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Abstract—Development of efficient microwave heat exchangers
requires complicated experimentation with processes of different
physical nature. We describe here a 2D numerical model which
can help study electromagnetic and thermal processes in the
presence of fluid flows and design microwave heat exchangers
based on layered structures. The model with no fluid flow
captures the S- and SS-profiles of the power response curve, and
is validated against the related 1D mathematical model; critical
transition temperatures given by both models appear to be in sat-
isfactory agreement. We show that thermal runaway is triggered
by maximum temperatures in the system. A hydrodynamically
fully developed Poiseuille flow is then introduced and steady state
temperature profiles are found to be dependent on SS-curve. The
results suggest a possibility of harnessing microwave energy.

Index Terms—Microwave heating, multiphysics modeling,
power response curve, thermal runaway

I. INTRODUCTION

Traditional microwave (MW) heating systems are used in
such applications as processing of food products, microwave-
assisted chemistry, and high temperature treatment of materials
[1], [2]. Relatively new devices are microwave heat exchangers
(MHE), which are used in solar thermal collectors [3], wireless
energy transmissions [4], and microwave thermal thrusters [5].
In addition to electromagnetic and heat transfer phenomena,
MHE rely on effects involving fluid flows and thus require par-
ticularly extensive experimental developments. This raises de-
mand on computational approaches and multiphysics models
that are capable of adequately simulating all essential effects
occurring in MHEs. Numerical models of continuous flow
microwave heating [6], [7] are not applicable here because
they are mainly focused on heating of continuously flowing
fluid.

One peculiar phenomenon associated with MW processing
of materials is thermal runaway, a non-linear phenomenon
in which a small increase in power invokes a large increase
in temperature. Thermal runaway was studied mostly ex-
perimentally [8], [9]. The theoretical description of thermal
runaway was given for a single dielectric slab [10] and a three-
layer geometry [11] in terms of a non-dimensional ratio of
thermal losses to MW power represented the power response
curve, otherwise called the S-curve. It shows how the steady-
state temperature of the material depends on the MW power.
This multi-valued curve implies that a system can reach
different steady state temperatures when initial temperatures
are different. The S-curve can also be interpreted as a balance
between power absorbed and lost by the lossy material. A
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Fig. 1. Geometry of the three layered system subjected to electromagnetic
heating (symmetric about AA′). Medium 1 and 5 are free space, layer 2 and
4 are lossless, layer 3 is a lossy dielectric.

branch of the S-curve is said to be stable when its slope is
positive [11]. Thermal runaway occurs when the lossy material
generates more heat than it loses. Recently, a mathematical
model of a triple-layer laminate [12] showed that, for particular
values of the layer’s width and complex permittivity, the
S-curve acquires another (third) stable branch and becomes
the SS-curve. That opens a horizon for a new technique of
keeping thermal runaway under control and efficiently con-
verting electromagnetic energy into other usable forms of heat.
While thermal runaway was computationally demonstrated in
[13], numerical models reproducing the shapes of the power
response curves have not been reported yet.

In this paper, we present a 2D numerical model developed in
COMSOL Multiphysics for the three-layered structure imitat-
ing one of the MHE’s basic setups. Initially, the model without
fluid flow is validated against the related 1D mathematical
model [12]. For this case, we demonstrate the behavior of
a power response curve when spatial dependence of temper-
ature is considered. We then incorporate coupling between
electromagnetic, fluid flow, and heat transfer phenomena by
introducing hydrodynamically fully developed Poiseuille fluid
flow in region 2 and 4 along the Y-direction and visualize
steady state temperature profiles that are dependent on initial
temperature.

