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Abstract

Purpose – To outline different versions of a novel method for accurate and efficient determining the
dielectric properties of arbitrarily shaped materials.

Design/methodology/approach – Complex permittivity is found using an artificial neural network
procedure designed to control a 3D FDTD computation of S-parameters and to process their
measurements. Network architectures are based on multilayer perceptron and radial basis function
nets. The one-port solution deals with the simulated and measured frequency responses of the
reflection coefficient while the two-port approach exploits the real and imaginary parts of the reflection
and transmission coefficients at the frequency of interest.

Findings – High accuracy of permittivity reconstruction is demonstrated by numerical and
experimental testing for dielectric samples of different configuration.

Research limitations/implications – Dielectric constant and the loss factor of the studied
material should be within the ranges of corresponding parameters associated with the database
used for the network training. The computer model must be highly adequate to the employed
experimental fixture.

Practical implications – The method is cavity-independent and applicable to the sample/fixture
of arbitrary configuration provided that the geometry is adequately represented in the model.
The two-port version is capable of handling frequency-dependent media parameters. For materials
which can take some predefined form computational cost of the method is very insignificant.

Originality/value – A full-wave 3D FDTD modeling tool and the controlling neural network
procedure involved in the proposed approach allow for much flexibility in practical implementation of
the method.

Keywords Numerical analysis, Neural nets, Dielectric properties

Paper type Technical Paper

1. Introduction
Recently, microwave power engineers have taken a particular interest in complex
permittivity, 1 ¼ 10 2 i100: While modern electromagnetic simulators allow the
engineers to extensively characterize a constructed device prior to making a physical
prototype, in order to perform a trustworthy simulation, it is necessary to have reliable
knowledge of the dielectric properties of the materials being modeled.
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Determination of dielectric constant 10 and loss factor 100 of practical materials is a
difficult problem. Perturbation and transmission/reflection techniques and other
known methods may give satisfactory results under conditions which are either
difficult to follow or simply not acceptable; samples typically require the laborious
preparation to comply with strict dimensional tolerance requirements.

With more progress in numerical methods, it has become feasible to develop
techniques in which the more difficult tasks are assigned to a simulator while the
experimental part is reduced to an elementary measurement. This approach has been
taken in the methods using finite element method (FEM) (Deshpande and Reddy, 1995;
Coccioli et al., 1999; Thakur and Holmes, 2001) and finite difference time domain
(FDTD) (Wäppling-Raaholt and Risman, 2003) and modeling the entire experimental
fixtures. To further explore this trend, the present paper outlines the principal aspects
of a novel efficient technology for permittivity reconstruction.

In our previous work (Eves et al., 2004), we have proposed an approach involving an
experimental setup (a closed cavity with an embedded measured sample), whose
S-parameters are computed by the FDTD method and measured by a network
analyzer. Dielectric constant and the loss factor are determined in the course of
processing of simulated and measured data by an optimization procedure based on
artificial neural networks (ANN).

In the present contribution, we generalize the capabilities of this method by considering
other network architectures built on the multilayer perceptron (MLP) and the radial basis
function (RBF) ANN, checking different options in network training, and expanding the
class of suitable materials to the ones with frequency-dependent media parameters.
Since the underlying modeling technique easily handles arbitrary sample/fixture
geometry and ANN technology is capable of generalizing the processed data and
adjusting to the physical characteristics of the cavity, our method is presented as a flexible
and efficient technique of permittivity reconstruction well suited to practical applications.

2. Method of permittivity reconstruction
2.1 Network architectures
We consider two basic one-hidden-layer architectures associated with two types of the
experimental setups – a one-port structure intended for measurement of the reflection
coefficient S11 and a two-port system, which also quantifies the transmission
coefficient S21. The configurations of the closed systems considered in our analysis are
shown in Figure 1 while the corresponding networks are shown in Figures 2 and 3.

