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ABSTRACT 
The paper describes a radial network procedure of numerical optimization backed by 
full-wave numerical analysis.  To reduce computational effort, 3D FDTD data are 
added to the database as long as they are needed to achieve appropriate accuracy.  The 
method involves optimization of the regularization parameter and radial function’s 
radius.  Performance of the procedure is illustrated by optimizing the efficiency of a 
double waveguide window and a microwave oven with a load on a shelf.  
KEYWORDS: neural network, numerical optimization, radial basis function, 
regularization, S-parameters. 
 
INTRODUCTION 
In our previous paper [1] we have developed a novel technique for efficiency 
optimization of microwave systems.  The method based on the radial basis function 
(RBF) artificial neural networks (ANN) scheme is designed for complicated, 
electrically large systems.  The system efficiency is interpreted as energy coupling 
which is determined by the magnitude of the reflection coefficient (|S11|) in the range 
around the operating frequency f0.  The network is trained by geometrical parameters 
and the frequency responses of |S11| generated by 3D finite-difference time-domain 
(FDTD) simulation.  The computational procedure finds the system geometry 
characterized by the coupling which is not worse than the corresponding constraint.  

In contrast to the traditional techniques of ANN microwave optimization [2], the 
analysis part of our approach is not backed by a method employing equivalent lumped 
and transmission line element networks, resulting in quick generation of data for the 
optimized system, because those methods would not be sufficiently adequate in 
representing complicated microwave structures.  Rather, we rely on full-wave 
electromagnetic modeling, which appears to be the only option here.  This, however, 
makes our optimization computationally extensive.  

In this situation, a primary goal of an efficient strategy of optimization could be 
associated with either a motivated choice of fewer design variables, or using fewer 
points for their representation.  The first approach has been operated in the 
optimization of practical devices [1, 3, 4], but the required computational resources 
turned out to be dependent on the type of problem, quality of data, etc.  

This paper describes the procedure solving the optimization problem with less 
FDTD data.  Instead of first building the entire database (DB) (whose sufficient size 
should be guessed and which may become unnecessarily large) and then training the 
network, in our scheme, FDTD data are put in the database as long as they are needed.  
Other functions include optimization of the RBF’s radius and the regularization 
parameter controlling smoothness of data, and a choice of type of an RBF function.   
 
RBF ANN OPTIMIZATION  
We construct an RBF ANN (Fig. 1) that works with input vectors ]...[ 1 ni xx=X , 
and output vectors [ ]|)(|...|)(| 1 Ki fSfS=S , Pi ...,,1= , where x1, …, xn are system 
parameters (design variables), S(fj) is the value of an Smn parameter at the jth 
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frequency, and j = 1, …, K.  In our analysis, a certain form of a frequency response of 
a particular S-parameter is considered an objective function of the optimal design.   

With the use of FDTD simulations we generate P samples of input-output pairs 
such that the data set is made of the matrices X and S containing Xi and Si.  Our RBF 
network is coupled with a linear model 21 )(ˆ WXΦXWS += , where W1, W2 are some 
weight matrices, and Φ̂  is a matrix function containing RBFs.  We consider the 
mapping F: SX →  and deal with the equation ( )WXΦS =~ , where W = [W1  W2]T, 
Φ  is the matrix incorporating RBF with the linear model, and S~  is the mapped data.  
We consider the use of the local Gaussian and the global cubic radial basis functions.  

In order to fully describe F and appropriately choose the correct number of RBF 
centers, we partition the data set into a training set, {X(1), S(1)} of P1 elements, and a 
testing set, {X(2), S(2)} of P2 elements (P = P1 + P2).  When training, we minimize the 

error function ∑
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the weight matrix )1(1)( j
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j SΦΦΦw −= .  We assume that the number of RBFs is the 
same as the number of training points and pick the centers exactly on the points of Xi.  

Then the model is tested to see how well the network generalizes and 
approximates data that was not learned in training.  When using the Gaussian RBF, 
we test the network by the data in the matrix jr wXΦS ),(~ )2()2( = , and write an error 
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individual RBF, we find the optimal radius r* which makes it minimal.  
Since there are no restrictions on the dimensionality of the input and output 

domains (n and K), the weight matrix can be of arbitrary size.  If it is too large, then 
there are too many RBFs, and this leads to noisy data.  To resolve the problem, we use 
ridge regression which adds a penalty term to the sum-squared-error.  In this case, 

)( jjE w  can be minimized by the weight matrix )1(1)( j
TT

j SΦIΦΦw −+= ηλ , where λ 
is the regularization parameter controlling smoothness of data.  If we use the Gaussian 
function for the RBF, we perform a 2-parameter optimization with respect to λ and r.   

