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Abstract The time delay between two surface electr-

omyograms (EMGs) acquired along the conduction path is

used to estimate mean action potential conduction velocity.

Modeling the linear impulse response between ‘‘upstream’’

and ‘‘downstream’’ EMG signals permits an estimate of the

distribution of velocities, providing more information. In

this work, we analyzed EMG from bipolar electrodes

placed on the tibialis anterior of 36 subjects, using an inter-

electrode distance of 10 mm. Regularized least squares was

used to fit the coefficients of a finite impulse response

model. We trained the model on one recording, then tested

on two others. The optimum correlation between the

model-predicted and actual EMG averaged 0.70. We also

compared estimation of the mean conduction delay from

the peak time of the impulse response to the ‘‘gold stan-

dard’’ peak time of the cross-correlation between the

upstream and downstream EMG signals. Optimal models

differed from the gold standard by 0.02 ms, on average.

Model performance was influenced by the regularization

parameters. The impulse responses, however, incorrectly

contained substantive power at very low time delays,

causing delay distribution estimates to exhibit high

probabilities at very short conduction delays. Unrealistic

distribution estimates resulted. Larger inter-electrode

spacing may be required to alleviate this limitation.

Keywords Electromyography � Conduction velocity �
Conduction delay � Conduction delay distribution

1 Introduction

Electromyogram (EMG) conduction velocity (CV) refers to

the speed of action potential propagation along the muscle

fiber. Abnormal CV may indicate myopathic and neurologic

disorders [1, 2, 31, 33] and CV slowing is associated with

localized muscle fatigue and EMG spectral compression [3, 4,

24, 28, 32]. Mean CV is typically estimated by recording two

interference-pattern surface EMG signals along the conduction

path, then dividing the path length by the propagation delay

(see [7] for a review). Both electrode recordings are acquired

on one side of the innervation zone, with action potentials

propagating first past the so-called ‘‘upstream’’ electrodes and

thereafter past the ‘‘downstream’’ electrodes. The estimated

delay averages the contributions from individual motor units

(MUs) within the pick-up area of the electrodes, weighted by

each MU amplitude. Methods for estimating mean propagation

delay/conduction velocity from the EMG of two recording

sites include the use of: spectral dips [9, 18], the delay between

reference points in detected waveforms [15, 19, 20, 27], phase

differences [17], maximum likelihood estimation [11, 13, 27]

and cross-correlation [3, 24, 32].

Recorded signal components arriving simultaneously at

both EMG sites—including power-line interference and

nonpropagating EMG (e.g., end of fiber potentials)—bias

the estimated delay towards shorter values (and, therefore,

bias the conduction velocity towards higher values).
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Double-difference electrodes have been used to reject these

common signal components [3, 12, 23, 27]. Complex or

optimized spatial and/or temporal filters may further reduce

this error [6, 23, 27]. Multiple channel linear [10–12, 23]

and two-dimensional [8, 13, 14, 31, 33] recording arrays

have been used to track individual MU action potentials.

The classic two-site methods assume that all MUs are

oriented along the line between the two electrodes and that

mean CV is an appropriate measure. However, the underly-

ing muscle fibers are not exactly parallel and each MU has a

distinct conduction velocity. Thus, it is more informative to

extract an estimate of the distribution of conduction delays/

velocities. Based on the original work of Williams [30] on

nerve bundles, Hunter et al. [17] related the distribution of

conduction delays between two EMG sites to the absolute

value of the impulse response between the upstream and

downstream locations. This model assumes that the EMG

signal due to individual MUs sum to produce the recorded

interference pattern, the action potential shape of each MU is

identical and each MU action potential arrives at the down-

stream electrode site after a pure (but distinct) time delay.

The impulse response was estimated by solving a matrix

equation relating the upstream–downstream EMG cross-

correlation function to the upstream auto-correlation function

and the impulse response (see the ‘‘indirect’’ estimate method

described below). Their method was evaluated on one

recording with a 15 mm inter-electrode distance. Davies and

Parker [5] modeled multiple MU action potentials (with

distinct conduction velocities) and fashioned an estimate of

conduction velocity distribution also using auto- and cross-

spectra. Their method was evaluated on one recording, using

a 20 mm inter-electrode distance.

