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Hard computational problems

1 Integer factorization problem: Given an integer N = p · q find its
prime factors p and q. [2013 = 3 · 11 · 61]

2 Discrete logarithm problem: Given a prime p and g , h ∈ [1, p − 1],
find an integer x (if one exists) such that, g x ≡ h mod p.
[find x such that 2x ≡ 304 mod 419]
answer: 2343 ≡ 304 mod 419.
More generally: Given g , h ∈ F∗q, find an integer x (if one exists) such

that, g x ≡ h, where q = pl is the power of a prime

3 Elliptic curve discrete logarithm problem: Given an elliptic curve
E/Fq and P,Q ∈ E (Fqk ), find an integer x (if one exists) such that,
xP = Q
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Francisco Rodŕıguez-Henŕıquez Computing discrete logarithms in the field F
36·509 (2 / 37)



Elliptic curves

borrowed from Quino.
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Elliptic curves

E defined by a Weierstraß equation of the form over a prime field
with characteristic different than 2,3:

y2 = x3 + Ax + B

E (K ) set of rational points over a field K

Additive group law over E (K )

Many applications in cryptography since 1985
I EC-based Diffie-Hellman key exchange
I EC-based Digital Signature Algorithm
I ...

Interest: smaller keys than usual cryptosystems (RSA, ElGamal, ...)
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Discrete logarithm cryptography

(G1, +), an additively-written cyclic group of prime order #G1 = `

P, a generator of the group: G1 = 〈P〉
Scalar multiplication: for any integer k , we have
kP = P + P + · · ·+ P︸ ︷︷ ︸

k times

P

k

kP

Discrete logarithm: given Q ∈ G1, compute k such that Q = kP

kQ = P

k

We assume that the discrete logarithm problem (DLP) in G1 is hard
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Francisco Rodŕıguez-Henŕıquez Computing discrete logarithms in the field F
36·509 (5 / 37)



Discrete logarithm cryptography

(G1, +), an additively-written cyclic group of prime order #G1 = `

P, a generator of the group: G1 = 〈P〉
Scalar multiplication: for any integer k , we have
kP = P + P + · · ·+ P︸ ︷︷ ︸

k times

P

k

kP

Discrete logarithm: given Q ∈ G1, compute k such that Q = kP

kQ = P

k

We assume that the discrete logarithm problem (DLP) in G1 is hard
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Francisco Rodŕıguez-Henŕıquez Computing discrete logarithms in the field F
36·509 (5 / 37)



Discrete logarithm cryptography

(G1, +), an additively-written cyclic group of prime order #G1 = `

P, a generator of the group: G1 = 〈P〉
Scalar multiplication: for any integer k , we have
kP = P + P + · · ·+ P︸ ︷︷ ︸

k times

P

k

kP

Discrete logarithm: given Q ∈ G1, compute k such that Q = kP

kQ = P

k

We assume that the discrete logarithm problem (DLP) in G1 is hard

Francisco Rodŕıguez-Henŕıquez Computing discrete logarithms in the field F
36·509 (5 / 37)



Discrete logarithm cryptography

(G1, +), an additively-written cyclic group of prime order #G1 = `

P, a generator of the group: G1 = 〈P〉
Scalar multiplication: for any integer k , we have
kP = P + P + · · ·+ P︸ ︷︷ ︸

k times

P

k

kP

Discrete logarithm: given Q ∈ G1, compute k such that Q = kP

kQ = P

k

We assume that the discrete logarithm problem (DLP) in G1 is hard
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Pairing-based cryptography: Main properties

(G2,×), a multiplicatively-written cyclic group of order
#G2 = #G1 = `

A bilinear pairing on (G1,G2) is a map

ê : G1 ×G1 → G2

that satisfies the following conditions:

I non-degeneracy: ê(P,P) 6= 1G2 (equivalently ê(P,P) generates G2)
I bilinearity:

ê(Q1+Q2,R) = ê(Q1,R)·ê(Q2,R) ê(Q,R1+R2) = ê(Q,R1)·ê(Q,R2)
I computability: ê can be efficiently computed

Immediate property: for any two integers k1 and k2

ê(k1Q, k2R) = ê(Q,R)k1k2
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I bilinearity:
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Pairing-based cryptography: The MOV attack

