# On the complexity of computing discrete logarithms in the field $\mathbb{F}_{3^{6\cdot 509}}$

#### Francisco Rodríguez-Henríquez CINVESTAV-IPN



Joint work with: Gora Adj CINVES Alfred Menezes Univers Thomaz Oliveira CINVES

CINVESTAV-IPN University of Waterloo CINVESTAV-IPN

Worcester Polytechnic Institute - September 17, 2013

. / 37)

• Integer factorization problem: Given an integer  $N = p \cdot q$  find its prime factors p and q. [2013 =  $3 \cdot 11 \cdot 61$ ]

< 回 > < 三 > < 三 > .

- Integer factorization problem: Given an integer  $N = p \cdot q$  find its prime factors p and q. [2013 =  $3 \cdot 11 \cdot 61$ ]
- Discrete logarithm problem: Given a prime p and g, h ∈ [1, p − 1], find an integer x (if one exists) such that, g<sup>x</sup> ≡ h mod p. [find x such that 2<sup>x</sup> ≡ 304 mod 419]

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Integer factorization problem: Given an integer  $N = p \cdot q$  find its prime factors p and q. [2013 =  $3 \cdot 11 \cdot 61$ ]
- Discrete logarithm problem: Given a prime p and g, h ∈ [1, p − 1], find an integer x (if one exists) such that, g<sup>x</sup> ≡ h mod p. [find x such that 2<sup>x</sup> ≡ 304 mod 419] answer: 2<sup>343</sup> ≡ 304 mod 419.

• Imp • I

• Integer factorization problem: Given an integer  $N = p \cdot q$  find its prime factors p and q. [2013 =  $3 \cdot 11 \cdot 61$ ]

Discrete logarithm problem: Given a prime p and g, h ∈ [1, p − 1], find an integer x (if one exists) such that, g<sup>x</sup> ≡ h mod p. [find x such that 2<sup>x</sup> ≡ 304 mod 419] answer: 2<sup>343</sup> ≡ 304 mod 419. More generally: Given g, h ∈ F<sup>\*</sup><sub>q</sub>, find an integer x (if one exists) such that, g<sup>x</sup> ≡ h, where q = p<sup>l</sup> is the power of a prime

• Integer factorization problem: Given an integer  $N = p \cdot q$  find its prime factors p and q. [2013 =  $3 \cdot 11 \cdot 61$ ]

Discrete logarithm problem: Given a prime p and g, h ∈ [1, p − 1], find an integer x (if one exists) such that, g<sup>x</sup> ≡ h mod p. [find x such that 2<sup>x</sup> ≡ 304 mod 419] answer: 2<sup>343</sup> ≡ 304 mod 419. More generally: Given g, h ∈ ℝ<sup>\*</sup><sub>q</sub>, find an integer x (if one exists) such that, g<sup>x</sup> ≡ h, where q = p<sup>l</sup> is the power of a prime

• Elliptic curve discrete logarithm problem: Given an elliptic curve  $E/\mathbb{F}_q$  and  $P, Q \in E(\mathbb{F}_{q^k})$ , find an integer x (if one exists) such that, xP = Q

イロト 不得下 イヨト イヨト 三日



#### borrowed from Quino.

Francisco Rodríguez-Henríquez

э

• E defined by a Weierstraß equation of the form over a prime field with characteristic different than 2,3:

$$y^2 = x^3 + Ax + B$$

A B F A B F

• *E* defined by a Weierstraß equation of the form over a prime field with characteristic different than 2,3:

$$y^2 = x^3 + Ax + B$$

• E(K) set of rational points over a field K

4 1 1 4 1 1 1

• *E* defined by a Weierstraß equation of the form over a prime field with characteristic different than 2,3:

$$y^2 = x^3 + Ax + B$$

- E(K) set of rational points over a field K
- Additive group law over E(K)

• *E* defined by a Weierstraß equation of the form over a prime field with characteristic different than 2,3:

$$y^2 = x^3 + Ax + B$$

- E(K) set of rational points over a field K
- Additive group law over E(K)
- Many applications in cryptography since 1985
  - EC-based Diffie-Hellman key exchange
  - EC-based Digital Signature Algorithm
  - **۱**...

• *E* defined by a Weierstraß equation of the form over a prime field with characteristic different than 2,3:

$$y^2 = x^3 + Ax + B$$

- E(K) set of rational points over a field K
- Additive group law over E(K)
- Many applications in cryptography since 1985
  - EC-based Diffie-Hellman key exchange
  - EC-based Digital Signature Algorithm
  - ▶ ...
- Interest: smaller keys than usual cryptosystems (RSA, ElGamal, ...)

• (G<sub>1</sub>, +), an additively-written cyclic group of prime order #G<sub>1</sub> =  $\ell$ 

・ 同 ト ・ ヨ ト ・ ヨ ト

- ( $\mathbb{G}_1$ , +), an additively-written cyclic group of prime order  $\#\mathbb{G}_1 = \ell$
- *P*, a generator of the group:  $\mathbb{G}_1 = \langle P \rangle$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- (G<sub>1</sub>, +), an additively-written cyclic group of prime order #G<sub>1</sub> =  $\ell$
- *P*, a generator of the group:  $\mathbb{G}_1 = \langle P \rangle$
- Scalar multiplication: for any integer k, we have

$$kP = \underbrace{P + P + \dots + P}_{k \text{ times}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- (G<sub>1</sub>, +), an additively-written cyclic group of prime order #G<sub>1</sub> =  $\ell$
- *P*, a generator of the group:  $\mathbb{G}_1 = \langle P \rangle$
- Scalar multiplication: for any integer k, we have  $kP = \underbrace{P + P + \dots + P}_{kP}$

k times





• • = • • = •

- ( $\mathbb{G}_1$ , +), an additively-written cyclic group of prime order  $\#\mathbb{G}_1 = \ell$
- *P*, a generator of the group:  $\mathbb{G}_1 = \langle P \rangle$
- Scalar multiplication: for any integer k, we have  $kP = \underbrace{P + P + \cdots + P}_{kP}$

k times



- ( $\mathbb{G}_1$ , +), an additively-written cyclic group of prime order  $\#\mathbb{G}_1 = \ell$
- *P*, a generator of the group:  $\mathbb{G}_1 = \langle P \rangle$
- Scalar multiplication: for any integer k, we have  $kP = \underbrace{P + P + \cdots + P}_{kP}$

k times



• Discrete logarithm: given  $Q \in \mathbb{G}_1$ , compute k such that Q = kP

- $(\mathbb{G}_1, +)$ , an additively-written cyclic group of prime order  $\#\mathbb{G}_1 = \ell$
- *P*, a generator of the group:  $\mathbb{G}_1 = \langle P \rangle$
- Scalar multiplication: for any integer k, we have  $kP = \underbrace{P + P + \cdots + P}_{k + 1}$

