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Microwave (MW) plasma has shown a significant contribution to applications in processing technology [1] with 
demonstrable impact on the efficiency and quality of various processes. Examples include production of synthetic diamonds 
[1]-[3], surface processing for semiconductor manufacturing (deposition, etching, cleaning) [1], [4], plasma-based 
decomposition of CO2 [5], etc. However, advancement of these applications is constrained by the challenges associated with 
development of efficient and controllable MW applicators for industrial use [1]. 

While sample computer simulations aiding in the design of such applicators have been reported in [2], [4], [6], [7], the use 
of advanced electromagnetic (EM) modeling and CAD remains limited due to the absence of adequate input data for the 
models of the system with plasma medium. The direct measurement of complex permittivity of plasma is challenging [8], 
[9] and, moreover, parameters of plasma are usually specific to the MW system in which it is ignited and maintained. 
Therefore, the complex permittivity of plasma is mostly estimated by theoretical calculation [8]. Recently, a simple physics-
driven approach to characterization of MW plasma for EM modeling using the FDTD technique was proposed in [10]. In 
this model, the complex permittivity of plasma is represented by the electric conductivity, which is conditioned by the plasma 
frequency fp, and the frequency of electron collisions, γ. Using this approach, EM modeling of a conventional MW applicator 
displayed well-known behavior of the electric field in presence of plasma [10]. 

Presently developing this work, we propose a machine-learning (ML) technique in which an FDTD model of a MW 
applicator with plasma is employed in an optimization loop. This technique allows one to find the optimum geometry of the 
applicator and determine the neutral gas required for optimal performance. Optimality here means energy efficiency; the 
objective function is defined as a minimum value of the reflection coefficient |S11| at an operating frequency f0. The procedure 
is based on the neural network technique featuring constrained optimization response surface sampling in the dynamic 
training of the decomposed radial-basis-function (RBF) network [11]. To demonstrate functionality of the optimization 
technique, we use a model of a conventional MW applicator, like that which was used in the study [10]. The model consists 
of a cylindrical cavity with a coaxial thin-wall quartz vessel containing uniformly distributed plasma (Fig. 1); the model is 
built in the 3D FDTD EM simulator QuickWave [12]. The ML procedure identifies the geometry of the applicator and the 
plasma parameters fp and γ which satisfy the objective function. 

In accordance with [10], plasma frequency fp, is conditioned by electron density which, in turn, depends on the neutral gas 
density and the degree of ionization [4]. It is difficult to determine the specific value of electron density, however, it can be 
assumed within a certain plausible range. As such, we specify fp as the design variable in our optimization procedure. 
Furthermore, following [10], the frequency of electron collision g, depends on the neutral gas density, the average electron 
velocity, and the electron collision cross-section. Per the approach [4], the first two parameters can be assumed constants. 
To estimate the latter, one can use the calculated atomic radius of the neutral gas in which the plasma is excited and 
maintained. Then γ can be seen as dependent on the gas, therefore, constituting a set of typical gases as a discrete design 
variable in our optimization. 

(a)                                                                              (b)
Fig. 1. 2D (a) and 3D (b) views of the modelled cylindrical cavity with a coaxial quartz vessel (containing plasma); 

contrary to [10], the cavity is excited by a longitudinally oriented rectangular waveguide. 
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Fig. 2. Architecture of a decomposed RBF network with 
h hidden neurons.

Fig. 3. Examples of non-optimal characteristics of 
|S11| for different neutral gases (γ) and plasma 

frequencies fp as well as random D and d; optimized 
characteristic is found for Ar, fp = 6.4 GHz, 

D = 95 mm, and d = 46 mm.

The RBF network used in the proposed machine-learning procedure (Fig. 2) follows the concept and methodology of the 
neural network optimization of microwave systems that is described in [11]. It works with input vectors of design variables 
Xi = [G1, G2, …, GN, fp, γ], where Gj (j = 1, …, N) are geometrical parameters of the modeled applicator, and i = 1, …, P, 
where P is the number of points (input-output pairs) of modeling data. The network output vectors are obtained by taking K
equally spaced values of frequency characteristics of |S11| over a specified frequency range. The procedure implemented in 
MATLAB includes the dynamic network training and testing performed with the use of the input data for the FDTD model 
and its output results. 

In the illustrative optimization, the applicator in Fig. 1 is characterized by constant parameters t = 1.5 mm, l = 220 mm, L = 
240 mm and excited by WR284. The CAD goal is to find the values of four design variables, two geometrical parameters 
G1 = D and G2 = d as well as fp and g corresponding to a minimum value of |S11| < 0.1 at f0 = 2.45 GHz. The following 
specifications are applied: 90 < D < 130 mm, 40 < d < 80 mm, 0.4 < fp < 8.0 GHz, and γ = [0.248 (He), 0.373 (Ne), 0.456 
(F), 0.595 (O), 0.810 (N), 1.303 (Ar), 2.001 (Kr), 3.014 (Xe)]. The procedure starts with an initial database of 50 randomly 
chosen points generated in the specified domain, and the stopping criterion is set for the database size reaching 500 points. 
The FDTD model features a fine non-uniform mesh with 2 mm cells in air and 1.5 mm cells in quartz and plasma. When run 
on a regular Windows PC, the steady state is reached within a few minutes. 

An optimized frequency response of |S11| is shown in Fig. 3 along with seven examples of typical non-optimized 
characteristics. The curve with the lowest value (0.75) of the reflection coefficient at 2.45 GHz corresponds to the specific
geometry, neutral gas, and plasma frequency. The optimal design is found with 102 points in the database. 

The described ML procedure employing the decomposed RBF network with three continuous (D, d, fp) and one discrete (γ) 
input parameters (design variables) demonstrates its robustness and computational efficiency. The underlying FDTD model, 
however, relies on the simplified characterization of complex permittivity of plasma that, in particular, assumes that plasma
frequency is a controllable/known parameter. With the uncertainties in input data of the EM models, our optimization 
procedure can be instructive in determining the operational bounds of applicators with MW plasma. 
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