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Abstract — Electromagnetic heat exchangers are complex de-
vices involving multiple physical processes and requiring exten-
sive experimental developments. Effectiveness of their operation
means efficient conversion of electromagnetic energy into useful
mechanical work. In this paper, we present a 2D numerical
model of a porous-media-based electromagnetic heat exchanger
with three layers. We first report a double S- power response
curve when no fluid flow is considered. Comparing the developed
curve with the one produced by analytical approach, we find
both the curves in satisfactory agreement. After validation, we
introduce Darcy’s flow in porous medium, and calculate the
power absorbed by the fluid and overall thermal efficiency of the
heat exchanger. It is shown that the net power absorbed by the
coolant flowing in the porous media is mainly dependent on fluid
velocity and outlet temperature. When operating on the middle
branch of the double S-curve, total thermal energy collected by
the fluid is high, but overall thermal efficiency of the device is
low because of the slow movement of the fluid.

Keywords — computational modeling, electromagnetic heat-
ing, porous media flow, thermal runaway

I. INTRODUCTION

High power electromagnetic heat exchangers (EMHE)
have potential applications in wireless energy transmissions
[1], beamed energy propulsion [2], [3], and other emerging
technologies. The key function of EMHEs is to efficiently
convert electromagnetic (EM) energy into useful mechanical
work. Operations of EMHEs depend on the combined effects
of electromagnetic, heat transfer and fluid flow phenomena,
and require particularly extensive experimental developments.
Therefore, the design of effective EMHEs demands multi-
physics models that are capable of adequately simulating all
essential effects occurring in EMHEs.

The loss factor of an absorbing material leads to its
heating during EM irradiation. When the loss factor increases
exponentially with temperature, the EM losses increase, which
may result in the event of thermal runaway. The phenomenon
of thermal runaway for ceramic materials was studied exper-
imentally [4], [5], numerically [6], and analytically [7].

Equilibrium of EM heating can be represented with a
power response curve which is a parametric plot of the average
steady-state temperature as a function of the applied power.
For an incident EM wavelength much larger than the layer’s
thickness, analytical models of EM heating of laminate struc-
tures [7]–[9] reported an S-shaped power response curve. The
lower branch of the S-curve has very low stable temperatures,

Fig. 1. Geometry of considered triple layer heat exchanger undergoing
symmetric (about BB′) irradiation by plane waves. Layers 1 and 5 are free
space, 2 and 4 are lossless porous media, and 3 is a lossy ceramic material.

so EMHEs operating in this region may be inefficient, and
upper branch may have very high stable temperatures (up
to 1500- 2000 K) because of thermal runaway. Such high
temperatures can damage the materials through melting or
mechanical failure. In the triple layer laminate (lossless-lossy-
lossless) structure, when the wavelength is comparable to the
layer’s thickness, electric field resonance may be achieved in
the lossy layer; that allows the S-curve to acquire another
(middle) stable branch and become the double S-curve [10].
This new middle branch may have temperatures on the order
of 1000 K, which makes this region favorable for EMHE
operations.

The model [11] verified existence of the double S-curve
numerically for a triple layer laminate structure. This model
did not consider actual materials, but assumed the media to
have a very small volumetric heat capacity. Also, a numerical
model of the triple layer EMHE with a fully developed
Poiseuille flow as a coolant with a small Reynolds number was
developed in [12]. It was shown that the thermal efficiency
of considered EMHE may be dramatically increased when
it operates on the middle branch of the double S-curve.
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Table 1. Material Properties of the media in the setup in Fig. 1

Medium (Region) εr σ(T ) [S/m] k [W/m ·K] ρCp [J/m3K] ν [Pa · s]
Free Space (1,5) 1 0 - - -
Lossless porous medium (2,4) 42 0 0.42 2.6×106 0.001

Ceramic material (Zirconia) (3) [6] 6.69 0.0009e2.72[
T−300

300 ] 0.198 0.6×106 -

Another approach for collecting thermal energy may include
consideration of fluid (coolant) flow through a porous medium.
To the best of our knowledge, numerical models describing
operations of EMHEs with porous media flow as a mean of
collecting thermal energy have not been reported yet.

In this paper, we consider a setup shown in Fig. 1 with
zirconia as lossy ceramic layer in region 3, and lossless porous
medium with zirconia as matrix (or skeleton) portion and
a fluid as pore portion in region 2 and 4. We extend the
numerical model [11], and describe the nature of the power
response curve for the considered structure when no fluid flow
is considered in region 2 and 4. To validate the model we
compare the computed power response curve with the one
produced by the analytical approach of [10].

After validation, we allow a lossless fluid to flow through
the porous medium in regions 2 and 4. We assume that the
fluid is incompressible and its motion is governed by the
Darcy’s law to better classify the phenomena in a more real-
istic scenario. We visualize steady-state temperature profiles,
calculate the power density collected by the fluid, and also
discuss the overall thermal efficiency of the EMHE. Finally,
we demonstrate the effect of inlet fluid pressure on the steady-
state temperature profiles and efficiency.