k times



• Discrete logarithm: given  $Q \in \mathbb{G}_1$ , compute k such that Q = kP



通 ト イヨ ト イヨト

- $(\mathbb{G}_1, +)$ , an additively-written cyclic group of prime order  $\#\mathbb{G}_1 = \ell$
- *P*, a generator of the group:  $\mathbb{G}_1 = \langle P \rangle$
- Scalar multiplication: for any integer k, we have  $kP = \underbrace{P + P + \cdots + P}_{k + 1}$

k times



• Discrete logarithm: given  $Q \in \mathbb{G}_1$ , compute k such that Q = kP



くほと くほと くほと

- $(\mathbb{G}_1, +)$ , an additively-written cyclic group of prime order  $\#\mathbb{G}_1 = \ell$
- *P*, a generator of the group:  $\mathbb{G}_1 = \langle P \rangle$
- Scalar multiplication: for any integer k, we have  $kP = P + P + \dots + P$

k times



• Discrete logarithm: given  $Q \in \mathbb{G}_1$ , compute k such that Q = kP

- $(\mathbb{G}_1, +)$ , an additively-written cyclic group of prime order  $\#\mathbb{G}_1 = \ell$
- *P*, a generator of the group:  $\mathbb{G}_1 = \langle P \rangle$
- Scalar multiplication: for any integer k, we have  $kP = \underbrace{P + P + \cdots + P}_{k + 1}$

k times



• Discrete logarithm: given  $Q \in \mathbb{G}_1$ , compute k such that Q = kP



• We assume that the discrete logarithm problem (DLP) in  $\mathbb{G}_1$  is hard

• ( $\mathbb{G}_2$ , ×), a multiplicatively-written cyclic group of order  $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$ 

(人間) トイヨト イヨト ニヨ

- ( $\mathbb{G}_2$ , ×), a multiplicatively-written cyclic group of order  $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$
- A bilinear pairing on  $(\mathbb{G}_1, \mathbb{G}_2)$  is a map

 $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$ 

that satisfies the following conditions:

- ( $\mathbb{G}_2$ , ×), a multiplicatively-written cyclic group of order  $\#\mathbb{G}_2 = \#\mathbb{G}_1 = \ell$
- A bilinear pairing on  $(\mathbb{G}_1, \mathbb{G}_2)$  is a map

 $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$ 

that satisfies the following conditions:

▶ non-degeneracy:  $\hat{e}(P, P) \neq 1_{\mathbb{G}_2}$  (equivalently  $\hat{e}(P, P)$  generates  $\mathbb{G}_2$ )

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- (G<sub>2</sub>, ×), a multiplicatively-written cyclic group of order #G<sub>2</sub> = #G<sub>1</sub> = ℓ
- A bilinear pairing on  $(\mathbb{G}_1, \mathbb{G}_2)$  is a map

 $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$ 

that satisfies the following conditions:

- ▶ non-degeneracy:  $\hat{e}(P, P) \neq 1_{\mathbb{G}_2}$  (equivalently  $\hat{e}(P, P)$  generates  $\mathbb{G}_2$ )
- ▶ bilinearity:  $\hat{e}(Q_1+Q_2, R) = \hat{e}(Q_1, R) \cdot \hat{e}(Q_2, R)$   $\hat{e}(Q, R_1+R_2) = \hat{e}(Q, R_1) \cdot \hat{e}(Q, R_2)$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- (G<sub>2</sub>, ×), a multiplicatively-written cyclic group of order #G<sub>2</sub> = #G<sub>1</sub> = ℓ
- A bilinear pairing on  $(\mathbb{G}_1, \mathbb{G}_2)$  is a map

 $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$ 

that satisfies the following conditions:

- ▶ non-degeneracy:  $\hat{e}(P, P) \neq 1_{\mathbb{G}_2}$  (equivalently  $\hat{e}(P, P)$  generates  $\mathbb{G}_2$ )
- ▶ bilinearity:  $\hat{e}(Q_1+Q_2, R) = \hat{e}(Q_1, R) \cdot \hat{e}(Q_2, R)$   $\hat{e}(Q, R_1+R_2) = \hat{e}(Q, R_1) \cdot \hat{e}(Q, R_2)$
- computability: ê can be efficiently computed

- (G<sub>2</sub>, ×), a multiplicatively-written cyclic group of order #G<sub>2</sub> = #G<sub>1</sub> = ℓ
- A bilinear pairing on  $(\mathbb{G}_1, \mathbb{G}_2)$  is a map

 $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$ 

that satisfies the following conditions:

- ▶ non-degeneracy:  $\hat{e}(P, P) \neq 1_{\mathbb{G}_2}$  (equivalently  $\hat{e}(P, P)$  generates  $\mathbb{G}_2$ )
- ► bilinearity:  $\hat{e}(Q_1+Q_2, R) = \hat{e}(Q_1, R) \cdot \hat{e}(Q_2, R)$   $\hat{e}(Q, R_1+R_2) = \hat{e}(Q, R_1) \cdot \hat{e}(Q, R_2)$
- computability: ê can be efficiently computed
- Immediate property: for any two integers  $k_1$  and  $k_2$  $\hat{e}(k_1Q, k_2R) = \hat{e}(Q, R)^{k_1k_2}$

- At first, used to attack supersingular elliptic curves
  - Menezes-Okamoto-Vanstone and Frey-Rück attacks, 1993 and 1994

 $DLP_{\mathbb{G}_1} <_{\mathbb{P}} DLP_{\mathbb{G}_2}$   $\frac{dP}{dP} \longrightarrow \hat{e}(\frac{dP}{P}, P) = \hat{e}(P, P)^d$ 

▶ for cryptographic applications, we will also require the DLP in G<sub>2</sub> to be hard

- At first, used to attack supersingular elliptic curves
  - Menezes-Okamoto-Vanstone and Frey-Rück attacks, 1993 and 1994

 $DLP_{\mathbb{G}_1} <_{\mathbb{P}} DLP_{\mathbb{G}_2}$   $dP \longrightarrow \hat{e}(dP, P) = \hat{e}(P, P)^d$ 

- ▶ for cryptographic applications, we will also require the DLP in G<sub>2</sub> to be hard
- Pairing-based cryptography Sakai-Oghishi-Kasahara, 2000
- One-round three-party key agreement (Joux, 2000)

- At first, used to attack supersingular elliptic curves
  - Menezes-Okamoto-Vanstone and Frey-Rück attacks, 1993 and 1994

 $DLP_{\mathbb{G}_1} <_{\mathbb{P}} DLP_{\mathbb{G}_2}$   $dP \longrightarrow \hat{e}(dP, P) = \hat{e}(P, P)^d$ 

- $\blacktriangleright$  for cryptographic applications, we will also require the DLP in  $\mathbb{G}_2$  to be hard
- Pairing-based cryptography Sakai-Oghishi-Kasahara, 2000
- One-round three-party key agreement (Joux, 2000)
- Identity-based encryption
  - Boneh–Franklin, 2001
  - Sakai–Kasahara, 2001