II. COMPUTER MODEL

We consider a 2D, three-layered structure as shown in
Fig. 1. This setup may be seen as a model of a MHE with
absorbing (ceramic) layer surrounded by fluid channels. We
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have plane waves incident from both sides with the assumption
that the incoming waves are polarized along the Y-direction
and traveling in the X-direction. Time average power density
of the incident plane wave is

Pav = E2
0/2η, (1)

where E0 is amplitude of electric field, and η is characteristic
impedance of free space. In order to satisfy the resonance
condition necessary to produce the SS-curve [12], we assume
the frequency (f ) to be 2.45 GHz, width of layers 2 and 4 as
3λ2/4 = 10.9 mm and width of layer 3 as λ3/2 = 23.7 mm,
where λ2 and λ3 are wavelengths of EM waves in medium 2
and 3, respectively; the length of the layers is L = 236.5 mm.

A. Governing equations

We construct a COMSOL model capable of solving a cou-
pled system involving Helmholtz’s, heat, and Navier-Stokes
equations. We introduce non-dimensional variable Ẽ = ~E/E0,
where ~E and Ẽ are dimensional and non dimensional forms
of the electric field, respectively. These equations are given by

∇2Ẽj + k20(ε′rj − i
σj(Tj)

ωε0
)Ẽj = 0, (2)

∂Tj
∂t

+ ~uj · ∇Tj = α∇2Tj +
Qj

ρjcpj

, (3)

Qj = σj(Tj)|E0Ẽj |2, (4)

∂ ~uj
∂t

+ ~uj · ∇uj = −∇Pj

ρj
+ νj∇2 ~uj , (5)

∇ · ~uj = 0, (6)

where k0 = ω
c is wavenumber of free space, ω is angular

frequency, c is speed of EM wave in free space, ε0 is permit-
tivity of free space, ε′r is relative permittivity, T is temperature,
σ(T ) is temperature dependent electrical conductivity, ~u is
velocity, α is thermal diffusivity, Q is electromagnetic power
loss density, ρcp is volumetric heat capacity, P is pressure,
and ν is kinematic viscosity. Subscript j represents region of
the solution.

We solve (2) for j = 1, ...5, (3) for j = 2, 3, 4, (4) for j = 3,
and (5) and (6) for j = 2, 4. For MW heating without fluid
flow, ~uj = 0 for j = 2, 3, 4, the top and bottom boundaries
of region 2, 3, and 4 are assumed to be thermally insulated.
When fluid flow is considered, ~u2, ~u4 are non-zero and ~u3 is
zero, pressure and temperature at the inlet in region 2 and 4
are 0.5 Pa at 300 K, respectively, the outlets in region 2 and
4 are thermally insulated and maintained at zero pressure, the
top and bottom boundaries in region 3 are thermally insulated,
and no slip conditions are applied at the external boundaries
of channel 2 and 4. In both models, in order to neglect fringe
effect at the corners of the geometry, we set normal component
of gradient of the electric field to be zero at the top and bottom
boundaries of region 2, 3, and 4, a symmetry condition is
applied at AA′, boundaries between region 1 and 2, 4 and 5
are exposed to ambient temperature of 300 K with heat transfer
coefficient h = 12.6 W

m2K undergoing Newton’s law of cooling.

TABLE I
MATERIAL PROPERTIES

Medium εr σ(T )[ S
m
] α[m

2

s
] ρcp[

J
m3K

] ν[m
2

s
]

1, 5 1 0 - - -
2, 4 71 0 0.00137 435 0.0096

3 6.69 0.001e

[
T−300

100

]
0.00137 435 -

We also define the Biot number as Bi = hl2
km

, where km is the
thermal conductivity of region 3.

B. Assumptions

Material properties used in computations below are chosen
as shown in Table I. In particular, volumetric heat capacity is
considered to be small to ensure that thermal runaway occurs
at lower power levels and considerably reduce computational
cost of sweeping over the large power range. Temperature
dependent thermal properties are not considered in this model,
but left for future developments. εr and µr are also assumed
to be temperature independent. All the materials used are
assumed non-magnetic (µr = 1). In addition, only the middle
layer (material 3) absorbs MW energy, and the outer layers
(materials 1, 2, 4, and 5) are considered lossless.