II. NUMERICAL MODEL

We consider a triple layer laminate structure as shown in
Fig. 1. Incoming plane wave with frequency (f ) of 2.45 GHz
is assumed to be polarized along the Z-direction and traveling
along the X-direction. The incident power density of the EM
waves is given as

Pav = E2
0/2η,

where E0 is amplitude of the incident EM waves and η is
the characteristic impedance of free space. In order to achieve
an electric field resonance in the lossy layer (region 3), we
choose geometrical parameters of the structure according to
the resonance criteria [10]

l1 =
n1λ2

4
, and l2 =

n2λ3
2

,

where n1 and n2 are any odd numbers, λ2 and λ3 are
wavelength in region 2 and 3, respectively. For the considered
geometry, we take n1 = 3 and n2 = 1, and L = 10l2.

A. Governing Equations

We develop a numerical model in COMSOL Multiphysics
which solves nonlinear coupled system of equations:

∇2 ~Ej + k0
2µrj

[
εrj − i

σj(Tj)

ωε0

]
~Ej = 0, (1)

∇ · ~Vj = 0, (2)

~Vj = −ψ
ν
∇Pj (3)

(ρcp)mj

∂Tj
∂t

+ (ρCp)fj
~Vj · ∇T = kj∇2Tj +

1

2
σj(Tj)|Ej |2,

(4)
where ~E is electric field; k0 is wave number of free space; µr

and εr are relative permeability and permittivity, respectively;
T is temperature; σ is effective electrical conductivity; ω is
angular frequency; ε0 is permittivity of free space; ρ is density;
~V is velocity of fluid; P is fluid pressure; ψ is permeability of
the porous medium; ν is dynamic viscosity; cp is specific heat
capacity; and k is thermal conductivity; (ρCp)m and (ρCp)f
are effective volumetric heat capacity of porous and fluid
media, respectively; if the material is non porous, (ρCp)m
= (ρCp)f . Subscript j represents region of the solution.

We solve (1) for j = 1, ...5; (2), (3) for j = 2, 4; (4) for
j = 2, 3, 4. For the first model in absence of fluid flow, ~Vj = 0
for j = 2, 3, 4. When Darcy flow is considered in region 2 and
4, ~V2, ~V4 are non-zero and ~V3 is zero, and gauge pressures at
the inlet and outlet were assumed to be constants, and pressure
gradient along X-direction was assumed to be zero (i.e. fluid
only flows along positive Y-direction). In both models, the top
and bottom boundaries of region 2, 3, and 4 are assumed to be
thermally insulated; we set normal component of gradient of
the electric field to be zero at the top and bottom boundaries
of region 2, 3, and 4; a symmetry condition is applied at BB′;
boundaries between region 1 and 2, 4 and 5 are exposed to
ambient temperature of 300 K with heat transfer coefficient
h = 8.84 W/m2K undergoing Newton’s law of cooling. We
also define the Biot number as Bi = hl1/k2,4.

B. Assumptions

We consider material properties of the layered structure
as given in Table 1. All the materials used are assumed to
be non-magnetic (µr = 1). Only the middle layer (region 3)
absorbs EM energy; the outer layers (regions 1, 2, 4, and 5)
are considered lossless. The effective electrical conductivity
of zirconia is assumed to be temperature dependent; all other
thermal and dielectric properties are temperature independent.
Effective thermal properties and εr for the porous medium are
calculated based on mixture theory [13], [14] as

ξm = θξf + (1− θ)ξs, (5)

where θ is porosity of the medium, ξ is any material parameter
(ρCp, k, or εr ), and, f and s denote fluid and solid portions
of the porous medium, respectively. In both the models, we
assume that porosity and permeability are both independent
of each other, and θ = 0.55 and ψ = 2.8 × 10−10. The
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Fig. 2. Comparison of the double S-curves produced by the COMSOL model
and the mathematical approach [10] for Bi = 0.3 (a) Bi = 0.03 (b).

resulting material properties of the considered porous medium
are mentioned in the Table 1.

C. Mesh, Solver, and Convergence Criteria

We use quadratic Lagrange triangular elements to spatially
discretize the geometry, and determine maximum size of the
element according to the meshing criteria discussed in [11].
Also, due to a high degree of nonlinearity, we use COMSOL’s
adaptive time-dependent solver and steady-state is assumed
to be reached when an absolute difference between average
temperatures at previous and current time step falls below
10−4. The adaptive time-dependent solver discretizes temporal
gradients using second order backward difference method.
Since volumetric heat capacity of the considered materials
is very high, it took approximately 105 time steps for both
models to reach steady state. Because of the nonlinear event
of thermal runaway, we allowed the time-dependent solver
to automatically determine the step size depending on the
temporal gradients.

III. MODEL WITH NO FLUID FLOW

For the first model, we do not consider fluid motion in
regions 2 and 4, and only solve (1) and (4) to get steady-
state temperature pattern. That way, we get a power response
curve as we plot an average steady-state temperature against
the incident power density of the EM waves.