In this report, we further investigate estimation of the

impulse response between a pair of conventional bipolar EMG

electrodes separated by 10 mm as an approach to estimate

propagation delay distribution. We introduce a more direct

method to estimate the impulse response via a finite impulse

response (FIR) model, comparing results to the method of

Hunter et al. [17]. Our direct method estimates the impulse

response via linear least squares. We therefore investigated

two methods to regularize the resulting impulse response—the

singular-value-decomposition-based pseudo-inverse approach

[25] and an approach based on post hoc low-pass filtering of the

FIR sequence. Performance was evaluated on EMG recordings

from the tibialis anterior muscle of 36 subjects.

2 Methods

2.1 Experimental methods

A 36-subject (19 males, 17 females; aged 23.7 ± 3.0

years) subset of experimental data acquired for a prior

study was reanalyzed. The original study [21, 22] was

approved by the Brock University Research Ethics Board,

with written informed consent secured from each subject.

Data reanalysis was approved by the WPI IRB. Subjects

had to be right leg dominant with a body mass index

under 25.

Subjects lay supine while a constant-current source

(150 mA, 1 ms duration square-wave pulse, rate of 10 pps)

was used to find the motor point. The lower leg was

shaved, abraded and cleansed with alcohol. A bar electrode

was applied using two-sided tape and electrolyte gel.

Recording electrodes on the bar consisted of four stainless-

steel tubular surfaces, each 1 mm in diameter and 10 mm

long, with an inter-electrode distance of 5 mm. The elec-

trodes were configured to yield three bipolar signals from

adjacent electrodes, of which the first and third (inter-

electrode distance of 10 mm) were primarily utilized. The

ground electrode was located on the lateral malleolus. For

each experimental session, initial placement was in line

with the muscle fibers, between the motor point and the

distal tibialis anterior tendon. (This line was marked with

indelible ink on the first day.) Electrically evoked poten-

tials were then elicited and the electrode orientation

manipulated until electrode placement/orientation maxi-

mized action potential shape similarity and delay between

EMG channels [13]. Once the electrodes were secured,

impedance was assessed to ensure that it was lower than

10 kX. If not, additional skin preparation was conducted

until this criterion was met.

Subjects sat in a testing chair designed to isolate iso-

metric ankle dorsiflexion. The chair was adjusted so that

the hip and knee joints were at 90�, and the ankle joint was

at 110�. Dorsiflexion forces were applied perpendicular to a

load cell (JR3 Inc., Woodland, CA, USA) through an

adjustable mount. A padded metal bar secured the top of

the foot at the fifth metatarsal. Belts stabilized the subject

within the chair. Subjects then performed three, 5-s dura-

tion, maximal voluntary contractions (MVCs) of the

dorsiflexors, with a 3-min rest interval. After 5 min rest,

30 % MVC trials were conducted. Each 30 % MVC con-

traction lasted 5 s, including the force ramp-up period,

isometric contraction (2–4 s duration) and the ramp-down

period. The entire protocol was repeated a second day.

Only the isometric contraction periods of the 30 % MVC

trials were utilized in this study; in particular, one 30 %

MVC from the first day (trial 1) and two from the second

day (trials 2 and 3). Using data from both days increased

the amount of available data for analysis, presumably

increasing statistical power. The EMG signals were band-

pass filtered between 10 and 1,000 Hz and amplified (Grass

P511, Astro-Med Inc., West Warwick, RI, USA). The

EMG and load cell force were sampled with 16-bit reso-

lution at 5,000 Hz [21, 22].

758 Med Biol Eng Comput (2013) 51:757–768

123



2.2 Analysis models

2.2.1 EMG signal model

A simple, phenomenological model of EMG signal prop-

agation between two sites along the conduction path is

shown in Fig. 1, modified from Rababy et al. [26] via the

addition of a second noise source (to balance the noises

represented at each EMG site). Variable x1[n] is the noise-

free ‘‘upstream’’ signal at sample n and x2[n] the noise-free

‘‘downstream’’ signal, neither of which is measurable. The

finite-duration, linear, time-invariant filter h[n] gives the

impulse response between these two signals. Recorded

signals m1[n] and m2[n] are corrupted by mutually inde-

pendent additive noise sources r1[n] and r2[n], respectively.

