
Silent SIMON:
A Threshold Implementation under 100 Slices

Aria Shahverdi, Mostafa Taha and Thomas Eisenbarth
Worcester Polytechnic Institute, Worcester, MA 01609, USA

Email: {ashahverdi, mtaha, teisenbarth}@wpi.edu

Abstract—Lightweight Cryptography aims at achieving secu-
rity comparable to conventional cryptography at a much lower
cost. SIMON is a lightweight alternative to AES, as it shares same
cryptographic parameters, but has been shown to be extremely
area-efficient on FPGAs. However, in the embedded setting,
protection against side channel analysis is often required. In
this work we present a threshold implementation of SIMON.
The proposed core splits the information between three shares
and achieves provable security against first order side-channel
attacks. The core can be implemented in less than 100 slices
of a low-cost FPGA, making it the world smallest threshold
implementation of a block-cipher. Hence, the proposed core
perfectly suits highly-constrained embedded systems including
sensor nodes and RFIDs. Security of the proposed core is
validated by provable arguments as well as practical DPA attacks
and tests for leakage quantification.

I. INTRODUCTION

SIMON is a block cipher recently published by NSA as a
lightweight alternative to the widely-used AES [1]. SIMON is
very promising for hardware-based embedded applications as
its internal structure is very simple and bit-oriented. Indeed, its
authors show that the ASIC implementation of SIMON requires
only 1234 GE (Gate Equivalent) for 128 bits of security,
compared to 2400 GE for the smallest AES to date [2]. Also,
it was shown that a bit-serialized FPGA implementation of
SIMON sets a new area record with only 36 slices for 128 bits
of security [3], compared to 264 equivalent slices for AES
(including the BRAMs) [4] and 117 slices for PRESENT [5].
However, in order to actually implement SIMON on practical
embedded platforms, protection against side-channel analysis
must be taken into account.

Side-channel analysis (SCA) can break cryptosystems by
exploiting vulnerabilities in the practical implementation of
cryptographic schemes. SCA harvests the information leaked
through variations in the power consumption, electromagnetic
radiation, or execution time. Typically, the adversary builds a
power model using a key hypothesis and compares the result
with the actual power consumption until the correct key is
found. An SCA attack that is mounted using a single trace
is called Simple Power Analysis (SPA), while an attack that
combines information across many traces at different inputs is
called Differential Power Analysis (DPA). Attacks analyzing
the first moment of a single point in the leakage trace are called
first order attacks. Higher order DPA attacks extract informa-
tion from the higher order moments of one or more leakage
points. However, higher order attacks suffer from higher noise

levels and hence have a worse key distinguishability.
Side-channel analysis of SIMON has been studied in [6]

and [7]. Moreover, a side-channel countermeasure for SIMON
was proposed in [6]. They proposed a low-cost realization
of the masking scheme. The scheme uses only one data-
path and works by partially unmasking the internal variables
just before the non-linear operation, and using the input
mask to re-randomize the internal state following the Feistel
structure. This scheme may practically work if the demasking,
processing, and remasking are performed within a single
table look-up. Hence, it depends on the realization and is
not provably secure. Furthermore, the mask value is fixed
throughout the cipher which is not recommended in masking
schemes. Moreover, it is not clear how to map the scheme to
other hardware architectures.

In this paper, we propose a provably secure masking
scheme for SIMON using secret-sharing with three shares. Our
design achieves all the requirements for being a threshold
implementation, which is a special class of secret-sharing
countermeasures that are provably secure against first-order
SCA attacks [8]. Our core can be realized in less than 100
slices of a low-cost FPGA, making it the smallest protected im-
plementation of a block cipher to date. In fact, the size of our
core is comparable to most unprotected block ciphers. Hence,
the proposed core perfectly suits highly-constrained embedded
systems including sensor nodes and RFIDs. Security of the
proposed scheme is validated by provable arguments, and
practical tests for leakage quantification.

The paper is organized as follows. Section II reviews some
background about SIMON, the previous unprotected imple-
mentation and the requirements for threshold implementations.
Section III introduces the required equations for the threshold
implementation of SIMON. Section IV discusses details of
the two FPGA designs proposed in this paper, along with a
thorough comparison to previous designs. In Section V, we
study the practical security of the proposed designs with both
differential power analysis and leakage quantification. The
paper is concluded in Section VI.