In order to validate the model, we compare our power re-
sponse curve with the one produced by the analytical approach
introduced in [10]. We see in Fig. 2 (a) that the curves do not
match precisely, but, these differences are similar to the ones
discussed in [11]. Analytical model of [10] assumes uniform
temperature in the X-direction, whereas the COMSOL model
considers spatial variation of temperature. Biot number, Bi,
is a non dimensional parameter that measures thermal losses
to the surrounding. Higher the Bi, the higher is the spatial
variation in temperature. As Bi → 0, we can expect a tem-
perature profile in the COMSOL model to become spatially
uniform. From Fig. 2 (b), we see that as Bi decreases from 0.3
to 0.03, both power response curves match closely. It may not
be possible to get power response curve for Bi = 0 because
thermal losses are zero when Bi = 0, therefore, temperature
may keep on increasing with time and we may never be able

Fig. 3. Steady-state Temperature profiles as a function of Pin when Darcy
flow is considered, Bi = 0.3 and ∆P = 1 Pa.

Table 2. Power absorbed by the fluid when Bi = 0.3

Pin [W/m2] ∆P [Pa] Pabs [W/m2] χ [%]
4, 000 1 206.97 0.17
4, 500 1 271.70 0.2
5, 000 1 436.44 0.28
6, 000 1 2265.89 1.24

to reach equilibrium state. Thus, from this comparison we
conclude that both the curves are in satisfactory agreement.

IV. MODEL WITH DARCY FLOW

We consider a simplest scenario for fluid flow through
porous medium as a large solid matrix and small pores of a
uniform diameter, and assume that fluid motion in the pore
space is represented by the Darcys law. Therefore, in addition
to (1) and (4), we also solve (2) and (3), and visualize steady-
state temperature profiles.

From Fig. 3, we see that, as the power density of incident
EM waves increases, outlet temperature of the fluid also
increases. As soon as maximum temperature reaches a critical
value (at which thermal runaway initiates), we observe signif-
icant rise in fluid outlet temperature as we achieve transition
between lower and middle branch of the double S-curve. It
means that the total thermal energy absorbed by the fluid is
much higher when we achieve transition between lower and
middle branch. On the other hand, the absorbed power density,
which is the rate at which the thermal energy absorbed by the
fluid per unit cross sectional area, is dependent on the fluid
velocity, and is given by

Pabs = (ρCp)f |~V |
1

l1

[∫ l1

0

Toutdx−
∫ l1

0

Tindx

]
, (6)

where |~V | is magnitude of the velocity vector, and Tout and
Tin are spatially varying temperature profiles at the outlet and
the inlet, respectively. Overall thermal efficiency of the EMHE
is given by

χ = θ
l1
L

Pabs

Pin
. (7)

From (6) and (7), we calculate Pabs and χ for incident power
levels shown in Fig. 3, and results are tabulated in Table 2.
We see that even though the fluid absorbs significant amount
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Fig. 4. Steady-state temperature profiles as a function of ∆P when Darcy
flow is considered, and Bi = 0.3 and Pin = 6, 000 W/m2.
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Fig. 5. Pabs (a) and χ (b) as a function of pressure drop (∆P ) along the
Y-direction for Bi = 0.3, Pin = 6, 000 [W/m2].

thermal energy when EMHEs operate on the middle branch,
the rate of energy absorption is highly dependent on how fast
fluid is moving through the pores.

We now keep the incident power density of EM waves
constant and vary the pressure drop (∆P ) across the porous
media channels. The higher the ∆P , the higher the fluid ve-
locity (|~V |). Steady-state temperature profiles for this scenario
are shown in Fig. 4, and Pabs and χ are shown in Fig. 5.
We again notice that (when ∆P = 1 Pa), even when outlet
temperature of the fluid is significantly high, the rate at which
the fluid absorbs the thermal energy is much smaller as fluid
is moving very slowly.

From Fig. 5, we notice that when ∆P increases, both
Pabs and χ increase because fluid velocity increases. On the
other hand, when ∆P increases even further, fluid velocity
also increases but temperature gained by the fluid becomes
negligible, therefore, we see decline in Pabs and χ. These
results show that there exists a trade off between how fast
the fluid is moving in the porous medium and total thermal
energy absorbed by the fluid.

V. CONCLUSION

We have described the first 2D numerical model of porous-
media-based triple layer electromagnetic heat exchager. The
developed power response curve is then validated by its com-
parison with the one produced by an analytical approach (for
the case of no fluid flow). After the validation, we introduced
Darcy flow in porous medium as a mean of collecting thermal

energy from the heat exchanger. The net power absorbed by
the fluid flowing in the porous media is found to be mainly
dependent on fluid velocity and outlet temperature. When
the considered EMHE operates on the middle branch, total
thermal energy absorbed by the fluid is significantly high but
overall thermal efficiency of the device is low since the fluid
is moving slowly in the porous medium.

The model discussed in this work results in inefficient
operation due to the limitation that the fluid velocity is very
small. Another factor affecting the overall thermal efficiency
may include high thermal losses to the surrounding. The
porous media based triple layer EMHE may operate effi-
ciently if both outlet temperature and velocity of the fluid are
high. The results shown in this work open up opportunities
to determine optimum operating conditions and geometrical
parameters of the EMHE.
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