
Simplified Whitening Filtering in the Processing of the Electromyogram 

K. Rajotte1, H. Wang1, H. Wang1, C. Dai2, Z. Zhu1, X. Huang1 and E. Clancy1

1. Worcester Polytechnic Institute, Worcester, MA 01609, USA

2. Center for Biomedical Engineering, Fudan University, Shanghai China

{krajotte, hwang9, hwang10, zzhu2, xhuang, ted}@wpi.edu, chenyundai@fudan.edu.cn 

Four different electromyogram (EMG) whitening implementations were studied with an optional noise 

correction stage. Most applications require a raw surface EMG to be processed to extract meaningful 

information about muscular activity [1, 2]. Many applications, including prosthesis control [3–5], 

estimation of joint torque [6–11] and mechanical impedance [12–17], require an estimate of the EMG 

standard deviation (EMGσ). The stages typically used to achieve an EMGσ estimate [18] are expressed in 

Figure 1. Whitening filters are included in EMG processing to temporally uncorrelate the samples. Previous 

research has shown that whitening preserves the average value of EMGσ while reducing its variability [19–

21], which benefits applications that include this stage [6, 7, 22, 23]. In this study, the primary focus was 

to implement and compare performance of four distinct whitening methods with the goal of identifying a 

simpler method that maintains equal or comparable processing performance. Additionally, the influence of 

the noise correction stage was also considered. Noise correction was implemented as the square root of the 

noise estimate’s variance subtracted from the square of the processed EMG, denoted root difference of 

squares (RDS) [24].  

The first (and most complex) whitening filter is formed from the cascade of: 1) a fixed subject-specific 

whitening filter (i.e., calibrated to each specific subject), 2) an adaptive Weiner Filter for noise cancellation, 

3) an adaptive gain stage and 4) a fixed whitening bandwidth limiting lowpass filter [19, 25]. This approach

requires calibration data (active and rest EMG) for each individual subject. The second whitening filter was

a universal whitening filter (i.e., same filter used for all subjects) created from the ensemble average of the

magnitude responses of the whitening filters developed for each electrode of each subject. Once the

ensemble filter shape was determined, a 2nd-order IIR universal whitening filter was produced using the

novel differential evolution filter design method [26–28]. Both the subject-specific filters and universal

whitening filter included the adaptive Weiner filter noise cancellation stage. The third whitening filter was

a simple 1st-order Butterworth highpass filter with a cutoff frequency of 410 Hz, initially developed by

Potvin and Brown [29]. We optimized this cutoff frequency selection to minimize EMG-force RMS error

(see below).  The low order of this filter coupled with its relatively high cutoff frequency yields a magnitude

response similar to a whitening filter. This cutoff frequency must still be optimized to the application, but

not to each subject. The fourth whitening method was the first difference [30, 31] of the EMG signal, which

also has a magnitude response shape similar to that of a subject-specific whitening filter and does not require

calibration.

To compare the performance of these four whitening filters, each was applied to processing of force-varying 

and constant-force contractions captured from 64 subjects (eight electrodes total per subject, four over the 

biceps and four over the triceps). WPI’s IRB exempted these de-identified data from supervision (File 10-

100). Force-varying contraction data were captured over 30 seconds as subjects tracked a random target 

spanning 50% extension to 50% flexion of the elbow. The target trajectory was uniform in its force 

Figure 1: Advanced EMGσ Processing Steps (Exponent r = 1 or 2) 
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distribution, with a band-limited white power spectral density 

from 0-1 Hz. This broad range of forces is ideal for evaluating 

the different whitening filters. Unfortunately, the force-

varying data do not offer insight into performance of the 

whitening filters for low effort levels, e.g. 0% maximum 

voluntary contraction (MVC) (rest). At lower effort levels, the 

influence of RDS noise correction is more dramatic because 

additive noise is greater in magnitude relative to EMGσ than 

at higher effort levels [32, 33]. To study whitening filters 

during rest, constant-force contraction data at 0% MVC and 

50% MVC were used (5s duration per trial). A sampling rate 

of 4096 Hz was used for all data with a whitening band limit 

of 600 Hz. EMGσ was computed with and without RDS noise 

correction to compare its influence coupled with the 

whitening filters.   