- At first, used to attack supersingular elliptic curves
  - Menezes-Okamoto-Vanstone and Frey-Rück attacks, 1993 and 1994

 $DLP_{\mathbb{G}_1} <_{\mathbb{P}} DLP_{\mathbb{G}_2}$   $\frac{dP}{dP} \longrightarrow \hat{e}(\frac{dP}{dP}, P) = \hat{e}(P, P)^d$ 

- $\blacktriangleright$  for cryptographic applications, we will also require the DLP in  $\mathbb{G}_2$  to be hard
- Pairing-based cryptography Sakai-Oghishi-Kasahara, 2000
- One-round three-party key agreement (Joux, 2000)
- Identity-based encryption
  - Boneh–Franklin, 2001
  - Sakai–Kasahara, 2001
- Short digital signatures
  - Boneh–Lynn–Shacham, 2001
  - Zang–Safavi-Naini–Susilo, 2004

・ 同 ト ・ 三 ト ・ 三 ト

## Pairing-based cryptography: How to define pairings using elliptic curves

- Let us define
  - $\mathbb{F}_q$ , a finite field, with  $q = 2^m$ ,  $3^m$  or p
  - *E*, an elliptic curve defined over  $\mathbb{F}_q$
  - $\ell$ , a large prime factor of  $\#E(\mathbb{F}_q)$

## Pairing-based cryptography: How to define pairings using elliptic curves

- Let us define
  - $\mathbb{F}_q$ , a finite field, with  $q = 2^m$ ,  $3^m$  or p
  - *E*, an elliptic curve defined over  $\mathbb{F}_q$
  - $\ell$ , a large prime factor of  $\#E(\mathbb{F}_q)$
- k is the embedding degree, the smallest integer such that  $\ell |q^k 1|$ 
  - usually large for ordinary elliptic curves
  - bounded in the case of supersingular elliptic curves
    (4 in characteristic 2; 6 in characteristic 3; and 2 in characteristic > 3)

#### Time complexity



#### borrowed from the xkcd site.

Francisco Rodríguez-Henríquez

3

#### Running time complexity

• The efficiency of an algorithm is measured in terms of its input size.
• The efficiency of an algorithm is measured in terms of its input size.

• For the discrete logarithm problem in  $\mathbb{F}_q$ , the input size is  $O(\log q)$  bits.

- The efficiency of an algorithm is measured in terms of its input size.
  - For the discrete logarithm problem in  $\mathbb{F}_q$ , the input size is  $O(\log q)$  bits.
- A polynomial-time algorithm is one whose running time is bounded by a polynomial in the input size:  $(\log q)^c$ , where c is a constant.

- The efficiency of an algorithm is measured in terms of its input size.
  - For the discrete logarithm problem in  $\mathbb{F}_q$ , the input size is  $O(\log q)$  bits.
- A polynomial-time algorithm is one whose running time is bounded by a polynomial in the input size:  $(\log q)^c$ , where c is a constant.
- A fully exponential-time algorithm is one whose running time is of the form  $q^c$ , where c is a constant.

- The efficiency of an algorithm is measured in terms of its input size.
  - For the discrete logarithm problem in  $\mathbb{F}_q$ , the input size is  $O(\log q)$  bits.
- A polynomial-time algorithm is one whose running time is bounded by a polynomial in the input size:  $(\log q)^c$ , where c is a constant.
- A fully exponential-time algorithm is one whose running time is of the form  $q^c$ , where c is a constant.
- A subexponential-time algorithm as one whose running time is of the form,

 $L_q[\alpha, c] = e^{c(\log q)^{\alpha} (\log \log q)^{1-\alpha}},$ 

where  $0 < \alpha < 1$ , and *c* is a constant.  $\alpha = 0$ : polynomial  $\alpha = 1$ : fully exponential

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

• Integer factorization (N)

- ▶ Quadratic sieve (1982): L<sub>N</sub>[<sup>1</sup>/<sub>2</sub>, 1].
   ▶ Number field sieve (1990): L<sub>N</sub>[<sup>1</sup>/<sub>3</sub>, 1.923].

< 3 > < 3 >

- Integer factorization (N)
  - Quadratic sieve (1982):  $L_N[\frac{1}{2}, 1]$ .
  - Number field sieve (1990):  $\bar{L}_N[\frac{1}{3}, 1.923]$ .
- Discrete logarithm over  $(\mathbb{F}_p)$ 
  - Adleman (1979):  $L_p[\frac{1}{2}, 2]$ .
  - Coppersmith-Odlyzko-Schroeppel (1986):  $L_{\rho}[\frac{1}{2}, 1]$ .
  - Gordon (1990):  $L_p[\frac{1}{3}, 1.923]$ .

- Integer factorization (N)
  - Quadratic sieve (1982):  $L_N[\frac{1}{2}, 1]$ .
  - Number field sieve (1990):  $\bar{L}_N[\frac{1}{3}, 1.923]$ .
- Discrete logarithm over  $(\mathbb{F}_p)$ 
  - Adleman (1979):  $L_p[\frac{1}{2}, 2]$ .
  - Coppersmith-Odlyzko-Schroeppel (1986):  $L_{\rho}[\frac{1}{2}, 1]$ .
  - Gordon (1990):  $L_p[\frac{1}{3}, 1.923]$ .
- Discrete logarithm over  $(\mathbb{F}_{2^m})$ 
  - ▶ Hellman-Reyneri (1982): L<sub>2<sup>m</sup></sub>[<sup>1</sup>/<sub>2</sub>, 1.414].
  - Coppersmith (1984):  $L_{2^m}[\frac{1}{3}, 1.526]$ .

- Integer factorization (N)
  - Quadratic sieve (1982):  $L_N[\frac{1}{2}, 1]$ .
  - Number field sieve (1990):  $\bar{L}_N[\frac{1}{3}, 1.923]$ .
- Discrete logarithm over  $(\mathbb{F}_p)$ 
  - Adleman (1979):  $L_p[\frac{1}{2}, 2]$ .
  - Coppersmith-Odlyzko-Schroeppel (1986):  $L_{\rho}[\frac{1}{2}, 1]$ .
  - Gordon (1990):  $L_p[\frac{1}{3}, 1.923]$ .
- Discrete logarithm over  $(\mathbb{F}_{2^m})$ 
  - ▶ Hellman-Reyneri (1982): *L*<sub>2<sup>*m*</sup></sup>[<sup>1</sup>/<sub>2</sub>, 1.414].</sub>
  - Coppersmith (1984):  $L_{2^m}[\frac{1}{3}, 1.526]$ .
- Elliptic curve discrete logarithm over  $(\mathbb{F}_q)$ 
  - Pollard (1978): q<sup>1/2</sup>.