Finally, we find the optimal value S* with respect to the optimal X* by solving the 
problem ( )[ ]**** ,max/min

**
wXΦS

XX
r= , where w* is determined from {X(1), S(1)}.  The 

search for optimal design depends on available data and a desirable profile of the goal 
function.  When Si represents a rather smooth function, then a regular minimization is 
performed.  For better results with highly nonlinear data (in particular, in the presence 
of strong resonances), we transform S to a special matrix S~  which allows for 
minimizing the average value of Si, maximizing the slopes, and minimizing the area 
below the curve.  We train and optimize the model with S~  as the new output matrix.   
 
OPTIMIZATION WITH MINIMUM FDTD DATA 
The algorithm outlined in the previous section works with the database which is 
supposed to be available.  In the meantime, for complex and electrically large 
systems, generation of a DB is the most time-consuming part of the whole process.  
We introduce here an original yet simple procedure which keeps it under control and 
enforces dynamic generation of as many samples P as necessary for a required 
accuracy.  A corresponding algorithm is presented by the chart in Fig. 2.   
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      Fig. 1. Architecture of an RBF ANN           Fig. 2. Scheme of generating minimum FDTD data 
 

An initial database is usually small.  The user chooses dk divisions of the design 

variables’ ranges, i.e. creates a set of k

n

k
ini dP Π

=

=
1

  points equally spaced across the n-

dimensional input domain.  Then the procedure runs FDTD simulations to get the data 
matrices, creates the RBF network, transforms S in accordance with a goal function, 
optimizes the radius (if applicable), and uses the nonlinear least squares method to 
find a minimum solution.  If a minimum solution passes the constraints, the procedure 
takes this minimum as the final solution and stops; otherwise, the algorithm proceeds 
to create more data points.  The user also sets up a subsequent division gk that 

specifies k

n

k
sub gP Π

=

=
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 new points chosen in a quasi-random fashion.  Cutting up each 

dimension into gk pieces, the procedure makes Psub boxes of dimension n and picks up 
new DB points as uniformly distributed random ones inside each box.  After running 
the FDTD simulation with all these points, the database is of the size subini PPP += .  
The algorithm continues in this fashion until the constraints are satisfied.  
 
ILLUSTRATIONS AND DISCUSSION 
The optimization procedure described above has been implemented in a MATLAB 
code in which minimization of the errors is performed with the use of the nonlinear 
least squares method (procedure lsqnonlin in the MATLAB Optimization 
Toolbox).  Training/testing data for the network are generated by the full-wave 3D 
conformal FDTD simulator QuickWave-3D (http:// www.qwed.com.pl).  

In the first example, we optimize a geometry of a double waveguide window 
(WW) consisting of a section of a rectangular waveguide WR340 and two rectangular 
dielectric plates (Fig. 3) [4].  The goal is to minimize |S11| (to make it less than 0.3) in 
the frequency range from 2.4 to 2.5 GHz by varying up to seven design variables.  
The FDTD model contains from 34,000 to 119,000 cells depending on the 
configuration of the device; the cell sizes are 4 mm (air) and 1.5 mm (Quartz).  For 2-, 
3-, and 4-parameter optimizations performed  with  the  design  variables  (t1, t2),  (t1, 
t2, s),  and  (t1,  t2,  s,  bw = b1 = b2) respectively, the optimal characteristic with the 
lowest average value in the zone of  optimality  is  obtained  with  optimized  r  and  λ 
rather than with non-optimized r and with the cubic RBF.  When setting  dk = 3 and gk 
= 2 in the 4-parameter optimization, the DB consists of only 92 points.  Dealing with 
4 or more design variables, the procedure generates optimal characteristics fully 
satisfying the constraints and guaranteeing 90% efficiency (Fig. 4).   
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      Fig. 3.  Geometrical parameters of the          Fig. 4. Optimal WW characteristics obtained for 
                            WW model                                 different (3 to 7) number of design variables 

 

    (a)         (b) 
 

Fig. 5.  Geometrical parameters of microwave the model of a microwave oven with a centered load 
on a glass shelf (a) and its characteristics (b): non-optimized (A) and resulted from three 

2/3-parameter optimizations (D) [1] and one 5-parameter optimization (E). 
 

In the second example, we optimize the efficiency of a microwave oven with a 
load on a shelf (Fig. 5, a) [1].  Since an adequate FDTD model requires from 
~200,000 to 350,000 cells and at least 40,000 iterations in order to find the optimal 
solution within a reasonable time period, a special strategy was suggested in [1]: the 
problem was split into three subsequently solved 2- and 3-parameter optimizations.  
The characteristic obtained with this strategy does not satisfy the frequency 
constraints (curve D in Fig. 5, b).  With a dynamically built DB, several 5-parameter 
optimizations have been successfully performed.  The number of points does not 
exceed 500.  One of the optimal characteristics is shown in Fig. 6 (curve D).  It is seen 
that the curve’s portion between 2.42 and 2.54 GHz lies below the constraint S0 = 0.3. 

These examples confirm that the proposed features (dynamically created DB, 
optimized RBF’s radius, smoothing the data, etc.) of the ANN optimization backed by 
a full-wave numerical (FDTD) analysis make it computationally viable and efficient.  
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