From the model, the noise-free upstream and down-

stream EMG signals are related via convolution as:

x2½n� ¼
Xp2

i¼�p1

h½i� � x1½n� i�; ð1Þ

where the positive-valued integers p1 and p2 specify the

range of the finite impulse response (in samples). Parameter

p1 specifies ‘‘system anticipation’’ and p2 specifies ‘‘system

memory’’, both of which are necessary to capture the system

dynamics, even when modeling pure time delays [16].

Accounting for the additive noise sources allows this

equation to be written in terms of the measurable EMG

signals as:

m2½n� � r2½n� ¼
Xp2

i¼�p1

h½i� � fm1½n� i� � r1½n� i�g;

or

m2½n� ¼
Xp2

i¼�p1

h½i� � m1½n� i� þ e½n�; ð2Þ

where e½n� ¼ r2½n� �
Pp2

i¼�p1
h½i� � r1½n� i� represents an

error term.

2.2.2 ‘‘Direct’’ estimate of the impulse response

The finite impulse response h[n] consists of p1 ? p2 ? 1

unknown sequence values. Let the measured EMG signals

m1[n] and m2[n] be known over N samples, with

N � p1 þ p2 þ 1. Linear least squares can be used to

optimally estimate the h[n] sequence [25]. Note that

p1 ? p2 additional samples from m1[n] and m2[n] (i.e.,

outside of the original range of N samples) are actually

utilized in order to satisfy the future and past lags specified

in the sum in Eq. (2).

In practice, solution to this least squares problem is ill-

conditioned. As will be shown in Sect. 3, the unconditioned

solution produces an impulse response sequence with

excessive high-frequency noise. Thus, two methods were

used to regularize the solution. First, we investigated the

singular-value-decomposition-based least squares pseudo-

inverse approach, in which certain linear combinations of

the training data—those that likely provide little informa-

tion, but contain considerable noise—are omitted from the

training solution [25]. The tolerance for omission was based

on the ratio of each singular value to the maximum singular

value. Note that this tolerance definition differs from that

found in the MATLAB pinv command. Second, we low-pass

filtered the impulse response after the least squares fit. A

fourth-order Butterworth filter was designed, then applied in

the forward and reverse time directions, to achieve zero

phase. This process leaves both a head and tail startup

transient. These transients were omitted by extracting a sub-

segment of the filtered impulse response, over a range

specified by p1_Extract and p2_Extract, respectively. The overall

filter impulse response range (specified by p1 and p2) was

large enough so that the discarded samples occurred outside

the plausible range of conduction delays.

2.2.3 ‘‘Indirect’’ estimate of the impulse response

An indirect method for estimating the finite impulse

response based on Eq. (2) has previously been described

[17]. Briefly, if we substitute n ? k for n, multiply both

sides of the equation by m1[n] and then average over N

sample values:

1

N

XN�1

n¼0

m1½n� � m2½nþ k� ¼

Xp2

i¼�p1

h½i� � 1

N

XN�1

n¼0

m1½n� � m1½nþ k � i� þ e
0 ½k�;

ð3Þ

where e
0 ½k� ¼ 1

N

PN�1
n¼0 m1½n� � e½nþ k� is an error term. The

left side of Eq. (3) is the biased cross-correlation estimate,

Rm1m2
½k�. Similarly, the right side contains the biased auto-

correlation, Rm1m1
½k � i�, giving:

Fig. 1 Action potential propagation model. Signal x1[n] is the noise-

free ‘‘upstream’’ signal, x2[n] is the noise-free ‘‘downstream’’ signal,

h[n] gives the impulse response between them. Recorded signals

m1[n] and m2[n] are corrupted by mutually uncorrelated additive noise

sources r1[n] and r2[n], respectively
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Rm1m2
½k� ¼

Xp2

i¼�p1

h½i� � Rm1m1
½k � i� þ e

0 ½k�: ð4Þ

The finite impulse response sequence in Eq. (4) can now be

solved via linear least squares over the range of available

correlation values. With this indirect approach, we also

examined the singular-value-decomposition-based pseudo-

inverse approach and post hoc low-pass filtering, utilizing

the same tolerance values/cutoff frequencies as with the

direct approach.

