized in the
y-direction, propagate normally to the structure. Only the ceramic
is heated by EM waves, and the fluid is heated through perfect
thermal contact with the ceramic at z ¼ l1. As is common in EM
heating models, the period of the carrier wave is much shorter than
the characteristic time scales of either thermal advection or thermal
diffusion, and so we assume the electric field is harmonic on these
transport time scales (e.g., see Kriegsmann13). Furthermore, we
focus here only on steady-state solutions.

The steady mass and momentum equations for the gas in
region 1 (0 , x , L, 0 , z , l1) are given by Euler’s equations,23

∇ � (ρ u) ¼ 0, (1)

u � ∇u ¼ � 1
ρ1

∇p, (2)

where u ¼ (u(x, z), w(x, z)) is the gas velocity, ρ1(x, z) is the gas
mass density, and p(x, z) is the gas gauge pressure, as referenced
from the ambient atmospheric pressure PA. We assume an ideal
gas and include thermal diffusion within the gas to arrive at the
equations23 in region 1,

PA þ p(x, z) ¼ ρ1(x, z)Rg T1(x, z), (3)

ρ1 cv,1 u � ∇T1f g þ (PA þ p)∇ � u ¼ κ1∇2 T1, (4)

where Rg is the universal gas constant per unit mass, T1(x, z) is the
temperature of the coolant, cv,1 is the specific heat of the gas at
constant volume, and κ1 is the thermal conductivity within the gas.
In region 2, thermal diffusion and Joule heating from the applied
electric field are the two energy transport mechanisms,24

κ2 ∇2T2 þ 1
2
σeff E2j j2¼ 0, (5)

where κ2 is the thermal conductivity in region 2, T2(x, z) is the
temperature in the ceramic, and σeff is the effective electrical con-
ductivity in the ceramic. We assume that there is no free charge
within the ceramic and that the effective conductivity depends only
on the frequency of the electromagnetic wave, ω, and its
temperature-dependent loss factor ϵi,2(T2(x, z)),

24

σeff ¼ ϵo ω ϵi,2(T2), (6)

where ω ¼ 2πf , f is the frequency of EM radiation and ϵo is the
permittivity of the free space.

Finally, we note that in both regions there is an electric field
present. We assume a monochromatic wave that is being applied,
and this gives us the following Gauss and Helmholtz equations25 in
each region j,

∇ � (~ϵj Ej) ¼ 0, (7)

∇2Ej þ ~k
2
j Ej ¼ ∇ ∇ � Eð Þ, (8)

where Ej is the electric field in region j, ~ϵj ¼ ϵo ϵj ¼ ϵo ϵr,j þ i ϵi,j
� �

is the electrical permittivity in each region j, i ¼ ffiffiffiffiffiffi�1
p

, and ϵo is
the free-space permittivity. Since the gas is assumed to be lossless,
ϵi,1 ¼ 0, we assume that relative dielectric constants ϵr,j � 1 are
real. The wavenumber in each layer is given by ~kj ¼ ω

ffiffiffiffiffiffiffiffi
μo~ϵj

p
, where

μo is the magnetic permeability in free space and the permeability
of both gas and the ceramic. The wavenumber in the ceramic ~k2 is
temperature dependent and complex-valued.

We assume that the applied electric field for z ! �1, polar-
ized in the y-direction, is given by

E � Eo ei
~ko z þ Γ e�i~ko z

n o
jþ c:c:, (9)

where Eo is the electric field amplitude, ~ko ¼ ω
ffiffiffiffiffiffiffiffiffiffi
μo ϵo

p
is the free-

space wave number, Γ is the reflection coefficient, j is the unit
vector in the y-direction, and c:c: is an abbreviation for the

FIG. 1. Structure of the considered EM HX. Region 1 is a pressure-driven flow
of an ideal gas and region 2 is a lossy ceramic material.
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complex conjugate of the previous term. This assumption for the
applied electric field gives the following vector formulation for the
electric field in each region j ¼ 1, 2,

Ej ¼ Eo Ej(x, z) jþ c:c:, (10)

where Ej(x, z) is the complex-valued electric field amplitude in
region j. Note that this plane-wave form gives that both ∇ � Ej ¼ 0
and ∇ � ~ϵj Ej

� � ¼ 0 for all (x, z), and j ¼ 1, 2.
The boundary conditions for the velocity and temperature at

z ¼ 0 are no normal mass flux of the gas, and the normal heat flux
is balanced by Newton’s law of cooling and radiation losses, respec-
tively,26

w ¼ 0, (11)

κ1
@T1

@z
¼ h T1 � TAf g þ ξ sr T4

1 � T4
A

� �
, (12)

where h is the heat transfer coefficient, TA ¼ PA=(ρA Rg) is the
ambient temperature in the environment with ρA being the
ambient coolant density, ξ is the radiation emissivity of the surface,
and sr is the Stefan–Boltzmann radiation constant. Furthermore, at
z ¼ 0, the electric and magnetic fields need to be continuous, and
this leads to the following boundary condition at z ¼ 0,13

@E1
@z

þ i ~koE1 ¼ 2 i ~koEo: (13)

Along the right channel wall at z ¼ l1, we require no gas mass
flux through the boundary, perfect thermal contact between the
coolant and the ceramic,26 and continuity of the electric and mag-
netic fields,25

w ¼ 0, (14)

T1 ¼ T2, (15)

κ1
@T1

@z
¼ κ2

@T2

@z
, (16)

E1 ¼ E2, (17)

@E1
@z

¼ @E2
@z

: (18)

For z ¼ l1 þ l2, we assume that this boundary is thermally
insulated and grounded,

@T2

@z
¼ 0, (19)

E2 ¼ 0: (20)

At the coolant inlet x ¼ 0, we assume that the x-component
of the velocity is uniform in z and the z-component of the velocity

is zero, and that the coolant is under ambient conditions,

x ¼ 0 : (u, w) ¼ (Uin, 0), (21)

T1 ¼ TA, (22)

p ¼ 0, (23)

ρ ¼ ρA: (24)