C. Solver and convergence criteria

Selection of a solver in COMSOL Multiphysics strongly
depends on degree of non-linearity. Helmholtz’s and heat equa-
tions are coupled with each other via temperature dependent
non-linear electrical conductivity, which has been shown to
increase exponentially with the temperatures [14] for many
dielectric materials. Depending on initial guess, while solving
non-linear steady state problems, COMSOL’s nonlinear steady
state Newton-Raphson solver can fail to converge to desired
solution. As temperature is a multi-valued function, initial
guess is uncertain, therefore, we use the time-dependent solver
and steady state is assumed to be reached when absolute dif-
ference between average temperatures at previous and current
time step falls below 10−6.

D. Meshing

The geometry is discretized using triangular elements,
whose maximum size Sj is given by the Nyquist criterion:

Sj <
λj
2

=
c

2f
√
µ′rjε

′
rj

,

where λj is wavelength of the EM wave in corresponding
region j. For robustness, we used 10 elements per wavelength
throughout the computational domain. Similar mesh settings
have been proved satisfactory in [6], [7].

For solving nonlinear problems effectively, we use an adap-
tive time stepping algorithm. Depending on temporal gradients
of the fields, it automatically adjusts time step taken by the
solver. The larger the gradients, the smaller the time step is.
Since the time required for EM wave propagation is small
compared to time required for heat transfer and fluid flow,
Helmholtz’s equations are solved in frequency domain, and
the time stepping algorithm is utilized when solving heat and
Navier-Stokes equations.
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III. COMPUTATIONAL RESULTS

A. Excluding fluid flow

Fig. 2 shows the comparison of the power responses gen-
erated by the COMSOL model and the mathematical model
of [12]. The mathematical model shows stable steady states
as a solid line (branch AG and HM) and unstable states as
a dashed line (branch GH). The transition between the lower
and middle branches (Point G and H) do not occur at the same
power level. This hysteresis is confirmed by the COMSOL
model (Point C and F) through increasing power with an initial
temperature at 300 K (path ABCDE) and then by decreasing
power with an initial temperature of 750 K (path EDFBA).
The mathematical model [12] assumes uniform heating in Y
as does the COMSOL model, but it applies asymptotics to a
thin domain resulting in a time dependent ordinary differential
equation of average temperature uniform in the X-direction.
In contrast, the COMSOL model captures the temperature
variation along X.

In order to investigate the reason behind differences seen
in power response curves produced by the COMSOL and
mathematical models, we apply the conservation of energy
principle to the system at steady state, and find that∫ l2

0

1

2
|E2

0Ẽ3(T3)|2σ3(T3)dx = 2h(T̃2 − TA), (7)

where T̃2 is surface temperature at X = −l1, T3(x) is
temperature profile in region 3, and l1 and l2 are the widths
of layer 2 and 3 respectively. For the COMSOL model, from
(1) and (7), input power density can be written as

P1 =
2h(T̃2 − TA)

η
∫ l2
0
|Ẽ3(T3(x))|2σ3(T3(x))dx

. (8)

Similarly, for the mathematical model, (1) and (7) can be
simplified in terms of input power density as

P2 =
2h(T̄s − TA)

η|Ẽ3(T̄s)|2σ3(T̄s)l2
, (9)

where T̄s is average steady state temperature in the model
[12]. From (8) and (9), we can say that

P2 − P1 =
2h(T̄s − T̃2)− P2P

∗

P̄1
, (10)

where

P̄1 = η

∫ l2

0

|Ẽ3(T3(x))|2σ3(T3(x))dx,

P̄2 = η|Ẽ3(T̄s)|2σ3(T̄s)l2,

and
P ∗ = P̄2 − P̄1.

Numerical evaluation of (10) at the corresponding points on
the SS-curve shown in Fig. 2 is given in Table II.