2.3 Methods of analysis

Our goal was to evaluate different methods for estimating

the finite impulse response when neither the true impulse

response nor the true distribution of delays is known.

Therefore, we used several indirect measures of perfor-

mance. All analysis was performed in MATLAB (Math-

Works, Natick, MA, USA). Statistical comparisons utilized

paired t tests (with Bonferroni adjustment) and ANOVAs,

as further detailed within Sect. 3.

First, we visually evaluated the impulse response pro-

duced by the direct method, as well as the magnitude of its

discrete Fourier transform (DFT), on a subset of the 36

subjects. Since the finite range of the impulse response

affects the determined response, we evaluated seven dif-

ferent duration parameter sets, denoted scenarios in

Table 1, selected after some initial heuristic evaluation.

When using the pseudo-inverse approach, the tolerance

values investigated were: 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3,

0.2, 0.1, 10-2, 10-3, 10-4, 10-5 and 10-6. Large tolerance

values denote that many singular values were discarded

from the inverse. When using the post hoc filtering

approach, the low-pass filter cutoff frequencies were: 25,

50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325,

350, 400, 450, 500, 600, 850 and 1,000 Hz. This least

squares inverse was computed using the pseudo-inverse

with default MATLAB tolerance (a very small tolerance

value, related to the numerical precision).

Second, we evaluated the representativeness of the

model shown in Fig. 1 by training a model (i.e., calibrating

an impulse response) to the first 30 % MVC recording from

each subject (trial 1), then testing that model on trials 2 and

3. Each test passed the upstream EMG data through the

impulse response and then compared that filtered output to

the measured downstream EMG. The correlation coeffi-

cient was our metric of goodness of fit, since we did not

want changes in signal gains to influence the metric

(nonetheless, similar results were found when evaluating

mean squared error). Results from the two test trials per

subject were averaged. The tolerances and low-pass cutoff

frequencies listed above were investigated, for both the

direct and indirect model solution techniques.

Third, an appropriately modeled impulse response typ-

ically exhibits a single dominant peak, whose time location

represents the mean conduction delay [17]. However, if

only the mean conduction delay is desired, it is more

common to use the time location of the peak of the cross-

correlation function between the upstream and downstream

signals [3, 24, 32]. Thus, we compared the mean conduc-

tion delay determined by the ‘‘gold standard’’ cross-cor-

relation method to that determined from the dominant peak

of the impulse response. For the cross-correlation method,

the EMG signals were upsampled by a factor of 10 (to a

rate of 50 kHz). To do so, the original data samples were

interpolated by inserting nine zero values between each

sample, followed by low-pass filtering (MATLAB interp

command). Impulse responses were similarly upsampled

prior to locating their peak. Upsampling provided a timing

delay resolution of 20 ls. The absolute error between the

delay estimated by the cross-correlation and impulse

response methods was determined for each of the two 30 %

MVC test trials (trials 2 and 3), and then averaged. For the

impulse response method, the impulse response was esti-

mated from trial 1. The same tolerances and low-pass

cutoff frequencies as listed above were investigated, for

both the direct and indirect model solution techniques.

3 Results

Figure 2 shows data from an example 30 % MVC recording

and the corresponding EMG power spectrum. Most of the

EMG power occurred below 300 Hz, with very little power

above 400 Hz. Conduction delay analysis was only per-

formed on stable portions of each 30 % MVC recording,

identified via manual selection. The available durations

ranged from 2.56 to 4.44 s, with a mean ± standard devi-

ation (SD) duration of 3.45 ± 0.44 s.

Figures 3 (pseudo-inverse tolerance approach) and 4

(post hoc low-pass filtering approach) illustrate the range

of impulse responses encountered during the visual

Table 1 Scenarios (parameter combinations) used to evaluate

impulse response performance, in milliseconds (ms)

Scenario p1 (ms) p1_Extract (ms) p2 (ms) p2_Extract (ms)