To better understand the dominant physical effects, we
perform a nondimensional analysis so that each nondimensional
parameter is a ratio of two physical quantities with the same physi-
cal units. We scale z on l1, x on L, u on Uin, w on l1 Uin=L, ρ1 on
ρA, p on ρA U

2
in, Tj on TA, and the variables x, z, u, w, p, Tj, ρ1, Ej

to derive the dimensionless variables with these scales. A result of
this process gives a set of dimensionless groups that can be inter-
preted as ratios of two physical processes with same units. By
applying the dimensional values of our system listed in Table I, the
dimensionless groups allow us to then efficiently identify the domi-
nant physical effects within a given scenario. Cases where some of
these parameters are either very large or very small allow for
reduced models to be formulated in this limits through the pertur-
bation analysis.28

The dimensional versions of conservation of mass (1) and
conservation of momentum (2) become on the dimensionless
spatial region 0 , x , 1, 0 , z , 1,

@

@x
ρ1 uf g þ @

@z
ρ1 wf g ¼ 0, (25)

TABLE I. Dimensional parameters used in the model. Properties of air (region 1)
are taken from Bergman et al.26 and zirconia (region 2) properties are taken from
Yakovlev et al..27

Parameters Values

Rg 287 J/kgK
ρA 1.16 kg/m3

TA 300 K
cv1 713 J/kgK
κ1 0.02W/mK
γ 1.4
l1 0.01 m
Uin 60 m/s
c p2 210 J/kgK
κ2 0.2W/mK
ϵo 8.85 × 10−12 F/m
f 2.45 GHz

ϵi,2 0:00293e
2:32

T�TA
TA

	 

ϵr,1 1
ϵr,2 6.69
μ0 4π × 10−7 H/m
l2 0.01 m
L 1 m
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ρ1 u
@u
@x

þ w
@u
@z

� �
þ @p
@x

¼ 0, (26)

η2 ρ1 u
@w
@x

þ w
@w
@z

� �
þ @p

@z
¼ 0, (27)

where η ¼ l1=L is the aspect ratio of the channel. In addition, the
equation of state (3), conservation of energy (4), and the
Helmholtz Eq. (8) for region 1 become

ρ1 ¼
1
T1

1þM2 p
� �

, (28)

η Pe ρ1 u
@T1

@x
þ w

@T1

@z

 �
þ (γ � 1) 1þM2 p

� � @u
@x

þ @w
@z

� �� �

¼ @2T1

@z2
þ η2

@2T1

@x2
, (29)

@2E1
@z2

þ k21 E1 þ η2
@2E1
@x2

¼ 0, (30)

where Pe ¼ (l1 UinρA cv,1)=κ1 is the Péclet number, the ratio of con-
vective heat transport to conduction, and the ratio of the flow
velocity to the speed of sound is given by M2 ¼ U2

in=(Rg TA) or the
Mach number, γ is the ratio of the specific heat of the gas, and
k1 ¼ ~k1 l1 is the dimensionless wave number of the electric field in
the coolant, or the ratio of the channel width to the wavelength of
the electric field.

In the ceramic, the scaled versions of conservation of energy
(5) and the Helmholtz equation (8) on the domain 0 , x , 1,
1 , z , 1þ l are given by

@2T2

@z2
þ η2

@2T2

@x2
þ ηP ϵi,2(T2) E2j j2¼ 0, (31)

@2E2
@z2

þ k22 E2 þ η2
@2E2
@x2

¼ 0, (32)

where l ¼ l2=l1 is the ratio of the thickness of the ceramic to the
channel thickness and P ¼ (ϵo ω l1 L E2

o)=(2TA κ2) is the ratio of
the applied power density to the surface compared to the character-
istic conductive heat flux.

At the boundary between free-space and the gas, z ¼ 0, we
require that the normal gas flow is zero (11), the heat flux from the
gas is balanced by advection and radiation to the environment
(12), and that the electric and magnetic fields are continuous (13)
at the boundary,

w ¼ 0, (33)

@T1

@z
¼ η Bi T1 � 1ð Þ þ R T4

1 � 1
� �� �

, (34)

@E1
@z

þ i ko E1 ¼ 2 i ko, (35)

where Bi ¼ h L=κ1 is the Biot number or the ratio of convective
heat transport to the surroundings to the conductive heat transfer
in the coolant. The radiation number R ¼ ξ sr L T3

A=κ1 is the ratio
of characteristic radiation losses to the environment to conduction
within the coolant, and ko ¼ ~ko l1 is the scaled free-space
wavenumber.

At the boundary between the gas and the ceramic, z ¼ 1, we
require that the normal gas flow is zero (14), perfect thermal
contact between the gas and the ceramic (15)–(16), and continuity
between electric and magnetic fields in the gas and the ceramic
(17)–(18) become

w ¼ 0, (36)

T1 ¼ T2, (37)

@T1

@z
¼ κ

@T2

@z
, (38)

E1 ¼ E2, (39)

@E1
@z

¼ @E2
@z

, (40)

where κ ¼ κ2=κ1 is the ratio of the thermal conductivities of the
ceramic and the gaseous coolant.

At the thermally insulated (19) and grounded (20) boundary
of the ceramic z ¼ 1þ l, we have

@T2

@z
¼ 0, (41)

E2 ¼ 0: (42)

Finally, we note that, at the inlet x ¼ 0, we have u(0, z) ¼ 1,
w(0, z) ¼ 0, ρ1(0, z) ¼ 1, p(0, z) ¼ 0, and T1(0, z) ¼ 1.