At first, used to attack supersingular elliptic curves
I Menezes-Okamoto-Vanstone and Frey-Rück attacks, 1993 and 1994

DLPG1 <P DLPG2

dP −→ ê(dP,P) = ê(P,P)d

I for cryptographic applications, we will also require the DLP in G2 to be
hard

Pairing-based cryptography Sakai-Oghishi-Kasahara, 2000

One-round three-party key agreement (Joux, 2000)

Identity-based encryption
I Boneh–Franklin, 2001
I Sakai–Kasahara, 2001

Short digital signatures
I Boneh–Lynn–Shacham, 2001
I Zang–Safavi-Naini–Susilo, 2004

...
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Pairing-based cryptography: How to define pairings using
elliptic curves

Let us define
I Fq, a finite field, with q = 2m, 3m or p
I E , an elliptic curve defined over Fq

I `, a large prime factor of #E (Fq)

k is the embedding degree, the smallest integer such that `|qk − 1
I usually large for ordinary elliptic curves
I bounded in the case of supersingular elliptic curves

(4 in characteristic 2; 6 in characteristic 3; and 2 in characteristic > 3)
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Time complexity

borrowed from the xkcd site.
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Running time complexity

The efficiency of an algorithm is measured in terms of its input size.

I For the discrete logarithm problem in Fq, the input size is O(log q) bits.

A polynomial-time algorithm is one whose running time is bounded by
a polynomial in the input size: (log q)c , where c is a constant.

A fully exponential-time algorithm is one whose running time is of the
form qc , where c is a constant.

A subexponential-time algorithm as one whose running time is of the
form,

Lq[α, c] = ec(log q)α(log log q)1−α
,

where 0 < α < 1, and c is a constant.
α = 0: polynomial α = 1: fully exponential
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Historic major developments

Integer factorization (N)
I Quadratic sieve (1982): LN [ 1

2 , 1].
I Number field sieve (1990): LN [ 1

3 , 1.923].

Discrete logarithm over (Fp)
I Adleman (1979): Lp[ 1

2 , 2].
I Coppersmith-Odlyzko-Schroeppel (1986): Lp[ 1

2 , 1].
I Gordon (1990): Lp[ 1

3 , 1.923].

Discrete logarithm over (F2m)
I Hellman-Reyneri (1982): L2m [ 1

2 , 1.414].
I Coppersmith (1984): L2m [ 1

3 , 1.526].

Elliptic curve discrete logarithm over (Fq)
I Pollard (1978): q1/2.
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Recommended key sizes

Security RSA DL: Fp DL: F2m ECC
in bits ||N||2 ||p||2 m ||q||2

80 1024 1024 1500 160

112 2048 2048 3500 224

128 3072 3072 4800 256

192 7680 7680 12500 384

256 15360 15360 25000 512
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Pairing-based cryptography: Believed security circa 2012
for supersingular curves

ê : E (Fq )[`]× E (Fq )[`]→ µ` ⊆ F×qk

The embedding degree k depends on the field characteristic q

Base field (Fq ) F2m F2m Fp

Embedding degree (k) 4 6 2

Lower security (∼ 264) m = 239 m = 97 |p| ≈ 256 bits

Medium security (∼ 280) m = 373 m = 163 |p| ≈ 512 bits

Higher security (∼ 2128) m = 1103 m = 503 |p| ≈ 1536 bits

F2m : simpler finite field arithmetic

F3m : smaller field extension

Fp : prohibitive field sizes[really?]
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ê : E (Fq )[`]× E (Fq )[`]→ µ` ⊆ F×qk

The embedding degree k depends on the field characteristic q

Base field (Fq ) F2m F2m Fp

Embedding degree (k) 4 6 2

Lower security (∼ 264) m = 239 m = 97 |p| ≈ 256 bits

Medium security (∼ 280) m = 373 m = 163 |p| ≈ 512 bits

Higher security (∼ 2128) m = 1103 m = 503 |p| ≈ 1536 bits

F2m : simpler finite field arithmetic

F3m : smaller field extension

Fp : prohibitive field sizes[really?]
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Index-Calculus Algorithms for DLP in Fqn

The elements of Fqn can be viewed as the polynomials of degree at most
n − 1 in the ring Fq[X ].
Field arithmetic is performed by means of a degree n polynomial whose
coefficients are in Fq, irreducible over the base field Fq.
Index-Calculus Algorithms for DLP in Fqn comprisses four main phases:

1 Factor base: Composed by all irreducible polynomials of degree ≤ t

2 Relation generation: Find individual linear relations of the logarithms
of factor base elements

3 Linear system: Obtain the logarithms of factor base elements by
solving a linear system of equations that arises from collecting all the
relations found in the previous phase

4 Descent: Compute the logarithm of the given element
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Attacks on discrete log computation over small char Fqn:
Main developments in the last 30+ years

Let Q be defined as Q = qn.