過 ト イヨ ト イヨト

## Recommended key sizes

| Security | RSA                      | DL: $\mathbb{F}_p$ | DL: <b>𝔽</b> 2 <sup><i>m</i></sup> | ECC         |
|----------|--------------------------|--------------------|------------------------------------|-------------|
| in bits  | <b>N</b>    <sub>2</sub> | $  p  _{2}$        | m                                  | $  q  _{2}$ |
| 80       | 1024                     | 1024               | 1500                               | 160         |
| 112      | 2048                     | 2048               | 3500                               | 224         |
| 128      | 3072                     | 3072               | 4800                               | 256         |
| 192      | 7680                     | 7680               | 12500                              | 384         |
| 256      | 15360                    | 15360              | 25000                              | 512         |

э

 $\hat{e}: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_q)[\ell] \to \mu_\ell \subseteq \mathbb{F}_{q^k}^{\times}$ 

 $\hat{e}: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_q)[\ell] \to \mu_\ell \subseteq \mathbb{F}_{a^k}^{\times}$ 

| Base field $(\mathbb{F}_q)$ | $\mathbb{F}_{2^m}$ | $\mathbb{F}_{2^m}$ | $\mathbb{F}_{p}$ |
|-----------------------------|--------------------|--------------------|------------------|
| Embedding degree (k)        | 4                  | 6                  | 2                |

 $\hat{e}: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_q)[\ell] \to \mu_\ell \subseteq \mathbb{F}_{q^k}^{\times}$ 

| Base field $(\mathbb{F}_q)$        | $\mathbb{F}_{2^m}$ | $\mathbb{F}_{2^m}$ | $\mathbb{F}_{p}$   |
|------------------------------------|--------------------|--------------------|--------------------|
| Embedding degree (k)               | 4                  | 6                  | 2                  |
| Lower security $(\sim 2^{64})$     | <i>m</i> = 239     | <i>m</i> = 97      | p pprox 256 bits   |
| Medium security ( $\sim 2^{80}$ )  | m = 373            | <i>m</i> = 163     | p   pprox 512 bits |
| Higher security ( $\sim 2^{128}$ ) | m = 1103           | <i>m</i> = 503     | p pprox 1536 bits  |

 $\hat{e}: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_q)[\ell] \to \mu_\ell \subseteq \mathbb{F}_{q^k}^{\times}$ 

• The embedding degree k depends on the field characteristic q

| Base field $(\mathbb{F}_q)$        | ₽ <sub>2</sub> <sup>m</sup> | $\mathbb{F}_{2^m}$ | $\mathbb{F}_{p}$              |
|------------------------------------|-----------------------------|--------------------|-------------------------------|
| Embedding degree (k)               | 4                           | 6                  | 2                             |
| Lower security $(\sim 2^{64})$     | <i>m</i> = 239              | <i>m</i> = 97      | p pprox 256 bits              |
| Medium security ( $\sim 2^{80}$ )  | <i>m</i> = 373              | <i>m</i> = 163     | p   pprox 512 bits            |
| Higher security ( $\sim 2^{128}$ ) | <i>m</i> = 1103             | <i>m</i> = 503     | $  {\it p}   pprox$ 1536 bits |

• **F**<sub>2<sup>m</sup></sub>: simpler finite field arithmetic

 $\hat{e}: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_q)[\ell] \to \mu_\ell \subseteq \mathbb{F}_{q^k}^{\times}$ 

| Base field $(\mathbb{F}_q)$        | $\mathbb{F}_{2^m}$ | $\mathbb{F}_{2^m}$ | $\mathbb{F}_{p}$   |
|------------------------------------|--------------------|--------------------|--------------------|
| Embedding degree (k)               | 4                  | 6                  | 2                  |
| Lower security $(\sim 2^{64})$     | <i>m</i> = 239     | <i>m</i> = 97      | p pprox 256 bits   |
| Medium security ( $\sim 2^{80}$ )  | m = 373            | <i>m</i> = 163     | p   pprox 512 bits |
| Higher security ( $\sim 2^{128}$ ) | m = 1103           | <i>m</i> = 503     | p pprox 1536 bits  |

- **F**<sub>2<sup>m</sup></sub>: simpler finite field arithmetic
- $\mathbb{F}_{3^m}$ : smaller field extension

 $\hat{e}: E(\mathbb{F}_q)[\ell] imes E(\mathbb{F}_q)[\ell] o \mu_\ell \subseteq \mathbb{F}_{q^k}^{ imes}$ 

| Base field $(\mathbb{F}_q)$        | $\mathbb{F}_{2^m}$ | $\mathbb{F}_{2^m}$ | $\mathbb{F}_{p}$          |
|------------------------------------|--------------------|--------------------|---------------------------|
| Embedding degree (k)               | 4                  | 6                  | 2                         |
| Lower security $(\sim 2^{64})$     | m = 239            | <i>m</i> = 97      | p  pprox 256 bits         |
| Medium security ( $\sim 2^{80}$ )  | m = 373            | <i>m</i> = 163     | $ \pmb{p} pprox$ 512 bits |
| Higher security ( $\sim 2^{128}$ ) | m = 1103           | <i>m</i> = 503     | ho pprox 1536 bits        |

- $\mathbb{F}_{2^m}$ : simpler finite field arithmetic
- $\mathbb{F}_{3^m}$ : smaller field extension
- $\mathbb{F}_p$ : prohibitive field sizes[really?]

 $\hat{e}: E(\mathbb{F}_q)[\ell] imes E(\mathbb{F}_q)[\ell] o \mu_\ell \subseteq \mathbb{F}_{q^k}^{ imes}$ 

• The embedding degree k depends on the field characteristic q

| Base field $(\mathbb{F}_q)$        | ₽ <sub>2</sub> <sup>m</sup> | $\mathbb{F}_{2^m}$ | $\mathbb{F}_{p}$   |
|------------------------------------|-----------------------------|--------------------|--------------------|
| Embedding degree (k)               | 4                           | 6                  | 2                  |
| Lower security $(\sim 2^{64})$     | <i>m</i> = 239              | <i>m</i> = 97      | p pprox 256 bits   |
| Medium security ( $\sim 2^{80}$ )  | <i>m</i> = 373              | <i>m</i> = 163     | p   pprox 512 bits |
| Higher security ( $\sim 2^{128}$ ) | <i>m</i> = 1103             | <i>m</i> = 503     | p pprox 1536 bits  |

- $\mathbb{F}_{2^m}$ : simpler finite field arithmetic
- $\mathbb{F}_{3^m}$ : smaller field extension
- $\mathbb{F}_p$ : prohibitive field sizes[really?]

3 / 37

# Index-Calculus Algorithms for DLP in $\mathbb{F}_{q^n}$

The elements of  $\mathbb{F}_{q^n}$  can be viewed as the polynomials of degree at most n-1 in the ring  $\mathbb{F}_q[X]$ .

