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Abstract - Typical EMG amplitude estimators use a 
fixed window length for smoothing the amplitude 
estimate. When the EMG amplitude is dynamic, varying 
the smoothing length as a function of time can produce a 
higher quality amplitude estimate. This paper develops 
and investigates (in simulation and experimentally) a 
new technique for adaptive window length estimation. 
The simulations suggest that the "best" adaptive filter 
performed as well as the "best" fixed-length filter. Both 
filter types had to be tuned to the conditions of the 
simulation. Experimentally, it was found that multiple 
channel EMG amplitude estimators consistently 
performed better than single channel EMG amplitude 
estimators. Results with the adaptive processor were 
inconclusive. Perhaps due to task difficulty, no 
differences in adaptive vs. fixed-length processors were 
observed when subjects were asked to use real-time EMG 
amplitude estimates (presented on a video screen) to track 
a rapidly moving random target. When the target speed 
was slow, the experimental results were consistent with 
simulation predictions. 

I. Introduction 
Typical amplitude estimators use analog rectify and 

smooth processing or root-mean-square (RMS) processing of 
the EMG waveform. Research studies have demonstrated 
that this technique can be improved by three methods: 
whitening individual EMG waveform channels, combining 
multiple waveform channels into a single EMG amplitude 
estimate, and (when muscle contraction is dynamic) 
adaptively tuning the length of the smoothing window [1]- 
[4] (see also [5] for an alternative technique). This report 
describes a study of adaptive window length. First, a new 
adaptive window length processor is mathematically derived. 
Second, the new technique is studied using a stochastic 
simulation model of the EMG waveform. Third, a 
preliminary report of an experimental evaluation of the 
technique is provided. 

11. Development of the Adaptive Estimator 
Consider the composite mean square error (MSE) in the 

EMG amplitude estimate as comprised of two components: 
a variance component d ( t )  (due to random fluctuations in 
the EMG amplitude estimate about the true amplitude) and a 
bias component b(t)  (due to errors in tracking true changes 
in the amplitude) [4]: 

MSE(r) = b2(t)+ 0 2 ( r )  
In general, variance error is reduced with a large duration 
smoothing window and bias error is reduced with a small 
duration smoothing window. For improved amplitude 

estimation (i.e. minimum MSE), therefore, the smoothing 
window length should be dynamically tuned to the 
characteristics of the EMG amplitude each instant in time. 

A. Variance Component of the Error 
For the variance component, [6]-[8] have shown that the 

signal to noise ratio (SNR) of EMG amplitude estimates for 
constant-angle, isotonic, non-fatiguing contractions is 

where N is the window length in samples, f is the sampling 
frequency (in Hertz) , s( t )  is the EMG amplitude, a(t) is 
the EMG amplitude estimate standard deviation and g is a 
function of B, L and D.  B is the bandwidth of the 
EMG data (in Hertz). L is the number of EMG channels 
which are combined to form the amplitude estimate. D 
denotes the detector type-mean absolute value (MAV) or 
root mean square (RMS). Solving the above for az(t) gives 

B. Bias Component of the Error 
For the bias component, consider the error that would 

occur if no variance error existed, but the EMG amplitude 
was dynamically changing. Let the EMG amplitude in the 
neighborhood of sample t be modeled as the quadratic 

where a,, al and a2 are constants. At sample t - k , 
s( r )  = a, + alt + q2 

k;i(t) k Z  s(t - k )  = s( t )  - -+ -i(t) 
f 2 f 2  

where i(t) =al  f +2%,ft is the derivative of s( t )  with 
respect to t (expressed in units of EMG amplitude per 
second) and i( t) = 2% f * is the second time derivative. If a 
causal MAV detector is used to-form the amplitude estimate 
ŝ  at sample t from N EMG waveform samples, then 