From the COMSOL model, we observe that thermal run-
away is triggered by maximum temperatures in the lossy layer.
Global temperatures increase rapidly as soon as the local
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Fig. 2. Comparison of low power regions of power response curves in the
considered structure. Temperatures at points C, G, F, and H are 413.5 K, 416.4
K, 574.6 K, and 606.6 K respectively.

TABLE II
COMPARISON OF CRITICAL TRANSITION POWERS

Observed
power density

[W/m2]

Observed
(P2 − P1)
[W/m2]

Calculated
(P2 − P1)
[W/m2]

Point C P1= 4088 1548 1548.55Point G P2= 5636
Point F P1= 3152 1199 1200.41Point H P2= 4351

maximum temperature reaches a critical temperature. Effect
of spatial dependence of electric field and temperature can be
understood from (10). We see that as we increase the Biot
number by increasing h, (T̄s− T̃2) also increases, which then
increases differences in power response curves. Fig. 3 shows
the comparison of SS-curves for different values of the Biot
number. At smaller Biot number, external surfaces will behave
like a thermal insulator, which makes temperature profile
nearly uniform in the X-direction. Therefore, as we decrease
the Biot number, differences in the power response curves
given by the COMSOL and mathematical models keep on
decreasing. On the other hand, when the Biot number is large,
spatial temperature variation becomes important, therefore,
differences in power responses increase. It is observed that
for increasing values of the Biot number, critical transition
power also increases, but transition temperature remains the
same.

We calculate the thermal energy in the system at steady
state at critical temperature for both the COMSOL and math-
ematical models as

U =

∫
V

ρcpTdV.

The difference between the thermal energy levels at point G
and C is 7.226 J . The model [12], which averages tempera-
tures in the X-direction, has more thermal energy when the
system is at critical temperature, thus a higher MW power
is needed to reach this energy level (power corresponding to
point G).

Thermal runaway in spatially dependent problems is driven
by maximum temperatures in the lossy ceramic. The advantage
of the COMSOL study is that it takes into account temperature
variation in the X-direction due to the diffusive heat transfer
to the exterior boundary of the laminate, unlike the model in
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Fig. 3. Comparison of the SS curves produced by the COMSOL and mathematical models with different Biot numbers.

(a) (b)

Fig. 4. Steady state temperature profiles when incident power was
3750W/m2 with initial temperature 300 K (a) and 800 K (b).

[12], does not need to use the uniform heating making it a
more realistic model.

B. Including fluid flow

By keeping material parameters as shown in Table I, we
introduce hydrodynamically fully developed Poiseuille flow
in regions 2 and 4 in the Y-direction. Due to the fluid flow,
temperature dependent electric field is no longer uniform in the
Y-direction causing non-uniform heating. The difference be-
tween the models with and without fluid flow is the convective
heat transfer between lossy layer and fluid. Fig. 4 shows two
steady state temperature profiles when input power density is
kept constant and initial temperature is changed from 300 K
to 800 K. It is evident that heat convected by fluid when initial
temperature was 800 K is much higher.

IV. CONCLUSION

We have developed a multiphysics model which is capable
of producing SS-curves by considering local spatially depen-
dent temperatures developed in the system. The model is
validated by comparing its results with the related 1D math-
ematical model; critical transition temperatures given by both
the models are reasonably close. We have found that thermal
runaway is triggered by maximum temperatures in the system.
Overall temperatures in the system increase rapidly when max-
imum temperature reaches the critical transition temperature.
As thermal losses to the surrounding increase, critical power
also increases, but critical temperature remains the same. The
mathematical model, which averages temperatures in the X-
direction, has more thermal energy when the system is at

critical temperature, thus a higher MW power is needed to
reach this energy level. Hydrodynamically fully developed
Poiseuille flow has also been introduced, and temperature
profiles are found to be dependent on the SS-curve. This result
suggests a possibility of microwave energy harnessing. Future
development of this work will include understanding effects
of fluid flow on the power response curve.
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