Hellman-Reyneri 1982: Index-calculus LQ [ 1
2 , 1.414]

Coppersmith 1984: LQ [ 1
3 , 1.526]

Joux-Lercier 2006: LQ [ 1
3 , 1.442] when q and n are “balanced”

Hayashi et al. 2012: Used an improved version of the Joux-Lercier
method to compute discrete logs over the field F36·97

Joux 2012: LQ [ 1
3 , 0.961] when q and n are “balanced”

Joux 2013: LQ [ 1
4 + o(1), c] when Q = q2m and q ≈ m

Göloğlu et al. 2013: similar to Joux 2013, BPA @ Crypto’2013
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Attacks on discrete log computation over small char Fqn:
security level consequences

Let us assume that one wants to compute discrete logarithms in the field
Fqn , with q = 36, n = 509 Notice that the multiplicative group size of that
field is,

#F36·509 = dlog2(3) · 6 · 509e = 4841 bits.

Algorithm Time complexity Equivalent bit security level

Hellman-Reyneri 1982 LQ [ 1
2 , 1.414] 337

Coppersmith 1984 LQ [ 1
3 , 1.526] 134

Joux-Lercier 2006 LQ [ 1
3 , 1.442] 126
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2010: The year we make contact
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[2010] 2013: The year we make contact

Feb 11 2013 Joux: F21778 = F(27)2·127 .
I 215 CPU hours

Feb 19 2013 Göloğlu et al.: F21971 = F(29)3·73 .
I 3,132 CPU hours

Mar 22 2013 Joux: F24080 = F(28)2·255 .
I 14,100 CPU hours

April 6 2013, Barbulescu et al.: F2809 ,
I notice that 809 is a prime number.
I using conventional techniques based on the Coppersmith algorithm
I 30,000+ CPU hours

Apr 11 2013 Göloğlu et al.: F26120 = F(28)3·255 .
I 750 CPU hours

May 21 2013 Joux: F26168 = F(28)3·257 .
I 550 CPU hours
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A Quasi-Polynomial Time Algorithm

(June 19 2013) Barbulescu-Gaudry-Joux-Thomé

Let q be a prime power, and let n ≤ q + 2.

The DLP in Fq2·n can be solved in time

qO(log n)

In the case where n ≈ q, the DLP in Fq2·n = FQ can be solved in time,

logQO(log log Q)

This is smaller than LQ [α, c] for any α > 0 and c > 0.
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Cryptographic implications

PJCrypto: Post-Joux Cryptography
1 Discrete log cryptography
2 Pairing-based cryptography
3 Elliptic curve cryptography

Francisco Rodŕıguez-Henŕıquez Computing discrete logarithms in the field F
36·509 (19 / 37)



Discrete log cryptography

Diffie-Hellman, ElGamal, DSA, ...

DL cryptography over Fp is not affected.

DL cryptography over F2m , m prime, might be affected.
Note that F2m can be embedded in F2`m for any l ≥ 2.

I F2809 can be embedded in F210·2·809 . It is unlikely that the new
algorithms will be faster in this larger field.
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Pairing-based cryptography

Efficient discrete log algorithms in small char Fqn fields have a direct
negative impact on the security level that small characteristic symmetric
pairings can offer:

1 Supersingular elliptic curves over F2n with embedding degree k = 4

2 Supersingular elliptic curves over F3n with embedding degree k = 6

3 Supersingular genus-two curves over F2n with embedding degree
k = 12

4 Elliptic curves over Fp with embedding degree k = 2

5 BN curves: Elliptic curves over Fp with embedding degree k = 12

Curves 1, 2 and 3 are potentially vulnerable to the new attacks.
Curves 4 and 5 are not affected by the new attacks.
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Pairing-based cryptography

Example: Consider the supersingular elliptic curve, Y 2 = X 3 − X + 1,
with #E (F3509) = 7r , and where, r = (3509 − 3255 + 1)/7 is an
804-bit prime.