III. THIN-DOMAIN LIMIT

To better understand coupling of the physical phenomena of
this problem, we look at the asymptotic limit η � 1. We expand all
unknown variables in asymptotic series in terms of η,

ρ1 ¼ ρ(0)1 þ ηρ(1)1 þ � � � , (43)

p ¼ p(0) þ ηp(1) þ � � � , (44)

u ¼ u(0) þ ηu(1) þ � � � , (45)

w ¼ w(0) þ ηw(1) þ � � � , (46)
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E1 ¼ E(0)
1 þ ηE(1)

1 þ � � � , (47)

E2 ¼ T (0)
2 þ ηE(1)

2 þ � � � , (48)

T1 ¼ T (0)
1 þ ηT (1)

1 þ � � � , (49)

T2 ¼ T (0)
2 þ ηT (1)

2 þ � � � : (50)

Substituting (43)–(50) into the dimensionless system of
Eqs. (25)–(30), we find at leading order for the gas equations,

@

@x
ρ(0)1 u(0)
n o

þ @

@z
ρ(0)1 w(0)
n o

¼ 0, (51)

ρ(0)1 u(0)
@u(0)

@x
þ w(0) @u

(0)

@z

� �
þ @p(0)

@x
¼ 0, (52)

@p(0)

@z
¼ 0, (53)

ρ(0)1 ¼ 1

T (0)
1

1þM2p(0)
� �

, (54)

@2T(0)
1

@z2
¼ 0, (55)

@2E(0)
1

@z2
þ k21E

(0)
1 ¼ 0, (56)

and in the ceramic,

@2T(0)
2

@z2
¼ 0, (57)

@2E(0)
2

@z2
þ k22E

(0)
2 ¼ 0, (58)

along with the following boundary conditions,

z ¼ 0 : w(0) ¼ 0, (59)

@T(0)
1

@z
¼ 0, (60)

@E(0)
1

@z
þ i koE

(0)
1 ¼ 2 i ko, (61)

z ¼ 1 : w(0) ¼ 0, (62)

T (0)
1 ¼ T(0)

2 , (63)

@T(0)
1

@z
¼ κ

@T (0)
2

@z
, (64)

E(0)
1 ¼ E(0)

2 , (65)

@E(0)
1

@z
¼ @E(0)

2

@z
, (66)

z ¼ 1þ l :
@T (0)

2

@z
¼ 0, (67)

E(0)
2 ¼ 0: (68)

From (53), we see that p(0)(x, z) ¼ p(x) is independent of the
spanwise coordinate z, and from (55) and (60) that T(0)

1 (x, z)
¼ T(0)

1 (x) is also independent of z. So from the equation of state
(54), ρ(0)1 (x, z) ¼ ρ(x) is also z-independent. Similarly from (57)
and (67) that T(0)

2 (x, z) ¼ T (0)
2 (x). So from perfect thermal contact

at z ¼ 1, Eq. (64) gives us that T (0)
1 (x) ¼ T (0)

2 (x) ¼ T(x).
For the flow field, we assume a plug flow u(0)(x, z)

¼ u(x), w(0) ¼ 0, which after one integral of mass conservation
(25) in x, we find that

ρ(x) u(x) ¼ m, (69)

where m is the uniform mass flow rate of the gas coolant. Using
the inlet boundary condition at x ¼ 0, we find that m ¼ 1, but we
keep the notation in the following derivation. Finally, we have the
classical Bernoulli relation and the equation of state,

ρ(x) u(x)
du
dx

þ dp
dx

¼ m
du
dx

þ dp
dx

¼ 0, (70)

ρ(x) ¼ 1
T(x)

1þM2p(x)
� �

: (71)

.
The temperature being independent of z also simplifies the

leading-order Helmholtz problems in the gas and the ceramic to
be, where we drop the (0) superscript and consider this the leading-
order problem to solve in terms of unknown temperature T(x),

@2E1
@z2

þ k21E1 ¼ 0, 0 , z , 1, (72)

@2E2
@z2

þ k22(T(x))E2 ¼ 0, 1 , z , 1þ l, (73)

subject to boundary conditions,

@E1
@z

(x, 0)þ i koE1(x, 0) ¼ 2 i ko, (74)

E1(x, 1) ¼ E2(x, 1), (75)
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@E1
@z

(x, 1) ¼ @E2
@z

(x, 1), (76)

E2(x, 1þ l) ¼ 0: (77)

We still need to find an expression for T(x) in order to close
our leading-order problem. To do this, we look at the energy equa-
tions (29) and (31) using (43)–(50) at O(η),

@2T (1)
1

@z2
¼ Pe m

dT
dx

þ (γ � 1)(1þM2p(x))
du
dx

� �
, (78)

κ
@2T(1)

2

@z2
¼ �κ Pϵi,2(T(x))jE2j2, (79)

where we have formally multiplied (79) intentionally by κ as is
clarified below. Equations (78) and (79) are subject to boundary
conditions in z,

@T(1)
1

@z
(x, 0) ¼ Bi (T(x)� 1)þ R (T4(x)� 1), (80)

T(1)
1 (x, 1) ¼ T(1)

2 (x, 1), (81)

@T(1)
1

@z
(x, 1) ¼ κ

@T (1)
2

@z
(x, 1), (82)

@T(1)
2

@z
(x, 1þ l) ¼ 0: (83)

For the compatibility condition on T(x) in order for the solu-
tions to exist, we integrate both sides of (78) over 0 , z , 1 and
add the result to the integral of (79) over 1 , z , 1þ l. The net
result using (80)–(83) gives the required condition on T(x),

Pe m
dT
dx

þ (γ � 1)(1þM2 p(x))
du
dx

� �
¼ P ϵi,2(T(x)) E2j jj j2

� Bi (T(x)� 1)� R(T4(x)� 1), (84)

where

E2j jj j2¼
ð1þl

1
jE2(x, z)j2 dz: (85)

Finally, we are interested in the large velocity limit, Pe � 1,
and so we define the O(1) quantities �P ¼ P=Pe, �Bi ¼ Bi=Pe, and
�R ¼ R=Pe to arrive at the final system of equations,

ρ(x) u(x) ¼ m, 0 , x , 1, (86)

m
du
dx

þ dp
dx

¼ 0, 0 , x , 1, (87)

m
dT
dx

þ (γ � 1)(1þM2 p(x))
du
dx

¼ Q(T(x)), 0 , x , 1, (88)

ρ(x) ¼ 1
T(x)