II. BACKGROUND

A. SIMON

SIMON is a block cipher based on the Feistel structure.
SIMON accepts plaintexts of size 32, 48, 64, 96 and 128 bits.
For each input size, SIMON has a set of allowable key sizes
ranging from 64 bits to 256 bits. The input is evenly split into

two words, following the principles of Feistel structure. The
key is also split into two to four words, which are used in the
first rounds of SIMON. The key scheduling algorithm is used
to generate the following round keys. The number of rounds
in SIMON ranges from 32 rounds to 72 rounds. For example,
SIMON 64/128 accepts 64 bits of plaintext at a word size of 32
bits and 128 bits of key (four words). It generates a ciphertext
after 44 rounds.

Assuming that the input words of round i are li and ri, the
output words are:

li+1 = ri ⊕ l2i ⊕ (l1i ∧ l8i)⊕ ki ri+1 = li

The upper index Xs indicates left circular shift by s bits. This
can be expressed in GF(2), where the XOR operation becomes
addition and the AND operation becomes multiplication, as:

li+1 = ri + l2i + (l1i ∗ l8i) + ki ri+1 = li

Also, assuming that the input words of the key, which are
also the first round keys, are k0 and k1 (and possibly k2 and
k3, depending on the key size), the next round key is computed
as:

ki+2 = ki + k−3
i+1 + k−4

i+1 + ci Two and Three Words

ki+4 = ki + ki+1 + k−1
i+1 + k−3

i+3 + k−4
i+3 + ci Four Words

where ci is a round constant.

B. Bit-Serialized Implementation

Aysu et al. in [3] proposed a bit-serialized implementation of
SIMON where only one bit of the internal state is processed in
each clock cycle. Hence, a single round of SIMON completes
after n cycles, where n is the size of input word. Moreover,
two shift-registers were used to store the internal states to
simplify the control of sequentially processing and storing
individual bits. In fact, the left share of the internal state
is passed over as-is to the right share, hence only one shift
register of the same size as the input block is actually needed.
Here, SIMON is implemented as a special class of non-linear
feedback shift registers, where the output of the feedback
function changes the state only after completing the round
function. Since the feedback function requires only four bits
of the state, namely ri, l1i , l2i and l8i , only those bits need to be
stored. This storage is realized by an extra 8-bit shift register.
An overview of this implementation is shown in Fig. 1 in
Section IV.

C. Threshold Implementation

The Threshold Implementation (TI) countermeasure was
proposed by Nikova et al. in [8]. TI applies secret-sharing
to achieve provable resistance against first order side channel
attacks if the following three requirements are fulfilled:

1) Correctness: Correctness means that combining the
output of the different shares retrieves the original output
in a correct way.

2) Non-completeness: Non-completeness means that the
equation used to evaluate any output share should be

missing at least one input share. This requirement en-
forces that the information required to compute the
secret value (all the shares) is not present in the system
at any time instant. Hence, any vulnerability in the
implementation (e.g. glitches) cannot leak the secret key.

3) Uniformity: If the input shares are uniformly dis-
tributed, the output shares must also be uniformly dis-
tributed.

Threshold Implementation of block ciphers have been pub-
lished for AES [2], [9] and PRESENT [10], as well as for
KECCAK [11].

III. THRESHOLD IMPLEMENTATION OF SIMON

We propose the required equations to process SIMON as a
threshold implementation. Although a three-shares implemen-
tation is required to overcome glitches in hardware modules,
we start with a two-shares implementation as a preliminary
step.

A. SIMON with Two Shares

In order to process SIMON in two shares, we use the
following equations. We denote the random mask that affects
the input plaintext as m[p][1] and m[p][2]. The input words
are given as:

r[a]0 = m[p][1] r[b]0 = m[p][1] + r0

l[a]0 = m[p][2] l[b]0 = m[p][2] + l0

Then, the round functions can be expressed as:

r[a]i+1 = l[a]i r[b]i+1 = l[b]i

l[a]i+1 = r[a]i + l[a]2i + l[a]1i ∗ l[a]8i + l[a]1i ∗ l[b]8i + k[a]i

l[b]i+1 = r[b]i + l[b]2i + l[b]1i ∗ l[b]8i + l[b]1i ∗ l[a]8i + k[b]i

where k[a] and k[b] are the two shares of the round key. We
use a different mask to process the key schedule, denoted by
m[k]. The size of the mask should be equal to the size of the
key. Equations for splitting the key schedule into two shares
are straightforward, being an entirely linear operation.