1 N-' i ( t )  = - x l m ( t  - k)l 
N 

k=O '. 
where m(r) are the EMG waveform samples. However, since 
this formulation of the bias error assumes that the variance 
error is nil, the magnitude of the waveform samples can be 
replaced by the true EMG amplitude s(t) ,  which is always 
non-negative. Substituting the relation for the amplitude at 
sample t - k and simplifying gives 

where the bias error has been defined as b(t) = i ( t )  - ~ ( t ) .  
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C. Minimum MSE: Causal Processing 
IfMSE(t) is now written, the optimal window length can 
frequently be found by differentiating with respect to N, 
setting the derivative to zero, and then solving for N. 
Unfortunately, attempting to do so in this case leads to a 
complex non-linear equation. Hence, an exhaustive 
numerical search was used instead. To find an optimum N, 
MSE(t) was computed for all possible window lengths 
corresponding to a duration ranging from SO-SOOms, and the 
duration corresponding to the minimum error was selected. 

D. Linear Model of EMG Amplitude Variation 
Because the above development models the EMG 

amplitude in the neighborhood of sample t as a quadratic, a 
second derivative term results. In practice, limiting the 
solution to the first derivative may be beneficial. This 
solution can be formed using a linear model of EMG 
amplitude in the neighborhood of sample t by setting 
S ( t )  = 0 in the above development. For causal processing, 

this linear model gives a - 
dN 

dMSE(t) of 

Setting this derivative to zero, solving for N and making the 
approximation N 3  - N2 P N 3  leads to the optimal value for 
N of 

111. Simulation Study 
Implementation of any of these adaptive processors 

presupposes the true value of the EMG amplitude and its 
derivatives. In practice, these values are not known and must 
be estimated from the EMG waveform. Hence, the adaptive 
algorithm was implemented in two passes. In the first pass, 
fixed-length processing stages were used to estimate the 
EMG amplitude and its derivatives. The window length N 
could then be selected for each sample time. In the second 
pass, the adaptive N was implemented to produce the 
adaptive amplitude estimate. Simulation was used to 
investigate the effectiveness of this two-pass method. The 
EMG yaveform was simulated as an amplitude modulated, 
band-limited (256 Hz), Laplacian random noise process. 

Initial investigation with the model quickly showed that 
estimation of the derivatives of the EMG amplitude could 
not be adequately obtained with simple differencing filters. 
Thus, polynomial derivative filters of degrees 1-6 were 

- investigated. Filters were evaluated on the EMG model, 
with the simulated amplitude (denoted the target) changed ai 
a band-limited random process with uniform density (ranging 
from simulated relaxation to simulated 50% maximum 
voluntary contraction (MVC)). Several target bandwidths 
were evaluated. It was found that a degree 1 polynomial was 
best for the first derivative and a degree 2 polynomial was 
best for the second derivative. However, the number of 

450 ms 11 2.37 I 4.47 I 7.45 I 10.991 9.45 
500 ms 11 2.50 I 4.86 I 8.03 I 11.321 9.53 

Table I: Mean-square-error simulation results (in percent 
MVC) for causal processing. 

samples over which the polynomial should be fit varied with 
the target bandwidth. For example, first derivatives were 
best when using 875ms of data for a target bandwidth of 0.25 
Hz, but were best using 375ms of data when the target 
bandwidth was 1 Hz. 

Once these derivative estimators had been established, 
the simulation method was run to investigate the expected 
performance of the adaptive window length algorithm versus 
fixed length algorithms. Table I gives the results. Adaptive 
estimators were evaluated twice: first, with the derivatives 
known (to establish "ideal" technique performance) and 
second, with the derivatives estimated from the EMG 
waveform (as would be done with actual data). The preferred 
length polynomial differentiator was used for each target 
bandwidth. (Note that the adaptive window length 
processors were not sensitive to the method of estimating the 
first-pass EMG amplitude.) The results show that the first 
derivative algorithm performs equal to or better than the 
second derivative technique. For each target bandwidth, the 
adaptive algorithm (with estimated derivatives) performs 
about as well as the best fixed-length algorithm. The 
knowledge developed from these simulations was next used 
to guide an experimental evaluation of the causal adaptive 
estimator. Only a first derivative adaptive processor was 
considered since it gave superior results in the simulation. 