1þM2p(x)
� �

, 0 , x , 1, (89)

Q(T(x)) ¼ κ�Pϵi,2(T(x)) E2j jj j2� �Bi T(x)� 1ð Þ � �R T4(x)� 1
� �

,

(90)

@2E1
@z2

þ k21E1 ¼ 0, 0 , z , 1, (91)

@2E2
@z2

þ k22(T(x))E2 ¼ 0, 1 , z , 1þ 1, (92)

subject to boundary conditions,

x ¼ 0 : u ¼ ρ ¼ T ¼ 1, p ¼ 0, (93)

z ¼ 0 :
@E1
@z

þ i koE1 ¼ 2 i ko, (94)

z ¼ 1 : E1 ¼ E2, (95)

@E1
@z

¼ @E2
@z

, (96)

z ¼ 1þ l : E2 ¼ 0: (97)

IV. RAYLEIGH FLOW

The systems (86)–(89) represent a spatially varying plug flow
through a channel into which an energy flux Q enters this system.
We briefly outline the development of the Rayleigh flow in this
section and discuss later how this flow couples with the electromag-
netic problem (91)–(97).

From (86) and (89), we can write

u ¼ mT
1þM2p

: (98)

Taking the x-derivative of (98) and utilizing the momentum equa-
tion (87), we get

1�M2u2

T

 �
du
dx

¼ u
T

	 
 dT
dx

: (99)

We define the dynamic Mach number �M2 as

�M2 ¼ M2 u2

γ T
: (100)
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Substituting (100) in the above Eq. (99), we get

(1� γ �M2)
du
dx

¼ u
T
dT
dx

: (101)

Substituting (98) and (101) into energy conservation Eq. (88)
results in

m
dT
dx

¼ Q(T)
1� γ �M2

γ(1� �M2)

" #
: (102)

Substituting (102) into (101), we get

du
dx

¼ uQ(T)
mT

� �
1

1� γ �M2
	 

2
4

3
5 1� γ �M2

γ(1� �M2)

" #
: (103)

We can solve the system of nonlinear first-order ODEs (102)
and (103) for given inlet conditions on temperature and flow veloc-
ities (93).

However, we can follow Babu29 and find a relation between �M
and T in terms of their inlet conditions �Mo and To. From (102)
and (103), we can write following differential identities:

dT
T

¼ Q(T)
mT

1� γ �M2

γ(1� �M2)

" #
dx, (104a)

du
u

¼ 1

1� γ �M2
	 

2
4

3
5 dT

T
: (104b)

Taking the differential of both sides of (100), we find

d( �M2)
�M2 ¼ 2

du
u

� dT
T

: (105)

Substituting (104) into (105), we get

d( �M2)
�M2 ¼ 1þ γ �M2

1� γ �M2

" #
dT
T

: (106)

Equation (106) exactly describes the classical Rayleigh flow. To sim-
plify even further, we can separate variables and integrate both
sides of (106) from inlet to outlet conditions. Upon integration, we
find

T
T0

¼
�M2

�M2
0

 !
1þ γ �M2

1þ γ �M2
0

 !�2

, (107)

where T0 is the inlet temperature and �M2
0 is the dynamic Mach

number at the inlet that is given as �M2
0 ¼ M2

γT0
(as u ¼ 1 at the inlet).

For given inlet conditions To and �M2
o, the system of differential

Eqs. (102) and (107) can be solved numerically.

Before we discuss results from this model, let us first look at
the algebraic constrain (107) separately to get some insights into
the numerical solution to the full problem. As Eq. (107) is qua-
dratic in nature, for a given T

T0
, there are two possible solutions for

the Mach number. These two roots are given by

�M2
1 ¼

�b� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
, �M2

2 ¼
�bþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a
, (108)

where a ¼ γ2, b ¼ 2γ � T0
�M2
0T
(1þ γ �M2

0)
2
, and c ¼ 1.

Roots of the algebraic constraint (107) are plotted in Fig. 2
assuming that the inlet Mach number is such that the flow is sub-
sonic with �M0 ¼ 0:0298 based on values listed in Table I For this
inlet condition, the following observations can be made from (108)
and (102):

† When the heat added into the system is due to EM heating of
the ceramic, i.e., when Q(T) . 0, the right hand side of (102)
is positive for �M2

0 ,
1
γ. The outlet temperature monotonically

increases with the applied EM power, �P. This situation corre-
sponds to stage I as shown in Fig. 2, and we see that the outlet
�M2 also increases with both T and �P.

(1) Regardless of the applied EM ower, the maximum temperature
that can be achieved in the system is T ¼ Tmax, which occurs
when �M2 ¼ 1

γ as seen in Fig. 2. By taking the derivative of
(107) with respect to �M2 and setting the result to zero, the
maximum temperature, Tmax, is given by

Tmax ¼ T0(1þ γ �M2
0)

2

4γ �M2
0

, (109)

and the corresponding gain in the kinetic energy per unit

FIG. 2. Two roots of the algebraic constraint given by (108) as a function of T
T0

for �M0
2 ¼ 0:0298, i.e., inlet velocity and temperatures are uin ¼ 60 m/s and

300 K, respectively.
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volume, 12 ρu
2, is given by

ρoutu
2
out

ρinu
2
in

¼ mumax ¼ m
Tmax

γ �M2
o

 !1=2

� 12:5; (110)

based on the values given in Table I.
† With some algebraic manipulations on (102) and (106), it is

possible to show that

m
d( �M2)
dx

¼ �M2 1þ γ �M2

γ(1� �M2)

" #
Q(T)
T

: (111)

The right-hand side of this equation is always positive when
�M2

, 1. We can then conclude that if the flow is subsonic at
the inlet, Q(x) . 1 results in an elevated Mach number at the
outlet up to �M2 ¼ 1 (i.e., the model allows for �M2 at the outlet
monotonically increases with �P until we reach �M2 ¼ 1).