This masking scheme is correct and uniform. However, it is
not non-complete because the two input shares are required to
process any output share. This masking scheme can work in
software implementations if we enforce the order of processing
the equation to be from left to right. Hence, we ensure
that the compiler does not generate any intermediate variable
that is free from the random mask. However, this masking
scheme is not provable in hardware implementations where
glitches can leak the relation between the two shares. In order
for the secret-sharing scheme to provably work in hardware
implementations, we need to enforce the requirement of non-
completeness. Hence, we propose the three-sharing scheme in
the next subsection.

FIFO2FIFO1

SRU
KEY

SRD

LUT
64 bits56 bits

8 bits

First 8 Clock Cycles Next 56 Clock Cycles

3

1 2

3 4

FIFO2FIFO1

SRU
KEY

SRD

LUT

3

FIFO2FIFO1

KEY

SRD

LUT
3

FIFO2FIFO1

KEY

SRD

LUT
3

SRU SRU

Fig. 1. Data-path of the SIMON cipher. In each round, after the first 8 cycles
the input of FIFO1 will change. Based on the round, the SRU and SRD will
function as input or output of the LUT block.

B. SIMON with Three Shares
The equations used to process SIMON in three shares

follow the same reasoning of the two shares. Here, we use
two random variables, each with the same size as the input
plaintext. This generates three shares of each word, denoted
by [a], [b] and [c]. The equations used to process the r part are
straightforward and hence omitted. The equations to process
the l part are as follows:

l[a]i+1 = r[b]i+ l[b]2i + l[b]1i ∗ l[b]8i + l[b]1i ∗ l[c]8i + l[c]1i ∗ l[b]8i +k[b]i

l[b]i+1 = r[c]i+ l[c]2i + l[c]1i ∗ l[c]8i + l[c]1i ∗ l[a]8i + l[a]1i ∗ l[c]8i +k[c]i

l[c]i+1 = r[a]i+l[a]2i +l[a]1i ∗l[a]8i +l[a]1i ∗l[b]8i +l[b]1i ∗l[a]8i +k[a]i

This masking scheme is correct, uniform and non-complete.
It is non-complete because the equation used to process any
output share (e.g. [a]) does not include at least one input
share ([a]). Although the system of equations in the data-
path (every term in the equations aside from the key) is not
invertible, i.e., its mapping is not guaranteed to be one-to-
one, which suggests non-uniformity, uniformity is guaranteed
by the randomness brought by the key shares (k[a], k[b] and
k[c]). The key shares are uniformly distributed as the system of
equations to generate them is linear and invertible (assuming
that the input random masks are uniform). Then, it is easy to
prove that the result of addition in GF(2) between an arbitrary
variable that is not necessarily uniform (the data-path) and
a uniformly distributed random variable (the key shares), is
uniformly distributed. This implies that the above system of
equations is uniform. Although the random variable used in
one round depends the random variables used in the previous
rounds, this does not result in any vulnerability for univariate
attacks that harvest information from a single point in the
trace.

IV. FPGA IMPLEMENTATION

Fig. 1 shows the structure of the SIMON implementation.
At first, the input is loaded into the Shift Register Up (SRU),
FIFO1 and FIFO2. During the first 8 cycles (phase 1), the
look-up table (LUT) processes three bits from the SRU, a key
bit and the output of FIFO2, and the result is stored in the Shift
Register Down (SRD). During this phase, SRD stores the new
values, while SRU stores the old ones for further processing.

Once the SRD is full and before overflowing occurs, instead
of SRU, SRD will be connected to FIFO1, where the new
values will be stored (phase 2). SRU will still work as the
old register for storing old bit values from FIFO1 output. This
phase continues for 56 cycles until the round is completed.
In the next round, the functionality of SRU and SRD will be
flipped, representing phase 3 and 4 as shown in the Fig. 1.

In order to design a threshold implementation for SIMON
there are two choices, parallel and serial. In both cases the
state will be divided into three shares.