IV. Experimental Study 
A. Experimental Apparatus 

For each of the biceps (flexor) and triceps (extensor) 
muscles, four commercial EMG electrode-amplifiers (Liberty 
Mutual MY01 15) were located at the mid length of the 
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Fig. 1: Example data from tracking 
trials. Dotted lines are the target, 
solid lines are the subject pursuit 
profiles. Y-axis values give the EMG 
amplitude (scaled to percent MVC), 
with positive values denoting 
extension (i.e. triceps EMG greater 
than biceps EMG) and negative values 
denoting flexion. EMG processing 
was with the multiple channel 
adaptive processor in each case. 

muscle, clustered about the muscle midline. The two 
contacts of each electrode-amplifier were oriented along the 
long axis of the arm. One ground electrode was applied. 
.Electrode-amplifiers had a gain of 500 and a second-order 10- 
2000 Hz bandpass filter. The EMG signals were electrically 
isolated, amplified and low-pass filtered (2000 Hz). 

The EMG signals were connected to a 16-bit A/D 
converter on an "EMG Workstation PC". The PC acquired 
the input data at 4096 Hz, formed a 4-point moving average, 
and decimated the data to 1024 Hz. The Workstation then 
computed EMG amplitude estimates in real time, formed the 
difference between the triceps and biceps amplitude, and sent 
the resulting differences out its serial port. Four EMG 
processors per muscle group (bicepdtriceps) were produced: 
1) Conventional single-channel MAV processing with a 

fixed smoothing window length of 250ms. Note that an 
electrode-amplifier most central on the muscle was used. 

2,3) Conventional four-channel MAV processing with fmed 
smoothing window lengths of 100 and 250ms. 

4) A four-channel adaptive (first-derivative), causal 
smoothing window length processor. The duration of 
data contributing to the polynomial direentiator was 
375ms (the best duration for a I Hz target). 
For each experimental trial, one processed triceps-biceps 

EMG amplitude difference was sent out the serial port (at a 
rate of 30 Hz) to a second "Target Tracking PC" which 
displayed the selected triceps-biceps processed EMG and a 
dynamic target to pursue. In Mode 1, the target moved 
horizontally along the screen as a band-limited (0.25 Hz) 
uniform random process. The range of the random process 
was scaled from 50% MVC flexion to 50% MVC extension. 
Mode 2 used a similar target, except that the statistical 
bandwidth of the target was 1 Hz. Additional tracking data 
were collected, but not used in this study. 

B. Experimental Methods 
Informed consent was received from each subject. 

Nineteen healthy subjects, 9 male and 10 female, ranging in 
age from 18 to 65 years, each participated in one experiment. 
A subject was seated in a Biodex exercise machine and 
secured to the seat back rest via three belts. The subject's 
right arm was oriented so that the upper arm and forearm 

were in the plane parallel to the floor, the forearm was 
oriented in the parasaggital plane, with the wrist in complete 
supination, and the angle between the upper arm and the 
forearm was 90°. The subject's right wrist was fit into a cuff 
which was rigidly attached to the Biodex. The arm position 
and orientation was fixed throughout the experiment. 

Initially, subjects produced a series of contractions to 
calibrate their MVC and corresponding EMG amplitudes. 
Subjects then performed 30-second, constant-angle, 
anisotonic tracking task contractions. One triceps-biceps 
EMG processor and a dynamic target were simultaneously 
presented to the subject. The subject was blinded as to 
which EMG processor was selected. The subject was 
instructed to fledextend about the elbow as necessary in 
order to produce an EMG difference signal which tracked the 
target as best as possible. (This technique mimics the use of 
an EMG-controlled upper-limb prosthesis.) A series of 3 sets 
of tracking contractions was conducted, each set randomly 
presenting all combinations of EMG processors and tracking 
modes. A rest period of two minutes was provided between 
trials. 