† When �P is such that Q(T) . 0 and 1
γ ,

�M2
, 1 within a com-

putational domain defined as xcrit , x , 1, the right-hand side
of (102) is negative for x . xcrit. This means that the gas expe-
riences cooling effect for x . xcrit as a result of additional heat
within the ceramic. The relation between �M2 and T for this
scenario is described by stage II in Fig. 2.

† When �P is increased even further and Q(T) is such that
�M2 ¼ 1 within the computational domain, the RHS of (102)
becomes �1, and further increase in �M2 is not possible. This
phenomenon is known as thermal choking in classical Rayleigh
flows. Theoretically, it means that when the flow is initially
subsonic, no matter how much heat we add into the system, it
is not possible to reach a supersonic state (i.e., �M2

. 1) at the
outlet. Experimentally, if we keep adding heat into the system
even further, the outlet �M2 suggests that the flow remains in
the sonic state , but the inlet properties, such as gas tempera-
ture or pressure, change to accommodate further additional
heat. The model presented here does not consider the impact
of heat addition into an thermal choked flow (this is the limit
on Rayleigh flow approximation). In the Results section below,
we consider cases when thermal choking is absent. We discuss
this phenomenon in more detail in upcoming subsections.

V. RESULTS

We now solve the system (102) and (107) computationally
using for inlet conditions �M2

o ¼ 0:0298 [corresponding to the gas
inlet velocity of 60m/s, To ¼ 1 (corresponding to 300 K)], �Bi ¼ 0:4,
and �R ¼ 0:1. Based on our scaling, m ¼ 1 as well. The model is
solved using the package ode15s function within MATLAB30–32 and
validated through convergence tests on the relative tolerance, for a
case where thermal runaway takes place. Furthermore, results from a
second-order adaptive midpoint rule script on the first-order differ-
ential Eq. (111) provided a check on the accuracy of our approach.
Figure 3 shows this comparison between the two models when
thermal runaway takes place in the ceramic.

Results from this model are organized as follows:

† We first explain the thermal energy balance taking place in the EM
HX when we operate in stage I shown in Fig. 2, i.e., at the outlet,
we have �M2 � 1

γ and T � Tmax. In this stage I, it is expected that
both T and �M2 at the outlet increase monotonically with �P.

† We then consider the operation of the EM HX in stage II shown
in Fig. 2, i.e., at the outlet, we have 1

γ ,
�M2

outlet , 1 and Toutlet

that drops with an increase in �P (also Toutlet , Tmax). By carry-
ing out a linear stability analysis, we show that stage II is unsta-
ble such that infinitesimal fluctuations in the applied EM power
lead to rapid rise in �M2, resulting in a thermally choked flow.

† Finally, we explain thermal choking phenomenon and discuss
possible approaches to avoid choking experimentally.

1. Operation in stage I

Results from the solution to (102) and (106) for �P ¼ 10 and
�P ¼ 50 are plotted in Fig. 4. When �P ¼ 10, we operate on the
lower branch of the response curve (as seen from the temperature

FIG. 3. Comparison between solutions obtained using MATLAB ode15s function
[which solves (102) and (107)] and the adaptive midpoint rule [which solves
(111) and and (107)] when �P ¼ 50. Mean errors between the models are
0.97%, 1.4%, and 1.2% for comparison of T , �M

2
, and u solutions, respectively.

�P ¼ 50, Bi ¼ 0:4, and�R ¼ 0:1:
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values), and the kinetic energy (KE) of the gas per unit volume at
the outlet, i.e., KE ¼ 1

2 ρu
2, turns out to be 1.5 times the KE at the

inlet. However, when �P ¼ 50, we observe the onset of thermal
runaway in the ceramic region as seen from the jump in tempera-
ture values. As a result, we observe a jump in KE about nine times
the initial value.

For this scenario, the competition between thermal runaway
and the skin effect can be seen from Fig. 5. When the EM heat

source is large, the onset of thermal runaway takes place, but as a
result of increased ϵi,2, we observe the skin effect, i.e., most of the
incident EM energy is absorbed at the interface between the fluid
channel and the ceramic. Since there is less EM power available for
heating, qdot drops down and is balanced by net heat losses to the
environment, i.e., Q(T) ¼ 0. Since heat is not being added into the
ceramic, both T and u become uniform in space until the outlet at
x ¼ 1. The power response equation that gives us Q(T) ¼ 0 can be
written as

�P ¼
�Bi(T � 1)þ �R(T4 � 1)

κkE2(T)k2ϵi,2(T)
: (112)

In Fig. 6, we plot the outlet temperature as a function of �P
given by the numerical model of (102) and (107) and the analytical
solution to Eq. (112). As expected, both the models agree with each
other as the skin effect causes Q(T) ¼ 0. When thermal runway
initiates within the ceramic, the phenomenon of the skin effect pro-
motes the balance between the EM heat source and environmental
heat losses. This balance stabilizes the temperature growth, and the
energy balance is then given by (112) [i.e., Q(T) ¼ 0]. But, when
we operate on the lower branch, the temperature monotonically
increases over the domain 0 , x , 1, as seen from Fig. 4(a). A
large spatial domain is needed for the computed temperature to
arrive at the value described in the lower branch of the analytical

FIG. 4. Results from the solution to
(102) and (106) when �P ¼ 10 (a) and
�P ¼ 50 (b). Common parameters in
these models are �Bi ¼ 0:4, �R ¼ 0:1,
and inlet velocity and temperature are
uin ¼ 60m=s and Tin ¼ 1,
respectively.

FIG. 5. Normalized electric field strength, kE2k2, and qdot ¼ κkE2k2ϵi,2(T ) as
a function of x in the region where thermal runway takes place when �P ¼ 50.
Values are normalized by dividing the respective local maximum. Temperature
profile for this scenario is shown in Fig. 4(b).
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solution. This distinction in the domain length explains why the
response curves do not agree on the lower branch.

From this comparison shown in Fig. 6, we show that the
outlet conditions (Toutlet and �M2

outlet) in stage I can be determined
by simultaneously solving two nonlinear Eqs. (112) and (101). This
simplification is valid only when thermal runaway takes place in
the ceramic, and the EM HX is operated on the upper branch of
the response curve. Until otherwise noted, we will use this simplifi-
cation to determine the outlet conditions of the EM HX when
operated in stage I.

