Estimation of Joint Torque and Impedance by Means of Surface EMG

Edward (Ted) A. Clancy

Department of Electrical and Computer Engineering Department of Biomedical Engineering Worcester Polytechnic Institute, USA

Denis Rancourt

Department of Mechanical Engineering Sherbrooke University, Canada

Supported by USA National Institute for Occupational Safety and Health grant R03-OH007829.

Copyright Edward A. Clancy and Denis Rancourt, 2007. Some rights reserved. Content in this presentation is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. This license is more fully described at: http://creativecommons.org/licenses/by-nc-sa/3.0/.

UNIVERSITÉ DE SHERBROOKE

Introduction

Research Aims

Research Applications

- Myoelectric control of prosthesis
- EMG biofeedback for rehabilitation
- Ergonomic analysis / task analysis
- Biomechanical modeling
- Measurement in motion control studies

UNIVERSITÉ DE

RBRO

Presentation Overview

- **1. EMG amplitude (EMGamp) estimation:** $\hat{s}(t)$
- **2. EMG-torque estimation:** \hat{T}
- **3. EMG-impedance estimation:** *k*,*b*,*J*

Electromyogram (EMG) Signal Model

EMG Amplitude (EMGamp) Estimation

- EMG Amplitude (EMGamp): "Intensity" of recorded EMG
 - "Time-varying standard deviation of EMG signal"
- Original estimator: Inman et al. [1956]
 - Analog full-wave rectify and RC low pass filter

Improving EMGamp Estimation

- EMGamp improved by:
 - Removal of measurement noise
 - EMG signal whitening { Increases statistical bandwidth of EMG Reduces variance of amplitude estimate.
 - Adaptive whitening
 - To reject measurement noise
 - Multiple EMG channels (for large muscles)
 - Optimal detectors
 - Optimal smoothing (bias vs. variance error)

Single Channel, Including Noise

Prakash et al., IEEE Trans Biomed Eng 52: 331-334, 2005.

Optimal EMG Processor — Single Site

Note: Does not account for noise/interference.

Clancy and Hogan, IEEE Trans Biomed Eng 41: 159-167, 1994.

ន

Whitening Example

Clancy and Hogan, IEEE Trans Biomed Eng 41: 159–167, 1994.

ន

Single-Channel EMGamp Processor

Multiple-Channel, Including Noise

Six-Stage EMG Amplitude Estimator

Experimental Apparatus

UNIVE Clancy, *IEEE Trans Biomed Eng* **46**:711–729, 1999. SHERBROOKE

EMG Electrode Sites

SHERBROOKE

Experiment Brief Description

- Subjects seated in exercise machine
- Active bipolar electrode-amplifiers applied to both biceps and triceps

UNIVERSITÉ DE

Subjects performed various static or dynamic contractions, tracking a target.

Single-Channel Whitening

Multiple-Channel Whitening

ន

Multiple-Channel Whitening — Average Results

SNR vs. Window Length

ន

Adaptive Whitening Problem

ន

Power Spectrum of Amplitude-Modulated EMG

UNIVERSITÉ DE

RBROOKE

Adaptive Whitening Solution

Adaptive Whitening Filter : $H_A(e^{j\omega}, s_i) = H_{time}^{-1}(e^{j\omega}) \cdot H_W(e^{j\omega}, s_i) \cdot d(s_i)$

Sample Adaptive Whitening Filters

Prosthetics

EMGamp: Myoelectric Control of Prosthesis

- Use remnant muscle EMG to command electric hand, wrist, elbow
 - Some lower limb prosthetics research

Boston Elbow

UNIVERSITÉ DE

Major current effort by U.S. military to improve prosthetic limbs

- Improved myoelectric controls
- •Embedded neural/myo sensors •To give more control •To provide feedback

Directly connect limb to bone

Opportunities in Myocontrol

- Newer prosthetic limbs circa 2002
 - Microprocessor
 - Digital control
 - Simultaneous control of multiple motors
- Advanced EMG processing now feasible – Not feasible previously in production arms

EMGamp: Gait Biofeedback

EAC07-156

Re-training after stroke, traumatic brain injury.