C. Preliminary Experimental Results 
Fig. 1 shows sample tracking data from each of the three 

tracking tasks. Preliminary analysis has consisted only of 
evaluating the MSE between the target and the achieved 
pursuit path. It was observed during the experiment that 
subjects were learning the tracking task during the first set of 
targets. This observation was confirmed statistically in that 
the tracking errors from the first tracking set were statistically 
different (larger) than those from the remaining two sets. For 
these reasons, data from the first tracking set were removed 
from M e r  analysis. In addition, the tracking errors from 
one subject were more than three standard deviations greater 
than the mean error, thus the data from this subject were 
excluded. The remaining MSE results are presented in 
summary in Table 11. 

D. Discussion of Preliminary Experimental Results 
All of the experimental errors listed in Table I1 are 

considerably larger than the simulation errors listed in Table 

1273 



I EMG Processor 

I Single: Fixed, 250ms 
Multiple: Fixed, 250ms 
Multiple: Fixed, looms 
MultiDle: AdaDtive 

Table 11: Meankstd. dev. tracking error results, in percent 
MVC, averaged across 18 subjects. 

Target Type 
0.25 Hz 1.00 Hz 
Random Random 
8.6733.34 21.51f3.07 
7.43f1.5 1 19.59S.85 
9.43f2.14 19.69f2.85 
8.68f2.32 19.5732.77 

I. This result is expected for at least two reasons. First, the 
simulation errors do not account for the imprecise ability of 
subjects to track the target. This error grows with the 
difficulty (bandwidth) of the target being tracked. Second, 
the simulations evaluated estimation errors from a single 
EMG amplitude estimate, but the experiment evaluated errors 
.which were formed from the difference of two EMG 
amplitude signals. The random error of this difference signal 
(assuming that the errors on the individual signals were 
uncorrelated) should be greater by a factor of a. 

Comparing the single vs. multiple channel fixed- 
window, 250ms detectors, Table 11 shows that the multiple 
channel detector performed better than the single channel 
detector for all target types (~10.005 for each target type 
using a t-test). This result continues to reinforce the 
advantage of multiple channel EMG amplitude estimation. 

For the 1 Hz random target, none of the multiple channel 
algorithms performed differently (p=0.95 using a one-way 
ANOVA). The simulation results suggested that the lOOms 
fixed-window and adaptive processors should have performed 
equally well, but with 74% of the error of the 250ms fixed- 
window processor. Perhaps the lack of differences was due to 
the task difficulty. The errors may have been dominated by 
the imprecise ability of subjects to track the target at this 
high. bandwidth, with smaller related to processor 
performance not easily detected. 

For the 0.25 Hz random target, the 250ms fixed-window 
processor performed better than the 1 OOms fixed-window 
processor (p<0.002 using a t-test), as predicted by the 
simulations. No precise prediction was available for adaptive 
processing since the duration of data contributing to the 
polynomial derivative filter was not matched to this 
bandwidth (as it was in the case of the simulations). 
However, the experimental result fell between the two fEed- 
length detectors. It would be interesting to re-test tracking 
results using an adaptive processor with the appropriate 
derivative for the 0.25 Hz target. A higher quality derivative 
would be expected to lead to lower errors. 

V. Summary/Conclusions 
A new technique for adaptive window length estimation 

of the amplitude of the non-stationary EMG waveform was 
derived. This method includes consideration of the first and 
second derivative of the EMG amplitude. A simulation 
study investigated the ideal and practical performance of the 

technique in comparison to fixed-length processors. It was 
found that practical adaptive detectors, with optimum 
selection of a polynomial derivative jilter, should work as 
well as the optimum fixed-length processor. Unfortunately, 
this results means that the burden of selecting the "best" 
window length (in the fixed-length processor case) is replaced 
by the burden of selecting the ''best" derivative filter (in the 
adaptive-length case). Future research should be directed 
towards improved derivative filters which may correct this 
situation. Experimentally, it was confirmed that multiple 
channel processors performed better than the single channel 
processor. Results with the adaptive processor were 
inconclusive. Perhaps due to task difficulty, no differences 
in the multiple channel processors were observed at the 1 Hz 
target bandwidth. Results at the 0.25 bandwidth were 
consistent with simulation predictions. 
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