2. Operation in stage II and thermal choking

We now set �P such that we have �M2
outlet .

1
γ at the outlet (i.e.,

the EM HX operates in the stage II shown in Fig. 2) when
�M2

0 ¼ 0:0298 (i.e., inlet velocity of 60 m/s), T0 ¼ 1, �Bi ¼ 0:4 and
�R ¼ 0:1. Results from the numerical model are shown in Fig. 7. As
seen in Figs. 7(a) and 7(b), the gas experiences a cooling effect
when �M2

. 1
γ [as the RHS of (102) becomes negative for �M2

. 1
γ]

and �M2 monotonically increases with �P [as the RHS of (111) is
always positive for �M2

, 1]. In Fig. 7(c), we plot �M2
outlet as a func-

tion of �P when the EM HX operates in stages I and II. We see that
the increase in �M2 with �P is very sharp in stage II in comparison to
stage I (i.e., �M2 is very sensitive to the applied power in stage II).
To understand why this occurs, we carry out a linear stability anal-
ysis on uniform and constant solutions at steady-state (i.e., outlet
conditions when thermal runway occurs). We define Tss and �M2

ss as
uniform base-state solutions that satisfy the algebraic constraint
(107). Now introducing infinitesimal perturbations in the base-state
solution as

T ¼ Tss þ ~T ,

�M2 ¼ �M2
ss þ ~�M

2
,

and linearizing (102) and (107) about the uniform base-state

solution, we get

mγ
	
1� �M2

ss


 d~T
dx

¼ mγ
dTss

dx
� Q(Tss)γ

� �
~�M

2

þ (1� γ �M2
ss)

dQ
dT

 �
Tss

" #
~T , (113a)

~T ¼ 1þ γ �M2
0

1þ γ �M2
ss

 !2

� 2γTss

1þ γ �M2
ss

" #
~�M

2
: (113b)

We can further simplify the linearized system of Eq. (113) by utiliz-
ing that we have dTss

dx ¼ 0 and Q(Tss) ¼ 0 (this is true when thermal
runaway occurs in the ceramic). Finally, we assume that ~T ¼ Aesx ,
where A and s are amplitude and growth rate of infinitesimal per-
turbations. Substituting ~T in (113) and solving for s, we get

s ¼
(1� γ �M2

ss)
dQ
dT

� �
Tss

mγ(1� �M2)
,

where dQ
dT

� � ¼ k�P d(kE2k2)
dT ϵ1,2(T)þ kE2k2 dϵ1,2

dT

h i
� �Bi� 4�RT3. As the

uniform base-state solution is assumed to be on the upper branch,

we can look at Fig. 5 and conclude that d(kE2k2)
dT , 0 and kE2k2 ! 0

and dQ
dT

� �
Tss
, 0 on the upper branch near the outlet (this observa-

tion is consistent with Refs. 13, 17, and18). We can then conclude
that when �M2

ss ,
1
γ, s is negative, which means that the outlet solu-

tion is linearly stable against infinitesimal perturbations. However,
when �M2

ss .
1
γ, s becomes positive. This means that infinitesimal

disturbances introduced in the temperature solution at the outlet
are growing exponentially in space. As a result of this instability,
�M2 increases rapidly until it reaches 1 (i.e., sonic state), and we
achieve thermal choking within the channel.

The Rayleigh flow becomes thermally choked when �M2 ¼ 1.
The linear stability analysis above shows that stage II is very sensi-
tive to disturbances in the applied power (i.e., disturbances in T
and �M2). For instance, if we let �Pchoked ¼ �Pcrit þ Δ�P, where �Pcrit

and �Pchoked are the applied powers, when �M2
outlet ¼ 1

γ and

�M2
outlet ¼ 1, respectively. From Fig. 7(c), we get Δ�P ¼ 0:02 for

�M2
0 ¼ 0:0298, T0 ¼ 1, �Bi ¼ 0:4, and �R ¼ 0:1. When this instability

is promoted, small changes in the applied power lead to rapid
growth of T and �M2 leading to a thermally choked flow. Although
operating an EM HX in stage II suggests generation of maximum
possible KE of the gas, these states may not be possible without the
thermally choked channel flow.

In many aerospace application, such as aircraft engines or
external combustion engines, heat is added into a subsonic flow of
a gas to achieve the desired gas velocity. We show that the gain in
the gas flow velocity is proportional to how much heat is being
added into the gas by the engine. But, theoretically, when the flow
reaches the sonic state, further additional heat is not possible
without altering the inlet condition due to thermal choking.
Experimentally, alternations in the inlet condition due to thermal

FIG. 6. Comparison of power response curves given by the numerical solution
to (102) and (107) and analytical solution to (112). The model of (112) assumes
that the temperature is uniform in space.
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choking lead to drop in mechanical power output of the engine.33

If the heat is added into the flow that is supersonic at the inlet,
shock waves can occur as a result of thermal choking, and again
performance of the engine drops down.29 Therefore, in typical air-
craft engines, heat is added into a subsonic flow to achieve �M2

, 1
and different types of nozzle assemblies are used to reach super-
sonic states at the outlet.

The EM HX discussed here is also limited by thermal
choking. When �M2 ¼ 1, right-hand side of (102) becomes �1
indicating thermal choking, i.e., conservation laws can no longer be
described by Rayleigh flow approximation.

To determine the critical power at which thermal choking
occurs, we identify that stage II (which is defined when
1
γ ,

�M2
, 1) is unstable such that infinitesimal fluctuations in T

or �M2 make the flow to become thermally choked. However, when
the EM HX is operated in stage I, we achieve a stable operation.