E has embedding degree k = 6

The ellliptic curve group E (F3509) can be efficiently embedded in
F36·509

Question: Can logarithms in F36·509 be efficiently computed using
the new algorithms? Or, at least significantly faster than the
previously-known algorithms?

Note: F36·509 can be embedded in F36·2·509
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Elliptic curve cryptography

The recent advances do not affect the security of (ordinary)
elliptic curve cryptosystems.

Example: NIST elliptic curve K-163:
E : Y 2 + XY = X 3 + X 2 + 1 over F2163 E (F2163) can be
embedded in F2163·2·17932535427373041941149514581590332356837787037

∗

Elements in this large field are
5846006549323611672814741753598448348329118574062 ≈
2163 bits in length.

the Eddington number, NEdd , is the “provable” number of
protons in the observable universe estimated as, NEdd = 136 · 2256
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A mainstream belief in the crypto community

Several records broken in rapid succession by Joux, Göloğlu et al. and
the Caramel team, the last of the series as of today: a discrete log
computation over F26128 = F(28)3·257 Joux (May 21, 2013)

As a consequence of these astonishing results, a mainstream belief in
the crypto community is that small characteristic symmetric pairings
are broken, both in theory and in practice

More than that, some distinguished researchers have expressed in
blogs/chats the opinion that all these new developments may sooner
or later bring fatal consequences for integer factorization, which
eventually would lead to the death of RSA

Nevertheless, none of the records mentioned above have attacked
finite field extensions that have been previously proposed for
performing pairing-based cryptography in small char

Francisco Rodŕıguez-Henŕıquez Computing discrete logarithms in the field F
36·509 (24 / 37)



A mainstream belief in the crypto community

Several records broken in rapid succession by Joux, Göloğlu et al. and
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Our question

Our question: can the new attacks or a combination of them be effectively
applied to compute discrete logs in finite field extensions of interest in
pairing-based cryptography?
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Discrete log descent

borrowed from Quino.
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Computing discrete logarithms in F36·509

We present a concrete analysis of the DLP algorithm for computing
discrete logarithms in F36·509 .

In fact, this field is embedded in the quadratic extension field F312·509 ,
and it is in this latter field where the DLP algorithm is executed.

Thus, we have q = 36 = 729, n = 509, and the size of the group is
N = 312·509 − 1. Note that 312·509 ≈ 29681.

We wish to find logg h, where g is a generator of F∗312·509 and
h ∈ F∗312·509 .

Once again, this field was selected to attack the elliptic curve discrete
logarithm problem in E (F3509), where E is the supersingular elliptic
curve Y 2 = X 3 − X + 1 with #E (F3509) = 7r , and where
r = (3509 − 3255 + 1)/7 is an 804-bit prime.
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Computing discrete logarithms in F36·509: Main steps

Our attack was divided in three main steps

Finding logarithms of linear polynomials

Finding logarithms of irreducible quadratic polynomials

Descent, divided into four different strategies:

1 Continued-fraction descent
2 Classical descent
3 QPA descent
4 Gröbner bases descent
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Finding logarithms of linear polynomials

The factor base for linear polynomials B1 has size 312 ≈ 219.
I The cost of relation generation is approximately 230Mq2 ,
I The cost of the linear algebra is approximately 248Mr ,

where Mq2 and Mr stands for field multiplication in the field Fq2 and
Fr , respectively.

Note that relation generation can be effectively parallelized, unlike the
linear algebra where parallelization on conventional computers
provides relatively small benefits.

Francisco Rodŕıguez-Henŕıquez Computing discrete logarithms in the field F
36·509 (29 / 37)



Finding logarithms of linear polynomials

The factor base for linear polynomials B1 has size 312 ≈ 219.
I The cost of relation generation is approximately 230Mq2 ,
I The cost of the linear algebra is approximately 248Mr ,

where Mq2 and Mr stands for field multiplication in the field Fq2 and
Fr , respectively.

