

Supplementary Class Notes

C'20 2019-2020

Calc III as a Part of *Calculus*

2

Key Introductory Points

Major Topics of the Course:

- Indeterminate Forms & Improper Integrals
- Infinite Sequences and Infinite Series
- Parametric Curves & Polar Coordinates
- Vectors, Curves, Surfaces (in the Plane and in Space)

Important Advice – Important to Follow:

- Be here come to class don't miss lecture meetings!
- Read the textbook!
- Do the homework!

Structure of the Tests:

Test 1: 50 min, in class Test 2: 50 min, in class Test 3: 50 min, in class Sections 4.5, 8.8, 10.1-10.4 Sections 10.5-10.9, 11.1-11.4 Sections 11.5, 12.1-12.5, 13.1-13.3

3

Infinite Series

Taylor Polynomials

Taylor Polynomials

Function $y = \sin x$ and Its Approximations by the Taylor Polynomial of Order 3

• Approximation at $x = \pi/6$

Infinite Series

Taylor Polynomials

Function $y = e^x$ and Its Approximations by the Taylor Polynomials of Order 1 and 2

- Polynomials of order 1 (P_1) and order 2 (P_2)
- Approximation at x = 0

tanx - Reminder

Limaçon $r = b - a\cos\theta$

 $r = 1 - 2\cos\theta$

b/a < 1: inner loop

 $r = 2 - 2\cos\theta$

b/a = 1: cardioid

Limaçon $r = b - a\cos\theta$

 $r = 3 - 2\cos\theta$

1 < *b/a* < 2: dimple

 $r = 4 - 2\cos\theta$

 $b/a \ge 2$: convex

Polar Coordinates

Polar Curves

Experiment with polar graphs at:

https://www.wolframalpha.com/examples/mathematics/plotting-and-graphics/