The maximum possible �M2 and T in stage I are �M2
max ¼ 1

γ and
Tmax given by (109), respectively. If we let Pcrit to be the applied
EM power when at the outlet we have �M2

outlet ¼ 1
γ and

Toutlet ¼ Tmax, then thermal choking is absent when �P , �Pcrit.
Since this state lies in stage I, we can utilize simplification that the
balance between thermal runaway and the skin effect results in
Q(T) ¼ 0 and the outlet conditions can be determined by simulta-
neously solving two nonlinear equations (112) and (107). Since our
goal is to determine �Pcrit such that Tout ¼ Tmax and �M2

outlet ¼ 1
γ, we

can solve (112) for a given Tmax as

�Pcrit ¼
�Bi(Tmax � 1)þ �R(T4

max � 1)

κkE2k2(Tmax)ϵi,2(Tmax)
: (114)

From (109), Tmax increases nonlinearly as �M2
0 decreases. This sug-

gests that �Pcrit also increases as �M2
0 decreases. We now solve (109)

FIG. 7. Temperature profiles (a) and �M
2
(b) as a function x with increasing applied EM power, �P when operated in stage II shown in Fig. 2. �M

2
outlet as a function of �P (c)

when operated in stages I and II. Parameters that are kept constant in these simulations are �M
2
0 ¼ 0:0298, T0 ¼ 1, �Bi ¼ 0:4, and �R ¼ 0:1.
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and (114) for different values of �M2
0, and this result is plotted in

Fig. 8. From this curve, it is possible to choose inlet flow speeds
depending on the incident power levels such that thermal choking
can be avoided, which we think is helpful for future EM HX design.

3. Power efficiency

One of the benefits of our approach is in finding an estimate
of the efficiency for these heat exchangers as described by nondi-
mensional groups. In this section, we focus on the characteristics of
the system for which the heat transfer from the absorbed energy in
the ceramic is converted to mechanical work in the gas. We choose
this efficiency since we expect the energy loss to reflection of the
electromagnetic energy to be significant. For example, Hogan
et al.10 through FDTD simulations consider the EM heating of
families of AlN:Mo at different volume fractions of molybdenum.
They report reflected losses of incident power in the range of
45%–70% at temperatures in the range of 1100 K. This then results
in a total efficiency of EM heat generation to be in the range of
30%–55%.

To consider the power efficiency of the power that is not
reflected from the system, we integrate the conservation of energy
[Eq. (88)] in x from zero to one to arrive at the following balance
of power terms, arranged so that each term is positive,

Ptherm þ Penv þ Prad ¼ Pabs þ P flow ¼ Ptotal , (115)

where Ptherm ¼ m T(1)� T(0)f g is the power needed to raise the
temperature of the fluid. The additional energy loss terms on the

FIG. 8. Critical power, �Pcrit , as a function of inlet Mach number �M
2
0. When

�P ¼ �Pcrit , �M
2
outlet ¼ 1

γ and Toutlet ¼ Tmax as given by (109).

FIG. 9. (a) Outlet temperature Tout as
a function of the dimensionless input
power �P for �R ¼ 0:1, Bi ¼ 0:4, and
l ¼ 1. (b) Net output flow power P flow
as a function of �P. (c) Efficiency for
absorbed power χabs compared to the
efficiency of radiation losses χR . Note
that after thermal runaway, the increase
in absorbed power is mostly lost
through radiation.
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left-hand side of (115) are given by

Penv ¼ Bi
ð1
0
T(x)� 1½ 	 dx, (116)

Prad ¼ R
ð1
0
T4(x)� 1
� �

dx, (117)

where Penv is the net power loss due to environmental losses and
Prad are the losses due to thermal radiation. The right-hand side
consists of power absorbed by the ceramic, and the power con-
verted to useful work due to thermal expansion,

Pabs ¼ κ�P
ð1
0
ϵi,2(T) kE2k2 dx, (118)

P flow ¼ γ � 1ð Þ M2

2
u2(1)� 1
� �� (1þM2) u(1)� 1½ 	

� �
, (119)

where we have assumed inlet conditions u(0) ¼ T(0) ¼ 1 and
p(0) ¼ 0.

In order to determine the conversion efficiency of the system,
we use as a reference power Ptotal and consider what fraction of this
power corresponds to terms on the left-hand side of (115), which
we label as losses. The power fractions for terms on the right-hand
side of (115) coincide with power efficiencies,

χthermal ¼
Pthermal

Ptotal
, (120)

χenv ¼
Penv
Ptotal

, (121)

χR ¼ Prad
Ptotal

, (122)

FIG. 10. Ceramic thickness effect on power with �P ¼ 20, �R ¼ 0:1, Bi ¼ 0:4, and 0 � n � 4. (a) Pabs vs n; (b) Tout vs n; (c) P flow vs n; and (d) power fractions χ flow
and χR vs n.
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χabs ¼
Pabs
Ptotal

, (123)

χ flow ¼ P flow

Ptotal
: (124)

To better understand the interplay of these power fractions,
we show a typical measure of these powers over 0 , �P , 30 in
Fig. 9, where �R ¼ 0:1, Bi ¼ 0:5, and l ¼ 1. In Fig. 9(a), we show
the outlet temperature Tout as a function of �P and note that the
outlet temperature attains the value of the upper branch of the
power response curve around �P ¼ 20. Since m ¼ 1 in our case,
Tout ¼ Pthermal þ 1, and we see the corresponding behavior in the
flow power P flow in Fig. 9(b). However, the fraction of power given
to increase the flow decreases significantly for �P . 20, as shown in
Fig. 9(c). We note that while the absorbed power fraction Pabs
increases from 0:8 to nearly 1 at �P ¼ 30, the fraction of losses of the
system to radiation significantly increase from near 0:1 for small �P
to over 0:8 for �P ¼ 30. Hence, the increased energy absorption due
to the onset of thermal runaway does increase the outlet flow power,
but the majority of the power is lost through radiation effects.

The dimensionless wavelength of the electric field in the
ceramic is given by

λ2 ¼ 2π
ko

ffiffiffiffiffiffiffi
ϵr,2

p :

From Mohekar et al. (2020),21 we note that our system has electro-
magnetic resonances at odd multiples of λ2=4, and we then con-
sider variations of the ceramic thickness in terms of the wavelength
in the ceramic,

l ¼ λ2 n, (125)

where the Fabry–Bragg resonance occurs for
n ¼ 1=4, 3=4, 5=4, . . ..