Note that relation generation can be effectively parallelized, unlike the
linear algebra where parallelization on conventional computers
provides relatively small benefits.
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Finding logarithms of irreducible quadratic polynomials

Let u ∈ Fq2 , and let Q(X ) = X 2 + uX + v ∈ Fq2 [X ] be an irreducible
quadratic.

I Define B2,u to be the set of all irreducible quadratics of the form
X 2 + uX + w in Fq2 [X ]

I one expects that #B2,u ≈ (q2 − 1)/2
I The logarithms of all elements in B2,u are found simultaneously using

one application of QPA descent

For each u ∈ F312 , the expected cost of computing logarithms of all
quadratics in B2,u is 239Mq2 for relation generation, and 248Mr for
the linear algebra.

This step is somewhat parallelizable on conventional computers since
each set B2,u can be handled by a different processor.
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Descent: General approach

Recall that we wish to compute logg h, where
h ∈ Fq2n = Fq2 [X ]/(IX ). We assume that deg h = n − 1.

The descent stage begins by multiplying h by a random power of g ,
namely, h′ = h · g i for some i ∈ Fr .

The descent algorithm gives logg h
′ as a linear combination of

logarithms of polynomials of degree at most two using the
combination of four different strategies.
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A descent into four steps

1 Continued-fraction descent: Starting from a polynomial of degree
n = 508 gives its discrete log as a linear combination of logarithms of
polynomials of degree at most m = 30

2 Classical descent: given the degree-30 polynomials of the previous
step, finds their discrete log as a linear combination of logarithms of
polynomials of degree at most 11 (using two applications of this
strategy)

3 QPA descent: given the degree-11 polynomials of the previous step,
finds their discrete log as a linear combination of logarithms of
polynomials of degree at most 7

4 Gröbner bases descent: given the degree-7 polynomials of the
previous step, finds their discrete log as a linear combination of
logarithms of cuadratic polynomials. This concludes the descent
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A positive answer: Announcing the weak field F36·509

Finding logarithms of linear polynomials
Relation generation 222Mr

Linear algebra 248Mr

Finding logarithms of irreducible quadratic polynomials
Relation generation 250Mr

Linear algebra 267Mr

Descent
Continued-fraction (254 to 30) 271Mr

Classical (30 to 15) 271Mr

Classical (15 to 11) 273Mr

QPA (11 to 7) 263Mr

Gröbner bases (7 to 4) 265Mr

Gröbner bases (4 to 3) 264Mr

Gröbner bases (3 to 2) 269Mr

Table: Estimated costs of the main steps of the new DLP algorithm for
computing discrete logarithms in F(36)2·509 . Mr denotes the costs of a

multiplication modulo the 804-bit prime r = (3509 − 3255 + 1)/7. We also assume
that 222 multiplications modulo r can be performed in 1 second
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Descent path for a polynomial of degree ≤ 508 over F36·2

The numbers in parentheses are the expected number of nodes at that
level. ’Time’ is the expected time to generate all nodes at a level.

All the technical details are discussed in the eprint report 2013/446
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Post-Scriptum 0: Joux-Pierrot (September 9, 2013)

Revisiting fields of pairing interest, the authors in the eprint report
2013/446, find that the running time of computing discrete logs has
complexity,

LQ(1/3, [(64/9) · (λ+ 1)/λ)]1/3),

where λ is the degree of the polynomial that defines the field
characteristic p (usually, λ ≤ 10)

I For fields of pairing interest where p is ’large’ the complexity of the
attack drops to,

LQ(1/3, [(32/9) · (λ+ 1)/λ)]1/3),

and even to, LQ(1/3, [(32/9)]1/3). for some large ’low-weight’ primes
with low embedding degree k .

The analysis is asymtoptic. In particular, this attack does not affect
the 128-bit security level parameters used for the curves of class 5 in
slide 21.
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Post-Scriptum 1: Granger (September 16, 2013)

In his ECC’2013 talk, Robert Granger announced a refined version of
the attack described in this presentation.

This allows him to report several more weak fields in characteritic
two, including, F24·1223 , a field that not long ago was assumed to offer
a security level of 128 bits
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Merci-Thanks-Obrigado-Gracias
for your attention

borrowed from Quino.
Questions?

Francisco Rodŕıguez-Henŕıquez Computing discrete logarithms in the field F
36·509 (37 / 37)