Field arithmetic is performed by means of a degree *n* polynomial whose coefficients are in  $\mathbb{F}_q$ , irreducible over the base field  $\mathbb{F}_q$ .

Index-Calculus Algorithms for DLP in  $\mathbb{F}_{q^n}$  comprises four main phases:

# Index-Calculus Algorithms for DLP in $\mathbb{F}_{q^n}$

The elements of  $\mathbb{F}_{q^n}$  can be viewed as the polynomials of degree at most n-1 in the ring  $\mathbb{F}_q[X]$ .

Field arithmetic is performed by means of a degree n polynomial whose coefficients are in  $\mathbb{F}_q$ , irreducible over the base field  $\mathbb{F}_q$ .

Index-Calculus Algorithms for DLP in  $\mathbb{F}_{q^n}$  comprises four main phases:

- **()** Factor base: Composed by all irreducible polynomials of degree  $\leq t$
- Relation generation: Find individual linear relations of the logarithms of factor base elements
- Linear system: Obtain the logarithms of factor base elements by solving a linear system of equations that arises from collecting all the relations found in the previous phase
- **Obscent**: Compute the logarithm of the given element

・ 同 ト ・ ヨ ト ・ ヨ ト

Attacks on discrete log computation over small char  $\mathbb{F}_{q^n}$ : Main developments in the last 30+ years

Let Q be defined as  $Q = q^n$ .

- Hellman-Reyneri 1982: Index-calculus  $L_Q[\frac{1}{2}, 1.414]$
- Coppersmith 1984:  $L_Q[\frac{1}{3}, 1.526]$
- Joux-Lercier 2006:  $L_Q[\frac{1}{3}, 1.442]$  when q and n are "balanced"
- Hayashi et al. 2012: Used an improved version of the Joux-Lercier method to compute discrete logs over the field  $\mathbb{F}_{3^{6\cdot97}}$
- Joux 2012:  $L_Q[\frac{1}{3}, 0.961]$  when q and n are "balanced"
- Joux 2013:  $L_Q[\frac{1}{4} + o(1), c]$  when  $Q = q^{2m}$  and  $q \approx m$
- Göloğlu et al. 2013: similar to Joux 2013, BPA @ Crypto'2013

過 ト イヨ ト イヨト

# Attacks on discrete log computation over small char $\mathbb{F}_{q^n}$ : security level consequences

Let us assume that one wants to compute discrete logarithms in the field  $\mathbb{F}_{q^n}$ , with  $q = 3^6$ , n = 509 Notice that the multiplicative group size of that field is,

$$\#\mathbb{F}_{3^{6} \cdot 509} = \lceil \log_2(3) \cdot 6 \cdot 509 \rceil = 4841$$
 bits.

| Algorithm            | Time complexity           | Equivalent bit security level |
|----------------------|---------------------------|-------------------------------|
| Hellman-Reyneri 1982 | $L_Q[\frac{1}{2}, 1.414]$ | 337                           |
| Coppersmith 1984     | $L_Q[\frac{1}{3}, 1.526]$ | 134                           |
| Joux-Lercier 2006    | $L_Q[\frac{1}{3}, 1.442]$ | 126                           |

## 2010: The year we make contact

Francisco Rodríguez-Henríquez

Computing discrete logarithms in the field  $\mathbb{F}_{26.509}$  (17 / 37

< 回 ト < 三 ト < 三 ト

3

## [2010] 2013: The year we make contact

(人間) トイヨト イヨト

3

[2010] 2013: The year we make contact

- Feb 11 2013 Joux:  $\mathbb{F}_{2^{1778}} = \mathbb{F}_{(2^7)^{2 \cdot 127}}.$ 
  - 215 CPU hours
- Feb 19 2013 Göloğlu et al.:  $\mathbb{F}_{2^{1971}} = \mathbb{F}_{(2^9)^{3.73}}$ .
  - 3,132 CPU hours
- Mar 22 2013 Joux:  $\mathbb{F}_{2^{4080}} = \mathbb{F}_{(2^8)^{2 \cdot 255}}$ .
  - 14,100 CPU hours
- April 6 2013, Barbulescu et al.:  $\mathbb{F}_{2^{809}}$ ,
  - notice that 809 is a prime number.
  - using conventional techniques based on the Coppersmith algorithm
  - 30,000+ CPU hours
- Apr 11 2013 Göloğlu et al.:  $\mathbb{F}_{2^{6120}} = \mathbb{F}_{(2^8)^{3 \cdot 255}}$ .
  - ► 750 CPU hours
- May 21 2013 Joux:  $\mathbb{F}_{2^{6168}} = \mathbb{F}_{(2^8)^{3 \cdot 257}}$ .
  - 550 CPU hours

・ 伺 ト ・ ヨ ト ・ ヨ ト …

# A Quasi-Polynomial Time Algorithm

(June 19 2013) Barbulescu-Gaudry-Joux-Thomé

- Let q be a prime power, and let  $n \le q+2$ .
- The DLP in  $\mathbb{F}_{q^{2\cdot n}}$  can be solved in time

 $q^{O(\log n)}$ 

• In the case where  $n \approx q$ , the DLP in  $\mathbb{F}_{q^{2 \cdot n}} = \mathbb{F}_Q$  can be solved in time,

 $\log Q^{O(\log \log Q)}$ 

This is smaller than  $L_Q[\alpha, c]$  for any  $\alpha > 0$  and c > 0.

# Cryptographic implications

#### PJCrypto: Post-Joux Cryptography

- Discrete log cryptography
- Pairing-based cryptography
- Elliptic curve cryptography

A B < A B <</p>

# Discrete log cryptography

#### Diffie-Hellman, ElGamal, DSA, ...

- DL cryptography over  $\mathbb{F}_p$  is not affected.
- DL cryptography over  $\mathbb{F}_{2^m}$ , *m* prime, might be affected.
- Note that  $\mathbb{F}_{2^m}$  can be embedded in  $\mathbb{F}_{2^{\ell m}}$  for any  $l \geq 2$ .
  - $\mathbb{F}_{2^{809}}$  can be embedded in  $\mathbb{F}_{2^{10\cdot 2\cdot 809}}$ . It is unlikely that the new algorithms will be faster in this larger field.

Efficient discrete log algorithms in small char  $\mathbb{F}_{q^n}$  fields have a direct negative impact on the security level that small characteristic symmetric pairings can offer:

通 ト イヨ ト イヨ ト

Efficient discrete log algorithms in small char  $\mathbb{F}_{q^n}$  fields have a direct negative impact on the security level that small characteristic symmetric pairings can offer:

- **(**) Supersingular elliptic curves over  $\mathbb{F}_{2^n}$  with embedding degree k = 4
- **2** Supersingular elliptic curves over  $\mathbb{F}_{3^n}$  with embedding degree k = 6
- Supersingular genus-two curves over F<sub>2<sup>n</sup></sub> with embedding degree k = 12
- Elliptic curves over  $\mathbb{F}_p$  with embedding degree k = 2
- **(5)** BN curves: Elliptic curves over  $\mathbb{F}_p$  with embedding degree k = 12

Curves 1, 2 and 3 are potentially vulnerable to the new attacks. Curves 4 and 5 are not affected by the new attacks.