1 5 4 10 5

2 20 9 20 5

3 16 9 20 5

4 12 5.6 10 5

5 8 4 12 5

6 20 10 20 5

7 0 0 5 5
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evaluations of the direct solution method. Several charac-

teristics are seen. First, the right-most column of Fig. 3

uses a pseudo-inverse tolerance that is so small (10-25) that

this result approximates use of a standard matrix inverse in

the least squares procedure. The impulse response exhibits

significant high-frequency noise, well outside the band-

width of the EMG signals. From a frequency domain per-

spective, the impulse response can be thought of as the

inverse DFT of the transfer function between the upstream

and downstream EMG signals. The transfer function is the

DFT of the downstream signal divided by the DFT of the

upstream signal. At high frequencies, both EMG signals

contain little power. Thus, division at the high frequen-

cies—division of two very small magnitudes—produces

erratic profiles. Second, the middle column of Fig. 3 shows

more reasonable time and frequency domain results. Here,

the pseudo-inverse tolerance of 0.2 has essentially

smoothed the impulse response. The singular vectors

associated with the discarded singular values characteris-

tically contain higher frequency components. Third, if the

pseudo-inverse tolerance is increased too much then exces-

sive smoothing of the impulse response results (left column

of Fig. 3, tolerance of 0.9). In this case, too few singular

vectors were retained, thereby failing to capture enough

system dynamics. Fourth, Fig. 4 shows that qualitatively

similar trends occur when post hoc low-pass filtering is

applied. Too little low-pass filtering produces excessive

high-frequency gains. When the impulse response is limited

to a frequency band similar to that of the original signals

(cutoff frequency of 250 Hz), a visually appropriate impulse

response/transfer function is produced. When the low-pass

filter is overly restrictive, an over-smoothed impulse

response is produced. Startup errors are visible in each

impulse response outside of the p1_Extract to p2_Extract range.

Fifth, visual evaluation (not shown) of results in which both

the pseudo-inverse tolerance approach and post hoc low-

pass filtering were applied in cascade suggested no addi-

tional dimension of response variation.

The above results show that varying the tolerance value/

low-pass cutoff frequency provides a trade-off between

under-smoothing and over-smoothing the impulse response.

To quantify this trade-off, the model was evaluated by

training the model to one 30 % MVC trial, then testing that

model on the two remaining 30 % MVC trials. Figure 5

shows the average cross-correlation results between the actual

and model-estimated ‘‘downstream’’ EMG signals. In gen-

eral, as the tolerance value was decreased or low-pass filter

cutoff frequency increased, there was an initial stage of

transient performance, followed by a plateau of stable per-

formance. For the best scenarios—numbers 5 and 6 (and 7,

when using the pseudo-inverse approach)—the plateau pro-

vided the highest correlation of approximately 0.70 for both

the pseudo-inverse and post hoc filtering approaches, with

higher tolerances/lower cutoff frequencies producing poorer

correlation. For the pseudo-inverse approach, the stable

stage consisted of all tolerance values below approxi-

mately 0.2–0.1. For the post hoc filtering approach, the pla-

teau existed at cutoff frequencies above approximately

Fig. 2 Sample force recording

(top) and corresponding EMG

signal (lower left). Bottom right
shows DFT magnitude of the

EMG signal. Subject produced a

30 % MVC during the time

region marked ‘‘Stable Force’’
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250–300 Hz. Overall, the highest (i.e., best) cross-correla-

tions were found using scenarios 5 and 6 (and 7, for

the pseudo-inverse approach). Statistically, paired t tests

compared results between each scenario pair for the pseudo-

inverse approach at a tolerance of 0.1. All p values were

Bonferroni adjusted. For the direct technique, scenarios 5–7

Fig. 3 Impulse responses (top)

and their corresponding DFT

magnitudes (bottom) using

direct solution technique with

pseudo-inverse tolerances as

labeled. Subject GA01,

p1 = 20 ms, p2 = 20 ms,

p1_Extract = 10 ms and

p2_Extract = 5 ms. Dotted lines
in top plots indicate the p1_Extract

and p2_Extract values. DFTs

computed using impulse

response from p1_Extract to

p2_Extract. Each plot uses distinct

y axis

Fig. 4 Impulse responses (top)

and their corresponding DFT

magnitudes (bottom) using

direct solution technique with

post hoc low-pass filter cutoff

frequencies as labeled. Subject

GA01, p1 = 20 ms,

p2 = 20 ms, p1_Extract = 10 ms

and p2_Extract = 5 ms. Dotted
lines in top plots indicate the

p1_Extract and p2_Extract values.