SARDINIA

With Paolo Bonato, Spaulding Rehabilitation Hospital, Boston

<u>Gait</u>

EMGamp: EMG-Torque Uses

- Non-invasive torque measurement for scientific studies
- Study/evaluation of worker safety
 - Repetitive, high-force tasks can lead to cumulative trauma injuries

r S

Surface EMG Signal and Joint Torque

Simple Elbow Mechanics Model

EMG-Torque Block Diagram

- **Optimally** relate biceps, triceps EMGamp to elbow torque
 - Calibrate for each subject
- Compare conventional vs. advanced EMGamp processors

EMG-torque

UNIVERSITÉ DE

EMGamp-Torque: Quasi-Static Contraction

EAC07-161

WP

EMG-torque

EMG-Torque: Constant-Posture, Force-Varying

EMG-torque

EMG-Torque: Force-Varying, Results

• Linear (moving average) model

EAC07-163

Clancy et al., J Biomechanics, 2006.

UNIVERSITÉ DE

ERBRO

EMG-Torque Summary

Better EMGamp -> Better Torque

- Future directions
 - Applications in ergonomics
 - Constant-posture tasks
 - Relax postural constraints
 - Multi-joint systems
- <u>Goal</u>: Calibrate EMG-torque in apparatus; then estimate torque in unconstrained tasks

EMG-Impedance

- •Rigorous representation of muscular co-activation
- •Want optimized EMG-impedance relationship
 - Constant-posture, quasi-static conditions
 - Preliminary work
- •Goal: Calibrate EMG-impedance in apparatus; then estimate impedance in unconstrained tasks

EMG-Impedance Block Diagram

Elbow Mechanical Impedance Measurement

- Subject seated, shoulder 90° abducted, elbow 90° flexed.
- Right hand immobilized in cuff (2), connected to actuated joystick (1)
- Medio-lateral pseudo-random <u>FORCE</u> <u>perturbations</u> (3)
- Measure medio-lateral movement through joystick encoders
- Assume second order linear system:
 K, B, I
 - Estimate I separately

K, B vary with operating point

S. Martel, M.S. Thesis, U. Sherbrooke, 2007.

UNIVERSITÉ DE

EMG-impedance

Impedance Calibration: Ramp Contraction Profile

 Slow ramp from extension-dominant to flexion-dominant

UNIVERSITÉ DE

Impedance Models

• Fixed operating point ("constant torque"), λ:

$$T_{i} = K(\lambda) \cdot \phi_{i} + B(\lambda) \cdot \dot{\phi}_{i} + I \cdot \ddot{\phi}_{i}$$

- T: Torque perturbation, ϕ : Angular perturbation
- K: Stiffness, B: Viscosity, I: Inertia
- Also measure EMG
- Slowly varied operating point \hat{s}_E, \hat{s}_F :

$$T_i = K(\hat{s}_E, \hat{s}_F) \cdot \phi_i + B(\hat{s}_E, \hat{s}_F) \cdot \dot{\phi_i} + I \cdot \dot{\phi_i}$$

Polynomial basis gives:

$$T_{i} = (k_{0} + k_{E,1} \cdot \hat{s}_{E} + k_{F,1} \cdot \hat{s}_{F}) \cdot \phi_{i} + (b_{0} + b_{E,1} \cdot \hat{s}_{E} + b_{F,1} \cdot \hat{s}_{F}) \cdot \dot{\phi}_{i} + I \cdot \ddot{\phi}_{i}$$

EAC07-169

- Fit parameters: k_0 , $k_{E,1}$, $k_{F,1}$, b_0 , $b_{E,1}$, $b_{F,1}$

WPI

EMG

amplitudes

System ID Protocol

- > 0–15 Hz, pseudo random torque
- **EMG** sampled at 4096 Hz
- Force, displacement sampled at 400 Hz, 1.5–8 Hz band pass
- Estimation of K and B
 - 1. 10%, 20%, 30%, 40% MVC flex
 - 2. 10%, 20%, 30%, 40% MVC ext
- Estimation of K and B versus time for slowly varying ramps (40% extension to 40% flexion MVC)
- > 16 subjects

Constant Torque Data: EMG Amplitude

UNIVERSITÉ DE SHERBROOKF

Constant Torque Model Test: Torque Prediction

Ramp Torque Data: EMG Amplitude

Ramp Torque Issue at 0% MVC

- Force perturbations
- Solutions:
 - 1. Do not pause at 0% MVC
 - 2. Position perturbations (Requires stronger motor)

Impedance Study Status

- 0–15 Hz perturbation band sufficient
- Post-filtering (T, θ) 1.5–8 Hz essential to remove low freq modes
- Better torque prediction results obtained when remove inertial forces prior to ID
- First order model for EMG-impedance or H.O.?
- May use relaxed test to estimate k₀, b₀ instead?
- Ramp calibration may require position control?

EAC07-175

• Will improved EMGamp estimators help?

Questions?