For network training and testing, we use information generated in the modeling
phase of the method; the latter is powered by the 3D FDTD method. In the first
approach, the network input receives the simulated values of jS11j at n points of the
interval around the frequency of interest f0 while the network output is associated with
10 and 100. In the second architecture, the input layers get (and the output layers
generate) either the simulated values of Re(S11), Im(S11), Re(S21), Im(S21), or the values
of 10 and 100 for which S-parameters are computed at the modeling stage. When the
network is well trained, it is supplied with the measured values of S-parameters and
determines 10 and 100 of the sample in question.
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2.2 One-port solution
In order to describe the computation of complex permittivity with the presented
networks, we introduce the vectors �S ¼ ½ �S1 . . . �Sn�

T ¼ ½jS11jð f 1Þ . . . jS11jð f nÞ�
T

and 1 ¼ ½11 12�
T ¼ ½10 100�T: Then the one-port networks generate the following

output:

1l ¼
XN
j¼0

w3
ljs

Xn
i¼0

w2
ji
�Si

" #
; l ¼ 1; 2; ð1Þ

where sð·Þ ¼ tanhð·Þ is the activation function used for the hidden neurons, and w2j3
pq

represents the network weights of the links between the qth neuron in the first or
second layer and the pth neuron in the second or third layer; the activation function for
the output neurons is a linear function. In the 2£ n-input network, N ¼ NA and
N ¼ NB for Net A and Net B, respectively.

The training data are pairs of ð �Sk;EkÞ; k ¼ 1; . . . ;P; where Ek is the desired
outputs of the network with input �Sk (i.e. the values of dielectric constant and the loss
factor for which �Sk have been simulated), and P is the number of training vectors.
The aim is to adjust the vector of network weights w in order to reduce the errors
defined as:

e1l ¼
1

2

XP
k¼1

j1lð �Sk;wÞ2 Ekj
2

ð2Þ

Figure 1.
One- (a) and two-port

closed systems (b) with
dielectric samples of

arbitrary configuration
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Figure 2.
MLP networks for the
one-port system: (a) n- and
(b) 2 £ n-input
architectures
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where 1lð �Sk;wÞ is the ANN output for input �Sk: The errors depend on the way the
network is trained as well as on its configuration, i.e. on the number of hidden neurons.
To minimize the errors (and improve the quality of learning), we determine this
number by a standard trial-and-error process applied to the same training data set.

Two training algorithms, namely, back propagation technique and the second-order
gradient-based technique are implemented with the use of the gradient method (iterations
from 1 to 200) and the Levenberg-Marquardt method (iterations beyond 200), respectively.

Since the one-port approach deals with the frequencies different from f0, we have a
fundamental restriction on the accuracy of this version of the method applied to the
materials with frequency-dependent media parameters. FDTD computation of a
frequency response is performed for 10 and 100 at f0, and measurement of the reflection
coefficient is conducted everywhere in ( f1, fn); hence the measured values may

Figure 3.
MLP and RBF networks

for the two-port structure:
(a) 4- and (b) 2-input

architectures
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correspond only at f0. This provides motivation for considering alternative network
architectures processing the related information only at f0, and dealing with more
parameters representing the system behavior, i.e. with the complex reflection
coefficient (S11) and the transmission coefficient (S21).

2.3 Two-port solution
With introduction of the vector S ¼ ½S1 . . .S4�

T ¼ ½ReðS11Þ . . . ImðS21Þ�
T; the output of

the two-port MLP and RBF networks is represented by the formulas

1l ¼
XN
j¼0

w3
ljs

X4

i¼0

w2
jiSi

" #
; l ¼ 1; 2; ð3Þ

and

Sl ¼
XN
j¼0

w3
ljs

X2

i¼0

w2
ji1i

" #
; l ¼ 1; . . . ; 4 ð4Þ

associated with the 4- and 2-input networks; the hidden neuron activation functions are
the hyperbolic tangent and Gaussian function sðgÞ ¼ e2g 2

for MLP and RBF ANN,
respectively. A linear activation function is used for the output layer in the networks of
both types.