(日) (同) (日) (日) (日)

Example: Consider the supersingular elliptic curve,  $Y^2 = X^3 - X + 1$ , with  $\#E(\mathbb{F}_{3^{509}}) = 7r$ , and where,  $r = (3^{509} - 3^{255} + 1)/7$  is an 804-bit prime.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Example: Consider the supersingular elliptic curve,  $Y^2 = X^3 - X + 1$ , with  $\#E(\mathbb{F}_{3^{509}}) = 7r$ , and where,  $r = (3^{509} - 3^{255} + 1)/7$  is an 804-bit prime.

- E has embedding degree k = 6
- The elliptic curve group  $E(\mathbb{F}_{3^{509}})$  can be efficiently embedded in  $\mathbb{F}_{3^{6\cdot 509}}$
- Question: Can logarithms in  $\mathbb{F}_{3^{6\cdot 509}}$  be efficiently computed using the new algorithms? Or, at least significantly faster than the previously-known algorithms?

・ロト ・得ト ・ヨト ・ヨト

Example: Consider the supersingular elliptic curve,  $Y^2 = X^3 - X + 1$ , with  $\#E(\mathbb{F}_{3^{509}}) = 7r$ , and where,  $r = (3^{509} - 3^{255} + 1)/7$  is an 804-bit prime.

- E has embedding degree k = 6
- The elliptic curve group  $E(\mathbb{F}_{3^{509}})$  can be efficiently embedded in  $\mathbb{F}_{3^{6\cdot 509}}$
- Question: Can logarithms in  $\mathbb{F}_{3^{6\cdot 509}}$  be efficiently computed using the new algorithms? Or, at least significantly faster than the previously-known algorithms?
- Note:  $\mathbb{F}_{3^{6\cdot 509}}$  can be embedded in  $\mathbb{F}_{3^{6\cdot 2\cdot 509}}$

## Elliptic curve cryptography

- The recent advances do not affect the security of (ordinary) elliptic curve cryptosystems.
- Example: NIST elliptic curve K-163:  $E: Y^2 + XY = X^3 + X^2 + 1$  over  $\mathbb{F}_{2^{163}} E(\mathbb{F}_{2^{163}})$  can be embedded in  $\mathbb{F}_{2^{163\cdot 2\cdot 17932535427373041941149514581590332356837787037}^*$ Elements in this large field are 5846006549323611672814741753598448348329118574062  $\approx$  $2^{163}$  bits in length.

## Elliptic curve cryptography

- The recent advances do not affect the security of (ordinary) elliptic curve cryptosystems.
- Example: NIST elliptic curve K-163:  $E: Y^2 + XY = X^3 + X^2 + 1$  over  $\mathbb{F}_{2^{163}} E(\mathbb{F}_{2^{163}})$  can be embedded in  $\mathbb{F}_{2^{163 \cdot 2 \cdot 17932535427373041941149514581590332356837787037}^*$ Elements in this large field are 5846006549323611672814741753598448348329118574062  $\approx$  $2^{163}$  bits in length.
- the Eddington number,  $N_{Edd}$ , is the "provable" number of protons in the observable universe estimated as,  $N_{Edd} = 136 \cdot 2^{256}$

### A mainstream belief in the crypto community

• Several records broken in rapid succession by Joux, Göloğlu et al. and the Caramel team, the last of the series as of today: a discrete log computation over  $\mathbb{F}_{2^{6128}} = \mathbb{F}_{(2^8)^{3\cdot 257}}$  Joux (May 21, 2013)

## A mainstream belief in the crypto community

- Several records broken in rapid succession by Joux, Göloğlu et al. and the Caramel team, the last of the series as of today: a discrete log computation over  $\mathbb{F}_{2^{6128}} = \mathbb{F}_{(2^8)^{3\cdot 257}}$  Joux (May 21, 2013)
- As a consequence of these astonishing results, a mainstream belief in the crypto community is that small characteristic symmetric pairings are broken, both in theory and in practice

## A mainstream belief in the crypto community

- Several records broken in rapid succession by Joux, Göloğlu et al. and the Caramel team, the last of the series as of today: a discrete log computation over  $\mathbb{F}_{2^{6128}} = \mathbb{F}_{(2^8)^{3\cdot 257}}$  Joux (May 21, 2013)
- As a consequence of these astonishing results, a mainstream belief in the crypto community is that small characteristic symmetric pairings are broken, both in theory and in practice
- More than that, some distinguished researchers have expressed in blogs/chats the opinion that all these new developments may sooner or later bring fatal consequences for integer factorization, which eventually would lead to the death of RSA
### A mainstream belief in the crypto community

- Several records broken in rapid succession by Joux, Göloğlu et al. and the Caramel team, the last of the series as of today: a discrete log computation over  $\mathbb{F}_{2^{6128}} = \mathbb{F}_{(2^8)^{3\cdot 257}}$  Joux (May 21, 2013)
- As a consequence of these astonishing results, a mainstream belief in the crypto community is that small characteristic symmetric pairings are broken, both in theory and in practice
- More than that, some distinguished researchers have expressed in blogs/chats the opinion that all these new developments may sooner or later bring fatal consequences for integer factorization, which eventually would lead to the death of RSA
- Nevertheless, none of the records mentioned above have attacked finite field extensions that have been previously proposed for performing pairing-based cryptography in small char

・ 同下 ・ ヨト ・ ヨト

#### Our question

Our question: can the new attacks or a combination of them be effectively applied to compute discrete logs in finite field extensions of interest in pairing-based cryptography?

• • = • • = •

#### Discrete log descent



### Computing discrete logarithms in $\mathbb{F}_{3^{6\cdot 509}}$

• We present a concrete analysis of the DLP algorithm for computing discrete logarithms in  $\mathbb{F}_{3^{6\cdot 509}}$ .

### Computing discrete logarithms in $\mathbb{F}_{3^{6\cdot 509}}$

- We present a concrete analysis of the DLP algorithm for computing discrete logarithms in  $\mathbb{F}_{3^{6}\cdot 50^{9}}$ .
- In fact, this field is embedded in the quadratic extension field  $\mathbb{F}_{3^{12\cdot509}}$ , and it is in this latter field where the DLP algorithm is executed.
- Thus, we have  $q = 3^6 = 729$ , n = 509, and the size of the group is  $N = 3^{12 \cdot 509} 1$ . Note that  $3^{12 \cdot 509} \approx 2^{9681}$ .
- We wish to find  $\log_g h$ , where g is a generator of  $\mathbb{F}^*_{3^{12.509}}$  and  $h \in \mathbb{F}^*_{3^{12.509}}$ .