DFTs computed using impulse

response from p1_Extract to

p2_Extract. Startup errors are

visible outside of the p1_Extract to

p2_Extract range. Each plot uses

distinct y axis
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differed from each other scenario (p \ 0.0001) and from each

other (p \ 0.02). For the indirect technique, scenarios 5–7

differed from each other scenario (p \ 0.0001), but not from

each other (p [ 0.13). Similar paired t tests were performed

for the low-pass filter approach, using results at 300 Hz. For

both the direct and indirect techniques, scenarios 5–7 differed

from each other scenario (p \ 0.0001) and from each other

(p \ 0.02). In all cases when scenarios 5–7 showed statistical

differences from each other, the difference in correlation

values was quite small. An ANOVA compared the results of

scenario 6 from each of the four pseudo-inverse/low-pass

filter-direct/indirect combinations, using a tolerance of 0.1

and a filter cutoff of 300 Hz. These locations represent the

best results, one per each of the four graphs in Fig. 5. The

results were not significantly different [F(3, 140) = 0.18,

p = 0.91)].

The last quantitative evaluation was between the ‘‘gold

standard’’ mean conduction delay estimated via cross-cor-

relation and that found by locating the peak of the impulse

response. Figure 6 shows the average absolute differences

between these methods. The optimal pseudo-inverse tol-

erance is approximately 0.5–0.2, with performance rapidly

deteriorating for tolerances above 0.6. The optimal post

hoc low-pass cutoff frequency occurs at approximately

200–250 Hz, with performance rapidly deteriorating at

cutoff frequencies below 150 Hz. At these optimal loca-

tions, scenario 7 performed much poorer than all other

scenarios. These optimal tolerance values/cutoff frequen-

cies are adjacent to, but not overlapping with, those found

for the correlation coefficient evaluations. In all cases, the

optimal parameters provide an average delay difference of

approximately 0.02 ms. Note that for typical conduction

Fig. 5 Cross-correlation

between model-predicted and

measured ‘‘downstream’’ EMG

signals versus pseudo-inverse

tolerance( left) and low-pass

filter cutoff frequency (right).
Top plots use direct solution

technique; bottom plots use

indirect solution technique.

Each result is the average of 72

test trials (36 subjects 9 2 test

trials/subject). Scenarios 1–7

denote results for distinct

selections of p1, p2, p1_Extract

and p2_Extract, as enumerated in

Table 1. Arrows indicate

locations of optimal tolerance/

low-pass cutoff frequency
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velocities between 3 and 5 m/s, electrodes placed at

10 mm spacing correspond to delays of 2–3.33 ms. Hence,

errors at the best tolerance/cutoff are small. Statistically,

paired t tests compared results between each scenario pair

for the pseudo-inverse approach at a tolerance of 0.2. All

p values were Bonferroni adjusted. For the direct tech-

nique, there were no differences (p [ 0.44). For the indi-

rect technique, there were no differences (p [ 0.15) except

comparing scenario 7 to all but scenario 5 (p \ 0.04).

Similar paired t tests were performed for the low-pass filter

approach, using results at 200 Hz. For the direct technique,

there were differences comparing scenario 1 to scenarios 2,

3, 6 and 7 (p \ 0.024); and scenario 7 to all others

(p \ 0.05). For the indirect technique, there were differ-

ences when comparing to scenario 7 (p \ 0.032). Except

when considering scenario 7, when statistical differences

were found, the differences in delay values were quite

small. An ANOVA compared the results of scenario 6 from

each of the four pseudo-inverse/low-pass filter-direct/indi-

rect combinations, using a tolerance of 0.2 and filter cutoff

of 200 Hz. These locations represent the best results, one

per each of the four graphs in Fig. 6. The results were not

significantly different [F(3, 140) = 0.29, p = 0.83)].