A. Parallel SIMON

The parallel implementation uses three copies of the data-
path and key schedule units, i.e. one for each share. Note that
the three data path units and key schedule units need only one
instance of the control unit. Throughout this section we use
f(s, k) to denote the modular addition between key bit k and
state bit s (f(s, k) = s+ k). The state bit and key bit are as
follows:

s = r[α] + l[α]2 + l[α]1 ∗ l[α]8 + l[α]1 ∗ l[β]8 + l[β]1 ∗ l[α]8

k = k[α]

where α and β denote different input shares.
As can be seen in Fig. 2, the input to the function block

comes from two shares (denoted by old) based on the above
equation along with one bit from the key. The output is
written into one share (denoted by new). The function block
is implemented using LUTs. The old share is SRU (or SRD)
and the new share is SRD (SRU), if the round is even (odd).
The parameters α and β can be extracted from equations in
Section III-B. At each clock cycle the key schedule unit and
data-path unit are enabled to ensure that new values are written
for all three shares at each clock cycle.

In order to ensure that each output share is independent
of at least one input share the “Keep Hierarchy” property of
synthesize tool should be enabled. The keep hierarchy property
ensures that parallel LUTs are synthesized so that they never
share in one slice. The resistance analysis presented in the
next section shows that this level of separation is sufficient for
security. Although no component of this core receives all three
shares as an input, hence preventing glitches from leaking first-
order information, the core as a whole still processes all three
shares in the same clock cycle. Under rare circumstances, this
might result in remaining first order leakage. For this reason,
we propose the serialized version of the protected core where
each share is strictly accessed in different clock cycles.

B. Serial SIMON

The serial SIMON processes only one share at each clock
cycle as opposed to parallel implementation. More specifically,
in each clock cycle, only one bit is computed and only one
register is being shifted. So, updating the three shares takes
three clock cycles. To ensure the correctness of the design,
Read After Write (RAW) hazard should be prevented. This
requires one extra register, added to one of the shares to
save the previous value of that share. In order to reduce the

f(s,k)k[b]

old [a] old [b] old [c]

f(s,k)f(s,k) k[c] k[a]

new [a] new [b] new [c]

Fig. 2. Parallel SIMON. All the three shares are processed at the same time.
Each output share is independent of at least one input share.

k[a]

old [a] old [b] old [c]

k[b]

k[c]

f(s,k)

new [a] new [b] new [c]

Fig. 3. Serial SIMON. Only one share is processed at a time. The extra
register is added to share [a] for saving purposes. At each cycle only one
key bit along with proper states will go through the MUX. The DEMUX will
route the result to the proper share.

overhead caused by the mentioned register, we modify the
non-completeness of the equations in Section III-B, such that
shares [a], [b] and [c] are independent of shares [c], [a] and [b],
respectively. Based on the new set of equations, only share
[a] will face the RAW hazard, so the extra register is added
for share [a]. Fig. 3 illustrates the new architecture. Since the
design is based on shift registers, adding an extra register is
achieved by taking one register out of FIFO1 and adding it to
SRU and SRD.

The design ensures that at each cycle only one key bit along
with proper states will go through the MUX. The computed
result will then be routed in the DEMUX unit and written into
the proper share.

C. Implementation Results

The mentioned designs were implemented in Verilog HDL
and synthesized for Spartan-3 xc3s50 using ISE 14.7. Table I
summarizes the results and provides a comparison to previous
implementations on the same platform. Our proposed parallel
implementation needs 87 slices when synthesized by setting
the optimization goal to area and picking slices using PlanA-
head. The occupied slices are less than three times of the
unprotected design, since the control logic is not replicated
for the parallel design. We also synthesized the parallel design
by choosing speed as the main optimization goal, letting
synthesize tool pick slices. The serial design is slightly larger
than the parallel one, because of the overhead in control
logic and some minor changes in the data-path, as discussed
above. As highlighted in Table I, our implementation is more
compact than some unprotected ciphers, namely AES and

PRESENT. In fact, the small AES implementation from [4]
is also outperformed in all compared metrics, though that
implementation is not protected against SCA.

TABLE I
IMPLEMENTATION RESULTS OF PARALLEL AND SERIAL SIMON

AND COMPARISON WITH THE PREVIOUS WORK.