### Computing discrete logarithms in $\mathbb{F}_{3^{6\cdot 509}}$

- We present a concrete analysis of the DLP algorithm for computing discrete logarithms in  $\mathbb{F}_{3^{6}\cdot 50^{9}}$ .
- In fact, this field is embedded in the quadratic extension field  $\mathbb{F}_{3^{12\cdot509}}$ , and it is in this latter field where the DLP algorithm is executed.
- Thus, we have  $q = 3^6 = 729$ , n = 509, and the size of the group is  $N = 3^{12 \cdot 509} 1$ . Note that  $3^{12 \cdot 509} \approx 2^{9681}$ .
- We wish to find  $\log_g h$ , where g is a generator of  $\mathbb{F}^*_{3^{12\cdot 509}}$  and  $h \in \mathbb{F}^*_{3^{12\cdot 509}}$ .
- Once again, this field was selected to attack the elliptic curve discrete logarithm problem in  $E(\mathbb{F}_{3^{509}})$ , where E is the supersingular elliptic curve  $Y^2 = X^3 X + 1$  with  $\#E(\mathbb{F}_{3^{509}}) = 7r$ , and where  $r = (3^{509} 3^{255} + 1)/7$  is an 804-bit prime.

< □→ < □→ < □→

Computing discrete logarithms in  $\mathbb{F}_{3^{6\cdot 509}}$ : Main steps

Our attack was divided in three main steps

- Finding logarithms of linear polynomials
- Finding logarithms of irreducible quadratic polynomials
- Descent, divided into four different strategies:

Computing discrete logarithms in  $\mathbb{F}_{3^{6\cdot 509}}$ : Main steps

Our attack was divided in three main steps

- Finding logarithms of linear polynomials
- Finding logarithms of irreducible quadratic polynomials
- Descent, divided into four different strategies:
  - Continued-fraction descent
  - 2 Classical descent
  - QPA descent
  - Gröbner bases descent

### Finding logarithms of linear polynomials

- The factor base for linear polynomials  $\mathcal{B}_1$  has size  $3^{12} \approx 2^{19}$ .
  - The cost of relation generation is approximately  $2^{30}M_{q^2}$ ,
  - The cost of the linear algebra is approximately  $2^{48}M_r$ ,

where  $M_{q^2}$  and  $M_r$  stands for field multiplication in the field  $\mathbb{F}_{q^2}$  and  $\mathbb{F}_r$ , respectively.

## Finding logarithms of linear polynomials

- The factor base for linear polynomials  $\mathcal{B}_1$  has size  $3^{12} \approx 2^{19}$ .
  - The cost of relation generation is approximately  $2^{30}M_{q^2}$ ,
  - The cost of the linear algebra is approximately  $2^{48}M_r$ ,

where  $M_{q^2}$  and  $M_r$  stands for field multiplication in the field  $\mathbb{F}_{q^2}$  and  $\mathbb{F}_r$ , respectively.

• Note that relation generation can be effectively parallelized, unlike the linear algebra where parallelization on conventional computers provides relatively small benefits.

- Let  $u \in \mathbb{F}_{q^2}$ , and let  $Q(X) = X^2 + uX + v \in \mathbb{F}_{q^2}[X]$  be an irreducible quadratic.
  - ▶ Define B<sub>2,u</sub> to be the set of all irreducible quadratics of the form X<sup>2</sup> + uX + w in F<sub>q<sup>2</sup></sub>[X]

• • = • • = •

- Let  $u \in \mathbb{F}_{q^2}$ , and let  $Q(X) = X^2 + uX + v \in \mathbb{F}_{q^2}[X]$  be an irreducible quadratic.
  - ► Define  $\mathcal{B}_{2,u}$  to be the set of all irreducible quadratics of the form  $X^2 + uX + w$  in  $\mathbb{F}_{q^2}[X]$
  - one expects that  $\#\mathcal{B}_{2,u} \approx (q^2-1)/2$

• • = • • = •

- Let  $u \in \mathbb{F}_{q^2}$ , and let  $Q(X) = X^2 + uX + v \in \mathbb{F}_{q^2}[X]$  be an irreducible quadratic.
  - Define  $\mathcal{B}_{2,u}$  to be the set of all irreducible quadratics of the form  $X^2 + uX + w$  in  $\mathbb{F}_{q^2}[X]$
  - one expects that  $\#\mathcal{B}_{2,u} \approx (q^2 1)/2$
  - ► The logarithms of all elements in B<sub>2,u</sub> are found simultaneously using one application of QPA descent

通 ト イヨ ト イヨ ト

- Let  $u \in \mathbb{F}_{q^2}$ , and let  $Q(X) = X^2 + uX + v \in \mathbb{F}_{q^2}[X]$  be an irreducible quadratic.
  - ► Define  $\mathcal{B}_{2,u}$  to be the set of all irreducible quadratics of the form  $X^2 + uX + w$  in  $\mathbb{F}_{q^2}[X]$
  - one expects that  $\#\mathcal{B}_{2,u} \approx (q^2 1)/2$
  - ► The logarithms of all elements in B<sub>2,u</sub> are found simultaneously using one application of QPA descent
- For each  $u \in \mathbb{F}_{3^{12}}$ , the expected cost of computing logarithms of all quadratics in  $\mathcal{B}_{2,u}$  is  $2^{39}M_{q^2}$  for relation generation, and  $2^{48}M_r$  for the linear algebra.

通 ト イヨ ト イヨ ト

- Let  $u \in \mathbb{F}_{q^2}$ , and let  $Q(X) = X^2 + uX + v \in \mathbb{F}_{q^2}[X]$  be an irreducible quadratic.
  - ► Define  $\mathcal{B}_{2,u}$  to be the set of all irreducible quadratics of the form  $X^2 + uX + w$  in  $\mathbb{F}_{q^2}[X]$
  - one expects that  $\#\mathcal{B}_{2,u} \approx (q^2 1)/2$
  - ► The logarithms of all elements in B<sub>2,u</sub> are found simultaneously using one application of QPA descent
- For each  $u \in \mathbb{F}_{3^{12}}$ , the expected cost of computing logarithms of all quadratics in  $\mathcal{B}_{2,u}$  is  $2^{39}M_{q^2}$  for relation generation, and  $2^{48}M_r$  for the linear algebra.
- This step is somewhat parallelizable on conventional computers since each set  $\mathcal{B}_{2,u}$  can be handled by a different processor.

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Descent: General approach

• Recall that we wish to compute  $\log_g h$ , where  $h \in \mathbb{F}_{q^{2n}} = \mathbb{F}_{q^2}[X]/(I_X)$ . We assume that deg h = n - 1.