The training data for the 4-input MLP and RBF architectures are pairs of ðSk;EkÞ;
and the training error is defined as

e1l ¼
1

2

XP
k¼1

j1lðSk;wÞ2 Ekj
2

ð5Þ

where 1lðSk;wÞ is the ANN output for input Sk: In the 2-input networks, the training
data are pairs of ð1k;SkÞ; where Sk is the desired outputs of the network for inputs
1k (i.e. the values of S-parameters simulated for given 1k). Computation of error in this
case is preceded by minimization of the function:

Gk ¼ jS lð1k;wÞ2 Skj
2
; k ¼ 1; . . . ;P and l ¼ 1; . . . ; 4 ð6Þ

where Slð1k;wÞ is the ANN output for input 1k. The solution to this minimization
problem is a set of approximated complex permittivity values. Therefore, the network
error is determined from:

e
Sl

¼
1

2

XP
k¼1

½MinðGkÞ2 Ek�
2 ð7Þ

For the training, the backpropagation technique and the second-order gradient-based
technique are used in the two-port networks just as in the one-port ones.

3. Numerical testing
3.1 One-port structure
All the above ANN algorithms have been implemented in a MATLAB 6 environment.
For modeling, we use the full-wave 3D conformal FDTD simulator QuickWave-3D
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(QW-3D) (QuickWave-3D, 1997-2004). Data required for network training are collected
by a special procedure that repeatedly runs QW-3D to compute S-parameters for
various values of 10 and 100 of the sample.

The one-port scheme has been tested numerically for a section of 72 £ 34 mm
waveguide with a rectangular ð20 £ 20 £ 30 mmÞ dielectric block in the corner near the
shorting wall. The FDTD model representing this scenario was built with a
nonuniform mesh with 7.5 and 3 mm cubic cells in air and in a dielectric sample,
respectively (8,463 cells total).

The networks were trained using vectors of jS11j frequency responses with n ¼ 3;
f 1 ¼ 2:4 GHz; f 2 ¼ f 0 ¼ 2:45 GHz; f 3 ¼ 2:5 GHz; and with 27 values of complex
permittivity from the intervals 5 # 10 # 9 and 0:2 # 100 # 1:0: The graphs in Figure 4
show the typical sum-squared error produced by the n- and 2£ n-input networks for
different number of neurons in the second layer. It is seen that for more than ten hidden
neurons, the networks are characterized by errors not larger than 1025.

When tested with the training sets of 51 vectors, the networks demonstrated
sufficiently accurate permittivity reconstruction. The desired and actual responses from
the 2 £ n-input MLP are shown in Figure 5: mean square error (MSE) is of order 1023.

3.2 Two-port structure
The two-port scheme dealing with the S-parameters at f0 has been numerically tested
with vectors of Re(S11), Im(S11), Re(S21), and Im(S21) at f 0 ¼ 915 MHz for the 497 mm
section of a 248 £ 124 mm waveguide containing a rectangular dielectric sample (Table I).

We built the training sets for the values of relative complex permittivity in the ranges
54 # 10 # 74 and 6 # 100 # 30:The 4- and 2-input MLP and the 4-input RBF ANNs were
trained with the sets obtained for 48 equally spaced points in the complex (10, 100)-plane and
additional points on the border (68 samples total). For the 2-input RBF, where the number
of vectors in the training set is equal to the number of hidden neurons, the decision as to
how many vectors (i.e. points from the (10, 100)-plane) in the database to use was made
dynamically. The network was given a small database and the error was computed.
The three test points with the greatest error were chosen, and for each point an average
was taken between the supposed and the ANN-generated values. This average was then
taken for the computation of the next sample for the database. For example, for sample B in
position B, the optimal number of training vectors (and hidden neurons) turned out to be 57
(Figure 6). In the 4- and 2-input MLP, N was taken 13 and 14, respectively.