Design Area
(Slices)

Max. Frequency
(MHz)

Throughput
(Mbps)

AES [4] 264 67 2.2
PRESENT [5] 117 113 28.4
Unpro-SIMON [3] 36 136 3.6

TI-SIMON
Parallel (area) 87 108 3
Parallel (speed) 96 137 3.8
Serial (area) 131 84 0.7
Serial (speed) 137 110 1

V. RESISTANCE ANALYSIS

In this section, we propose a practical attack against the
unprotected core of SIMON 128/128 as defined in [3]. We
highlight that, the previous SCA attacks proposed in [6]
and [7] were developed against the full-state implementation,
and cannot be used against the bit-serialized version of our
focus. Then, we show the results of this attack against the
protected core along with a thorough leakage quantification.
We implemented this design in a way that the input to the
core is already in masked form and the random masks are
applied from an external source. Here, we use x(a)b to denote
bit number b ∈ [0 : 63] of the word x : l ∨ r in round
number a ∈ [1 : 64]. x can also denote the key k. The
practical test setup consists of a SASEBO-GII board to develop
the hardware design, a Tektronix DPO-5104 oscilloscope to
collect the power traces and a ZFL-1000LN amplifier to
improve resolution of the collected traces.

A. Practical Attack
The first step in DPA is to identify a sensitive intermediate

variable, which depends on both the input data and the secret
key in a non-linear equation with as low confusion as possible.
Linear equations can also work (as used in [6]), but the attack
in this case will need more traces to distinguish between the
correct key and close-by ones. Low confusion means that the
non-linear operation processes a small number of the key-bits.
This is recommended to break the complexity of the secret key
into smaller portions (divide-and-conquer).

Hence, we focus on attacking the output of the non-linear
operation (the AND gate) in the second round of SIMON,
where the first key word (k(1)) becomes part of l(2) to
compute l(3). We do this analysis bit-by-bit following the bit-
serialized implementation. The equation for the first bit of l(3)
is:

l(3)0 = r(2)0 + k(2)0 + l(2)62 + (l(2)63 ∗ l(2)56)

where

r(2)0 = l(1)0 , and
l(2)i = k(1)i + r(1)i + l(1)i−2 + (l(1)i−1 ∗ l(1)i−8)

where i ∈ {62, 63, 56} for this particular bit and the subtrac-
tion in indexes is done modulo 64. A similar equation can be
written for all the bits of the internal state. In short, one bit of
the left word in round three (e.g. l(3)0) depends non-linearly
on two key-bits (k(1)63 and k(1)56) and linearly on another
two key bits (k(2)0 and k(1)62), along with some input data.

The second step of a successful DPA attack is to select
an accurate power model, which is a function that converts
the sensitive intermediate variable into relative power con-
sumption. In this work, we use the Hamming Distance (HD)
power model which is suitable for hardware modules. The HD
represents the number of bit-flips between two clock cycles.
For example, we focus on the activity of the first register of the
left word, representing the operation of overwriting bit l(3)0
by bit l(3)1 between cycle 65 and 66. However, we first need
to consider an equation for the system power consumption.

The system power equation of the unprotected structure
(only one share) is:

P = PSRU + PSRD + PFIFO1 + PFIFO2 +N

where PSRU , PSRD, PFIFO1 and PFIFO2 represent the power
consumption of the SRU, the SRD and the FIFO registers,
respectively. N is a noise component which represents the
measurement noise along with all on-board activities that
do not depend on the input data including the key-schedule
circuit. We did not write a separate term for the LUT as its
effect can be included in its output register, which is the first
register of SRU or SRD depending on the clock cycle (SRU in
our example). During the update of cycle 65/66 and following
the HD model, the power consumption of each component is:

PSRU = HW
((
l(3)0||r(2)63:55

)
⊕
(
l(3)1||l(3)0||r(2)63:54

))
PSRD + PFIFO1 = HW

(
l(2)1 ⊕ l(2)2

)
PFIFO2 = HW

(
|(l(2)0||r(2))|64 ⊕ |(l(2)1||l(2)0||r(2))|64

)
where HW is the Hamming weight function (the number of
set-bits), Xs is a circular shift right by s bits and |x|64 denotes
trimming x to the first 64 bits. PSRD +PFIFO1 and PFIFO2

depend linearly on the plaintexts and the bits of k(1). PSRU

is the only component in the system power consumption that
depends non-linearly on key bits.