In Fig. 10, we show the responses of these power contributions
as a function of n for �P ¼ 20 and the remainder of the parameters
the same as in Fig. 9. In Fig. 10(a), we plot the absorbed power Pabs
as a function of n and note that the maxima of the absorbed power
occur exactly at Fabry-Bragg resonance conditions. However, the
outlet temperature shown in Fig. 10(b) appears to reach its outlet
temperature provided that the absorbed power Pabs is approximately

FIG. 11. Resonant frequency impact on �P-dependence for (a) χ flow ; (b) Tout ; and (c) P flow . Plots are terminated before �P ¼ 30 are a result of thermal choking.
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larger than 40. The flow power P flow tracks with Tout as expected as
shown in Fig. 10(c), but the fraction of the power needed to main-
tain this flow decreases with increasing n, and the losses are primar-
ily due to radiation as shown in Fig. 10(d). From these results, it is
clear that a significant increase in the output flow is possible near
n ¼ 1=4, and that this increase is amenable to values of n near this
value. This is consistent with the NASA’s MTLS experiment11 where
it is reported that the maximum absorption of the EM power occurs
when the ceramic tube is 1/4 wavelength thick.

With this result, we can focus on the effects of the power
response of the system over �P for different resonance values.
Figure 11a shows the flow power efficiency χ flow as a function of �P
for the resonance cases n ¼ 1=4, 3=4, 5=4, and 7=4. Note that for
each resonance case, the efficiency reaches a peak value before
decaying algebraically as �P increases. The value of �P needed to
achieve this peak-efficiency case decreases as n increases.
However, from the outlet temperature Tout and net flow power
P flow shown in Figs. 11(b) and 11(c), we note that the outlet
values at these peak efficiencies, shown by the open green circles,
decrease with increasing n. This suggests that the power efficiency
may not be the best metric in determining a system design:

reduced efficiency may be the price to pay to gain an eightfold
increase in the flow power.

A final note on Fig. 11(c) is that at nearly the same flow
power P flow � 3:3, the onset of thermal choking takes place. We
consider here reducing the inlet flow velocity to prevent thermal
choking and see how this change affects the output power. This is
done by reducing the Mach number M2. In Fig. 12(a), we show the
outlet temperature Tout as a function of �P for a range of M2. The
value M2 ¼ 0:0418 corresponds to our previous results, and we see
that the change in the outlet temperature behavior over �P for these
Mach numbers is not significant. However, for the flow power P flow

shown in Fig. 12(b), we note that the output power values vary
with M2 appreciably for �P . 10. Thermal choking only takes place
for �P , 30 for the cases described above.

VI. CONCLUSIONS

In this paper, we consider a simple two-layer model of an EM
HX, where in one layer flows a gaseous coolant and the second
layer consists of a lossy dielectric. This second layer is heated by an
externally applied EM field. The gas flow dynamics, electromag-
netics, and the energy transport are nonlinearly coupled and the
mathematical system representing these processes need to be solved
simultaneously. We look in the limit of large Re and order-one
Mach numbers to gain physical insight into the behavior and
potential of this EM HX.

By applying the thin domain asymptotic theory to governing
equations, we derive a system of ODEs that governs the cross-
sectional averaged conservation laws and electric field strength,
which is then solved numerically in MATLAB. We have shown that
when a plug flow is assumed in the channel, the leading-order
system of equations is reduced to a typical Rayleigh flow coupled
with EM heating of the ceramic. We consider the inlet conditions
such that the flow is subsonic, but with heat entering the channel
from the ceramic, the gas undergoes thermal expansion and accel-
erates as it moves from the inlet to outlet. We find that the kinetic
energy of the gas is elevated by at most 12.5 times the initial value
at the inlet when thermal runaway occurs in the ceramic for the
cases which we considered.

The model of Rayleigh flow coupled with EM heating of
ceramics is limited by the phenomenon of thermal choking. When
flow velocity and temperatures are such that we reach sonic state
( �M2 ¼ 1) within the channel, thermal choking occurs and the
further addition of heat is not possible without altering the inlet
flow conditions. By carrying out the linear stability analysis, we
find that when we have 1

γ ,
�M2

, 1 inside the computational
domain, infinitesimal fluctuations in temperatures (or the applied
EM power) lead to a rapid rise in flow velocity, resulting in to a
thermally choked flow. Through this stability analysis, we have
determined the critical applied EM power, �Pcrit such that when
�P . �Pcrit, small fluctuations �P lead to thermal choking in the
channel. By carrying out a parametric study, we have then deter-
mined how this critical applied EM power is affected by the inlet
flow conditions. This result is significant from the practical applica-
tion point of view as it allows us to design experiments by avoiding
thermal choking within the fluid region. The maximum practical
Mach number that can be achieved is 1

γ, and the expression

FIG. 12. �P-dependence of (a) Tout and (b) P flow over M2. Graphs that terminate
before �P ¼ 30 are cases where thermal choking takes place.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 133, 124906 (2023); doi: 10.1063/5.0139723 133, 124906-16

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jap/article-pdf/doi/10.1063/5.0139723/16790216/124906_1_online.pdf

https://aip.scitation.org/journal/jap


governing the maximum possible temperature within the channel
has been derived.

To determine the effectiveness of the EM HX, total thermal
and mechanical efficiencies of the device are calculated. It is
found that the most efficient operation occurs when high tem-
peratures are achieved at the low applied power when thermal
runaway initiates. By carrying out parametric studies on l2, we
find that the electric field resonance occurs in the ceramic layer
if l2 ¼ nλ2

4 , where n can be any odd integer. As a result, thermal
runaway occurs at low applied powers when we increase the
value of n, and this causes maximum efficiency of the energy
conservation to increase with n. To further improve the effec-
tiveness of the power generation from porous EM HX, future
work can be focused on considering array of multiple long and
thin structures considered here.
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