To compare performance of each whitening filter when 

applied to the force-varying data, EMGσ computed from one 

contraction trial was used to train an EMGσ-force model via 

regression [6]. The EMG-force model was a 15th-order 

quadratic FIR filter for each channel, fit using the Moore-

Penrose pseudo-inverse. The RMSE between the force 

estimate and force measured on a separate trial was used as a 

metric of whitening performance. Because the other stages in 

the EMGσ processing are the same, any changes in the RMSE between the estimated and actual force are 

a result of the whitening filter. Table 1 summarizes RMSE mean and standard deviation error computed 

across the 64 subjects for each whitening filter with and without RDS processing. 

For the constant force data, the average 0% MVC EMGσ was divided by the average 50% MVC EMGσ 

for each of eight electrodes per subject. Table 2 summarizes these ratio results with and without the RDS 

stage (across 64 subjects). A smaller magnitude ratio 

value represents better performance. Figure 2 displays 

the individual ratios for each subject and electrode. 

Because Shapiro-Wilk tests found the resulting data to 

be non-Gaussian, pair-wise statistical comparisons used 

the Wilcoxon signed-rank test (with Bonferroni-Holm 

adjustment) and tests between more than two groups 

used Friedman’s test. For the dynamic data, no 

significant differences were found between the data 

with RDS on vs. off. For the constant force data, RDS 

on was significantly better than RDS off. Further 

statistical tests only considered data with RDS on. 

Friedman’s test compared the four whitening filters. No 

significant differences were detected for the dynamic 

data, except that all performed better than data without 

whitening. For the constant-force ratios, subject-

specific whitening performed better than the other 

whitening methods. 

With the goal of developing a simpler whitening filter 

method, four different whitening implementations were 

studied and compared. Overall, all whitening methods 

Table 1. Dynamic task mean ± std. dev. EMG-force 

errors (% MVC) vs. whitening method (N=64 

subjects). Smaller error denotes better performance. 

Whitening 

Method 
RDS On RDS Off 

None 5.55 ± 2.4 — 

Subject-Specific 4.86 ± 2.06 4.85 ± 2.04 

IIR 4.95 ± 2.20 4.92 ± 2.17 

Highpass 
4.98 ± 2.15 

(2047 Hz) 

4.98 ± 2.15 

(2047 Hz) 

First Diff. 5.00 ± 2.16 4.99 ± 2.16 

 

Table 2. Static task mean ± std. dev. ratios of 0% to 

50% EMGσ vs, whitening method (N=64 subjects). 

Smaller ratios denote better performance. 

Whitening 

Method 
RDS On RDS Off 

Subject-Specific 0.048 ± 0.096 0.074 ± 0.076 

IIR 0.066 ± 0.100 0.089 ± 0.082 

Highpass 0.051 ± 0.096 0.098 ± 0.092 

First Diff. 0.051 ± 0.095 0.096 ± 0.091 

 

 
Figure 2: Heat scatter plot of the average 0% and 50% 

MVC with and without RDS enabled.  RDS does not 

significantly alter the magnitude of the 50% MVC data as 

most points fall on the line of agreement. At 0% MVC, 

many of the ratios fall below the line of agreement. N = 64 

subjects by 8 electrodes = 512 comparisons per test 

condition. Color scaled to number of comparisons. Note the 

axis scales are different between the two plots. 
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performed better than no whitening. The best average EMG-force performance was demonstrated by the 

subject-specific whitener, then the universal IIR whitening filter, the 1st-order Butterworth highpass filter 

and the first difference. But statistical analysis of these dynamic data found no significant differences 

between them. Statistical analysis of the constant force data found RDS significantly reduced the influence 

of noise at lower effort contractions. Depending on the application and its requirements, one of the simpler 

whitening methods studied may be a suitable choice. In particular, the first difference filter performs well 

and requires no calibration or implementation decisions. Potvin and Brown’s highpass filter requires the 

cutoff frequency of the filter to be optimized for a specific application, but once this cutoff is identified, the 

implementation is a simple 1st-order filter. The universal whitening method uses a higher order filter but 

relies on a set of known filter coefficients. Subject-specific whitening requires the most overhead to 

calibrate to each unique subject. Choice of whitening filter implementation should be made given the 

requirements of each application.    
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