Fig. 4 gives the results of attacking the studied SIMON cores
with Correlation Power Analysis (CPA) [12]. In this attack, we
used a 4-bit key hypothesis to represent the non-linear key-
bits involved in the computation of l(3)0 and l(3)1. Figures
(a) and (b) show results for attacking the unprotected core.
Figure 4(a) shows the correlation coefficient as a function of
time. Figure 4(b) shows the correlation associated with the
correct key against those of the incorrect keys as the number
of analyzed traces increases. Although the results highlight
the success rate of recovering only four bits of the secret key,
the remaining key-bits could also be recovered by selecting
another points in the algorithm using the same number of
traces. These results shows that the unprotected core can be
broken with less than 1200 traces. Figures 4(c) and 4(d) show

the results of the same attacks against the protected core. In
this experiment, we collected 500,000 traces of the parallel
version synthesized with speed optimization. If this core passes
the attack and the leakage quantification tests, the serialized
version will pass for being designed with more conservative
assumptions. It is clear that the attack fails to recover any
secret key, which supports our claim of secrecy.

B. Leakage Quantification

Although the aforementioned DPA attack is necessary to
prove the SCA-security of the proposed module, the attack
examines the leakage of a single point in the trace which is not
sufficient. In contrary, the technique of leakage quantification
examines the entire trace searching for any point where the
leakage can be distinguished from random. Here, we do not
use any key-recovery attack, but we use statistical tools to
prove the indistinguishably of the collected traces.

We use the test suite developed in [13] and previously
used in [14], [15]. The test suite consists of two different
experiments: Fixed Versus Random (FVR) and Random Versus
Random (RVR).

The FVR test depends on collecting two sets of leakage
traces, one with a fixed plaintext while the other with randomly
varying plaintexts. The traces are collected in an interleaved
way to minimize the effect of noise. We compute the sample
mean (µ) and sample standard deviation (σ) of the traces in
each set. Then, we compute the result of Welchs t-test:

t =
µa − µb√

(σ2
a/Na) + (σ2

b/Nb)

where a and b denote the two sets and Ni denote the number
of traces in set i : a ∨ b. The device fails the FVR test if the
value of t exceeds a certain threshold. In this paper, we follow
the threshold of ±4.5 used in [13] and [14].

The RVR test applies the same analysis as above however,
all the traces are collected with randomly varying plaintexts.
In this case, the two groups of traces are separated based on
an intermediate variable. We apply the RVR test to the HD
between the first bits of the left and right words of the first
two rounds. We also apply the RVR test to the HW of these
bits.

These tests are stronger than the previous DPA attack, as
they search for the distinguishability in any trace point that
may or may not lead to a full key recovery. Fig. 5 shows the
results of the FVR and the RVR tests against the studied cores.
Figures 5(a) and 5(b) report results of the FVR and the RVR
tests for the unprotected core at 100,000 traces, respectively.
Figures 5(c) and 5(d) report results for the protected core
at 2,000,000 traces. We applied all the aforementioned RVR
tests, however, we report results of only one intermediate
variable due to space limitation (the HD in the first register
during cycle 65/66). The unprotected core failed all the leakage
quantification tests (as expected), while the protected code did
pass all the tests which again supports our claim of secrecy.

0 500 1000 1500 2000 2500 3000 3500 4000
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time instances

C
o
rr

e
la

tio
n

(a)

0 0.5 1 1.5 2 2.5

x 10
4

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Number of Traces

C
o

rr
e

la
tio

n

(b)

0 500 1000 1500 2000 2500
-6

-4

-2

0

2

4

6
x 10

-3

Time instances

C
o

rr
e

la
tio

n

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Number of Traces

C
o
rr

e
la

tio
n

(d)

Fig. 4. CPA results for the studied cores: (a) and (b) show the results against the unprotected core. (c) and (d) show the results against the protected core.

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-80

-60

-40

-20

0

20

40

60

80

100

Time Samples

t

(a)

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-6

-4

-2

0

2

4

6

8

10

12

14

Time Samples

t

(b)

 0 1000 2000 3000 4000 5000
-6

-4

-2

0

2

4

6

8

10

12

14

Time Samples

t

(c)

 0 1000 2000 3000 4000 5000
-6

-4

-2

0

2

4

6

8

10

12

14

Time Samples

t

(d)

Fig. 5. Results of leakage quantification. (a) and (b) report results of the FVR and RVR tests for the unprotected core. (c) and (d) results for the protected
core.