• • = • • = •

#### Descent: General approach

- Recall that we wish to compute  $\log_g h$ , where  $h \in \mathbb{F}_{q^{2n}} = \mathbb{F}_{q^2}[X]/(I_X)$ . We assume that deg h = n 1.
- The descent stage begins by multiplying h by a random power of g, namely, h' = h ⋅ g<sup>i</sup> for some i ∈ 𝔽<sub>r</sub>.

過 ト イ ヨ ト イ ヨ ト

### Descent: General approach

- Recall that we wish to compute  $\log_g h$ , where  $h \in \mathbb{F}_{q^{2n}} = \mathbb{F}_{q^2}[X]/(I_X)$ . We assume that deg h = n 1.
- The descent stage begins by multiplying h by a random power of g, namely, h' = h ⋅ g<sup>i</sup> for some i ∈ 𝔽<sub>r</sub>.
- The descent algorithm gives log<sub>g</sub> h' as a linear combination of logarithms of polynomials of degree at most two using the combination of four different strategies.

通 ト イヨ ト イヨ ト

• Continued-fraction descent: Starting from a polynomial of degree n = 508 gives its discrete log as a linear combination of logarithms of polynomials of degree at most m = 30

- Continued-fraction descent: Starting from a polynomial of degree n = 508 gives its discrete log as a linear combination of logarithms of polynomials of degree at most m = 30
- Classical descent: given the degree-30 polynomials of the previous step, finds their discrete log as a linear combination of logarithms of polynomials of degree at most 11 (using two applications of this strategy)

- Continued-fraction descent: Starting from a polynomial of degree
  n = 508 gives its discrete log as a linear combination of logarithms of polynomials of degree at most m = 30
- Classical descent: given the degree-30 polynomials of the previous step, finds their discrete log as a linear combination of logarithms of polynomials of degree at most 11 (using two applications of this strategy)
- QPA descent: given the degree-11 polynomials of the previous step, finds their discrete log as a linear combination of logarithms of polynomials of degree at most 7

- Continued-fraction descent: Starting from a polynomial of degree n = 508 gives its discrete log as a linear combination of logarithms of polynomials of degree at most m = 30
- Classical descent: given the degree-30 polynomials of the previous step, finds their discrete log as a linear combination of logarithms of polynomials of degree at most 11 (using two applications of this strategy)
- QPA descent: given the degree-11 polynomials of the previous step, finds their discrete log as a linear combination of logarithms of polynomials of degree at most 7
- Gröbner bases descent: given the degree-7 polynomials of the previous step, finds their discrete log as a linear combination of logarithms of cuadratic polynomials. This concludes the descent

- 4 同 6 4 日 6 4 日 6

## A positive answer: Announcing the weak field $\mathbb{F}_{3^{6\cdot 509}}$

| Finding logarithms of linear polynomials                |             |
|---------------------------------------------------------|-------------|
| Relation generation                                     | $2^{22}M_r$ |
| Linear algebra                                          | $2^{48}M_r$ |
| Finding logarithms of irreducible quadratic polynomials |             |
| Relation generation                                     | $2^{50}M_r$ |
| Linear algebra                                          | $2^{67}M_r$ |
| Descent                                                 |             |
| Continued-fraction (254 to 30)                          | $2^{71}M_r$ |
| Classical (30 to 15)                                    | $2^{71}M_r$ |
| Classical (15 to 11)                                    | $2^{73}M_r$ |
| QPA (11 to 7)                                           | $2^{63}M_r$ |
| Gröbner bases (7 to 4)                                  | $2^{65}M_r$ |
| Gröbner bases (4 to 3)                                  | $2^{64}M_r$ |
| Gröbner bases (3 to 2)                                  | $2^{69}M_r$ |

Table: Estimated costs of the main steps of the new DLP algorithm for computing discrete logarithms in  $\mathbb{F}_{(3^6)^{2\cdot 509}}$ .  $M_r$  denotes the costs of a multiplication modulo the 804-bit prime  $r = (3^{509} - 3^{255} + 1)/7$ . We also assume that  $2^{22}$  multiplications modulo r can be performed in 1 second

3 / 37

#### Descent path for a polynomial of degree $\leq 508$ over $\mathbb{F}_{3^{6\cdot 2}}$



The numbers in parentheses are the expected number of nodes at that level. 'Time' is the expected time to generate all nodes at a level.

### Descent path for a polynomial of degree $\leq 508$ over $\mathbb{F}_{3^{6\cdot 2}}$



The numbers in parentheses are the expected number of nodes at that level. 'Time' is the expected time to generate all nodes at a level. All the technical details are discussed in the eprint report 2013/446

1 / 37)

# Post-Scriptum 0: Joux-Pierrot (September 9, 2013)

• Revisiting fields of pairing interest, the authors in the eprint report 2013/446, find that the running time of computing discrete logs has complexity,

 $L_Q(1/3, [(64/9) \cdot (\lambda + 1)/\lambda)]^{1/3}),$ 

where  $\lambda$  is the degree of the polynomial that defines the field characteristic *p* (usually,  $\lambda \leq 10$ )

 For fields of pairing interest where p is 'large' the complexity of the attack drops to,

 $L_Q(1/3, [(32/9) \cdot (\lambda + 1)/\lambda)]^{1/3}),$ 

and even to,  $L_Q(1/3, [(32/9)]^{1/3})$ . for some large 'low-weight' primes with low embedding degree k.

< □→ < □→ < □→

# Post-Scriptum 0: Joux-Pierrot (September 9, 2013)

• Revisiting fields of pairing interest, the authors in the eprint report 2013/446, find that the running time of computing discrete logs has complexity,

 $L_Q(1/3, [(64/9) \cdot (\lambda + 1)/\lambda)]^{1/3}),$ 

where  $\lambda$  is the degree of the polynomial that defines the field characteristic *p* (usually,  $\lambda \leq 10$ )

 For fields of pairing interest where p is 'large' the complexity of the attack drops to,

 $L_Q(1/3, [(32/9) \cdot (\lambda + 1)/\lambda)]^{1/3}),$ 

and even to,  $L_Q(1/3, [(32/9)]^{1/3})$ . for some large 'low-weight' primes with low embedding degree k.

• The analysis is asymtoptic. In particular, this attack does not affect the 128-bit security level parameters used for the curves of class 5 in slide 21.

< ロ > < 同 > < 回 > < 回 > < 回 > <

# Post-Scriptum 1: Granger (September 16, 2013)

• In his ECC'2013 talk, Robert Granger announced a refined version of the attack described in this presentation.

# Post-Scriptum 1: Granger (September 16, 2013)

- In his ECC'2013 talk, Robert Granger announced a refined version of the attack described in this presentation.
- This allows him to report several more weak fields in characteritic two, including,  $\mathbb{F}_{2^{4\cdot 1223}}$ , a field that not long ago was assumed to offer a security level of 128 bits

# Merci-Thanks-Obrigado-Gracias for your attention



borrowed from Quino. Questions?

A B F A B F