Although all MLP/RBF 4-/2-input networks have demonstrated good performance,
some of them were found to be more accurate. In Figure 7, the desired and actual
responses are shown for the 2-input RBF network with a corresponding MSE 0.013
while for the 4- and 2-input MLP ANNs, MSEs are 0.029 and 0.073, respectively.

Training sets for the ranges of 36 # 10 # 56 and 4 # 100 # 26 have also been
created. The MLP and RBF networks were trained as described above. The 2-input
nets have again shown somewhat lower errors. In Figure 8, typical examples of the
desired and actual responses from the MLP networks are presented: in both cases
the MSE values are of order 1023.

The detailed error analysis has been carried out to evaluate the accuracy of the
two-port systems with a ^2 mm divergence in the sample’s geometry in each
dimension. Numerical experimentation has been performed for 1 ¼ 57 2 i8 (apple, 88
percent moisture contents), 1 ¼ 68 2 i14 (cantaloupe, 92 percent), 1 ¼ 62 2 i22
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Figure 4.
Training and testing error
of n-input MLP (a) and
Net A (b) and Net B (c) of
2 £ n-input MLP
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(potato, 79 percent), and 1 ¼ 55 2 i16 (sweet potato, 80 percent) (Nelson and Datta,
2001). A typical example of this computation is shown in Figure 9.

Generalizing the results of the analysis conducted for these materials as samples
A-D at Positions A-D, we conclude that the 2-input networks can give an error in 100

less than 5 percent if the sample’s geometrical deviation in the longitudinal and
transverse directions does not exceed 0.5-1.0 mm. A 10 percent error results from a
1.2-1.5 mm deviation. For 10, the error is less than 5 percent when the deviation is less

Figure 5.
Complex permittivity

reconstructed with the
2 £ n-input MLP with
NA ¼ NB ¼ 10 : circles

and crossed circles mark
the test data and the actual

responses, respectively

Sample x-, y-, z-dimensions (mm) Position Distance (mm) from. . .

A 50 £ 50 £ 20 A . . .the second port: 120, . . .central line: 0
B 42 £ 30 £ 50 B . . .the second port: 120, . . .central line: 30
C 20 £ 25 £ 62 C . . .the second port: 120, . . .central line: 60
D 20 £ 25 £ 20 D . . .the second port: 150, . . .central line: 30

Table I.
Dielectric samples used in

numerical testing of the
networks for the two-port

scheme

Figure 6.
MSE of the 2-input RBF

with the number of
training samples from 48

to 69 with step 3
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Figure 8.
Complex permittivity of
sample C in position B:
reconstructed by the
4-input MLP with N ¼ 13
(a) and the 2-input MLP
with N ¼ 14; the test data
and the actual responses

Figure 7.
Complex permittivity of
sample B in position B:
reconstructed with the
2-input RBF with
N ¼ 57; the test data and
the actual responses
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than 1.2-1.5 mm and always less than 10 percent in the considered 2 mm deviation.
Simultaneously, a notable variation of accuracy is observed when the sample’s height
changes – even if variation in the vertical dimension is quite small. So, for high
accuracy, the experimental setup should be constructed to minimize accidental
deviations of the sample size in the z-direction.

4. Experimental testing
To show the method in full operation, we have designed the experimental fixture
implementing the concept of the one-port solution and thus measuring reflections from
a cavity with a dielectric sample (Figure 10). Using a rectangular ð70 £ 70 £ 50 mmÞ
Teflon block with a cylindrical cutout (radius 25 mm, height 40 mm) suitable for

Figure 9.
Percent error in getting

right 10 (a) and 100 (b) as a
function of deviation of

training data for the
sample dimension in the

x-direction: potato as
sample B in position B
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holding liquids, we have determined complex permittivity of tap and saline water.
The container filled with water was placed on the center line of the waveguide section
at 40 mm from the waveguide’s shorting wall in the opposite end with respect to the
coaxial-waveguide transition.