VI. CONCLUSION

In this paper, we proposed a threshold implementation of
SIMON block cipher that can be implemented in less than
100 slices of a low-cost FPGA platform. The proposed core
perfectly suits highly-constrained embedded systems that re-
quire protection against side-channel attacks including sensor
nodes and RFIDs. We showed that the protected core is
secure against all first order attacks using provable arguments,
practical DPA attacks and tests for leakage quantification.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. #1261399 and
#1314770.

REFERENCES

[1] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, “The SIMON and SPECK Families of Lightweight Block
Ciphers.,” IACR Cryptology ePrint Archive, vol. 2013, p. 404, 2013.

[2] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, “Pushing
the Limits: A Very Compact and a Threshold Implementation of AES,”
in Advances in Cryptology — EUROCRYPT 2011 (K. G. Paterson, ed.),
vol. 6632 of Springer LNCS, pp. 69–88, 2011.

[3] A. Aysu, E. Gulcan, and P. Schaumont, “SIMON Says: Break Area
Records of Block Ciphers on FPGAs,” Embedded Systems Letters, IEEE,
vol. 6, pp. 37–40, June 2014.

[4] T. Good and M. Benaissa, “AES on FPGA from the Fastest to the
Smallest,” in Cryptographic Hardware and Embedded Systems CHES
2005 (J. Rao and B. Sunar, eds.), vol. 3659 of Springer LNCS, pp. 427–
440, 2005.

[5] P. Yalla and J. Kaps, “Lightweight Cryptography for FPGAs,” in
International Conference on Reconfigurable Computing and FPGAs,
2009. ReConFig ’09., pp. 225–230, Dec 2009.

[6] S. Bhasin, T. Graba, J.-L. Danger, and Z. Najm, “A look into SIMON
from a side-channel perspective,” in IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), 2014, pp. 56–59, May
2014.

[7] D. Shanmugam, R. Selvam, and S. Annadurai, “Differential Power Anal-
ysis Attack on SIMON and LED Block Ciphers,” in Security, Privacy,
and Applied Cryptography Engineering (R. Chakraborty, V. Matyas, and
P. Schaumont, eds.), vol. 8804 of Springer LNCS, pp. 110–125, 2014.

[8] S. Nikova, C. Rechberger, and V. Rijmen, “Threshold Implementations
Against Side-Channel Attacks and Glitches,” in Information and Com-
munications Security (P. Ning, S. Qing, and N. Li, eds.), vol. 4307 of
Springer LNCS, pp. 529–545, 2006.

[9] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen, “A More
Efficient AES Threshold Implementation,” in Progress in Cryptology –
AFRICACRYPT 2014 (D. Pointcheval and D. Vergnaud, eds.), vol. 8469
of Springer LNCS, pp. 267–284, 2014.

[10] S. Kutzner, P. Nguyen, A. Poschmann, and H. Wang, “On 3-Share
Threshold Implementations for 4-Bit S-boxes,” in Constructive Side-
Channel Analysis and Secure Design (E. Prouff, ed.), vol. 7864 of
Springer LNCS, pp. 99–113, 2013.

[11] B. Bilgin, J. Daemen, V. Nikov, S. Nikova, V. Rijmen, and G. Van Ass-
che, “Efficient and First-Order DPA Resistant Implementations of Kec-
cak,” in Smart Card Research and Advanced Applications (A. Francillon
and P. Rohatgi, eds.), Springer LNCS, pp. 187–199, 2014.

[12] E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with a
Leakage Model,” in Cryptographic Hardware and Embedded Systems —
CHES 2004 (M. Joye and J.-J. Quisquater, eds.), vol. 3156 of Springer
LNCS, pp. 135–152, 2004.

[13] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing method-
ology for sidechannel resistance validation.” Non-Invasive Attack
Testing Workshop, 2011. http://www.cryptography.com/public/pdf/
a-testing-methodology-for-side-channel-resistance-validation.pdf.

[14] A. J. Leiserson, M. E. Marson, and M. A. Wachs, “Gate-Level Masking
under a Path-Based Leakage Metric,” in Cryptographic Hardware and
Embedded Systems – CHES 2014 (L. Batina and M. Robshaw, eds.),
vol. 8731 of Springer LNCS, pp. 580–597, 2014.

[15] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen, “Higher-
order threshold implementations,” in Advances in Cryptology ASI-
ACRYPT 2014 (P. Sarkar and T. Iwata, eds.), vol. 8874 of Springer
LNCS, pp. 326–343, 2014.