We used a QW-3D model consisting of 71,442 cells with a non-uniform mesh
(cell sizes in air, Teflon and water are 15, 5, and 2 mm, respectively) for the
entire cavity and dielectric inclusions. The permittivity of Teflon was taken as
2:06 2 i0:

The database of the training and testing sets was created with n ¼ 3; f 1 ¼
0:91 GHz; f 2 ¼ f 0 ¼ 0:915 GHz; and f 3 ¼ 0:92 GHz for 60 # 10 # 90 and 1 # 100 # 20
and included 108 and 224 vectors, respectively. For the 2£ n-input network, the
optimal structure was found as having NA ¼ 15 and NB ¼ 19: The normalized sum of
squared differences between the desired and actual network responses at the training
stage was less than 1024 for both Net A and Net B.

The values of jS11j measured at f 1 ¼ 0:91 GHz; f 2 ¼ 0:915 GHz; f 3 ¼ 0:92 GHz for
the Teflon container filled with water were given to the trained network, and it

Figure 10.
Diagram (a) and photo (b)
of the experimental setup
for the one-port solution
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generated water’s dielectric constant and the loss factor. For the sample of known
temperature and salinity, 10 and 100 have been also determined from the model whose
average error is 0.3 percent for 10 and 1.8 percent for 100 (Eves and Yakovlev, 2002).
As one can see from Table II, the results are in very close agreement. This confirms the
capability of the proposed ANN-based method for accurate reconstructing of complex
permittivity of materials.

5. Computer resources
The computational cost of the method is primarily determined by the time required to
create a database for network training and testing. The time spent on the training itself
is nearly negligible. For example, when working with the two-port scheme and using
the 15 and 3.3 mm cells in air and dielectric, respectively, we dealt with the model
containing 26,796 cells, and the simulation of one point on a PC with Pentium IV
2.5 GHz processor took 25 s. Hence the database with 149 samples outlined in Section 3
was created within 62 min. Clearly, the accuracy of permittivity reconstruction could
be generally improved by increasing the number of samples in the database (and thus,
agreeing on a higher computational cost).

Also, the precision of our method may depend on the accuracy of modeling which, in
its turn, is conditioned by the FDTD mesh used. In order to virtually exclude an
influence of discretization and to make sure that the applied cell sizes for all media
involved are adequate, we performed a sensitivity analysis prior to building the
databases, subsequently simulating the scenario with slightly smaller cells as long as
no substantial change in the results was noticed. All cells’ sizes mentioned above are
results of this type of an analysis.

6. Conclusion
Our novel technology of permittivity reconstruction which employs FDTD modeling,
an ANN-based optimization technique, and elementary measurement of S-parameters
places minimal physical requirements on fixture and sample geometry and is
sufficiently accurate for practical use. Further developments of the method may
include its adjustment to non-homogeneous dielectrics and a refinement to allow
sample preparation to less strict dimensional tolerances.

The practical advantages of the method are obvious. It does not depend on the
associated closed system and thus can be used with any available cavity and any
suitable FDTD simulator, not necessarily QW-3D. While a relatively large
computational effort may be required for creation of a database, the subsequent
processes of training and determination of complex permittivity require nearly
negligible time. Whenever we work at a fixed frequency with materials that can take

Proposed method Model (Eves and Yakovlev, 2002) Divergence (percent)

10

80.6 80.5 0.12
100

4.25 4.30 1.2

Note: Complex permittivity of fresh water with salinity 0.033 percent at temperature 18.68C
determined by the one-port method and the 2 £ n-input MLP ANN Table II.
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some pre-defined form, the database is created only once. One can do that prior to
actual experimental testing, and each new material can be processed thereafter
practically in real time – provided that 10 and 100 of this material are within the ranges
specified in the database and that the computer model is based upon the measured
experimental fixture.
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