Lastly, a sample conduction delay probability density

function (PDF) was estimated from the impulse response

shown in the top middle plot of Fig. 3. The absolute value of

the impulse response was taken, and its range restricted

between 0 and 10 ms. The resulting plot was normalized to an

area of one (Fig. 7, top left), as required by a PDF. The peak of

this PDF indicates the mean conduction delay. However, the

prevalence of large probabilities near zero time delay is not

physiologic. Each discrete conduction delay along the

time axis of this PDF maps to the relative conduction

speed PDF via the equation: ‘‘speed = distance/delay’’,

Fig. 6 Delay absolute

difference between cross-

correlation approach and the

peak of the impulse response

obtained from direct model

(top) and indirect model

(bottom) versus pseudo-inverse

tolerance (left) and low-pass

filter cutoff frequency (right).
Each result is the average of 72

test trials (36 subjects 9 2 test

trials/subject). Scenarios 1–7

denote results for distinct

selections of p1, p2, p1_Extract

and p2_Extract, as enumerated in

Table 1. Arrows indicate

locations of optimal tolerance/

low-pass cutoff frequency
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where ‘‘distance’’ is the inter-electrode distance of 10 mm

and ‘‘delay’’ is the time delay (s). Each conduction delay

value was mapped to its corresponding conduction speed, the

speed axis was limited between 0 and 10 m/s and the resulting

density area normalized to one (Fig. 7, top right). The prev-

alence of large probabilities at unrealistically high speeds (top

right plot) is due to the high probability of low conduction

delays (top left plot).

4 Discussion

This work investigated signal processing methods for esti-

mating the impulse response between upstream and down-

stream EMG recordings. We found that the pseudo-inverse

and post hoc low-pass filtering approaches both smooth the

impulse response estimate in a nearly identical fashion. Too

little smoothing produces impulse responses with erratic

high-frequency content; too much smoothing obscures shape

discrimination. Quantitative evaluation of model perfor-

mance (Fig. 5) and comparison to ‘‘gold standard’’ estimates

of mean conduction delay (Fig. 6) argue that, for these data, a

pseudo-inverse tolerance value of *0.2 or a post hoc low-

pass filter cutoff frequency of *250 Hz is optimal and

produces strong results for these measures. As discussed

further below, however, the impulse responses incorrectly

contained substantive power at very low time delays.

Cross-correlation performance was quite sensitive to the

time duration used to estimate the impulse response. For

example, scenarios 2 and 6 differ only via parameter

p1_Extract, which varies by only 1 ms. Yet, Fig. 5 shows

substantial differences (*0.6) in their actual-to-estimated

correlation. On the contrary, mean delay difference per-

formance was quite similar for all scenarios (Fig. 6) except

for scenario 7, which performed much poorer. This sce-

nario is the only one that excludes ‘‘system anticipation’’,

supporting the conclusion that it is needed to capture sys-

tem dynamics [16]. The best performance across the three

metrics was achieved by scenarios 5 and 6, which utilize

very different signal ranges. Further, systematic, investi-

gation into these sensitivities is appropriate.

The solution method of Hunter et al. [17] is reproduced

herein as our indirect method, with either the smallest

pseudo-inverse tolerance or highest low-pass filter cutoff

(our scenario 7 should be excluded from comparison, since

it does not include system anticipation). Figure 5 shows

that the method of Hunter et al. provides an average cross-

correlation that is indistinguishable from that of the best

regularized estimate. However, Fig. 6 shows that the

method of Hunter et al. is improved by our regularization

approaches when considering average delay error. The

mean absolute delay difference using the technique of

Hunter et al. is 0.1–0.2 ms, compared to the best regular-

ized value of 0.02 ms. The regularized methods can tune

the degree of smoothing applied to the impulse response

estimate.

While these regularization methods clearly improved

the match between the impulse response-based mean

Fig. 7 Top estimated

conduction delay probability

density function (PDF) (left)
and conduction speed PDF

(right) for data corresponding to

top middle plot of Fig. 3,

10-mm inter-electrode spacing.

The impulse response used to

form these estimates used the

direct solution technique with

pseudo-inverse tolerance value

0.2. Subject GA01, p1 = 20 ms,

p2 = 20 ms, p1_Extract = 10 ms

and p2_Extract = 5 ms. The

conduction delay PDF is formed

from the impulse response over

the time range from 0 to 10 ms.

Conduction speed PDF is

formed from the conduction

delay PDF. Bottom
corresponding plots with 5 mm

inter-electrode spacing

Med Biol Eng Comput (2013) 51:757–768 765

123



conduction delay and that found via traditional cross-cor-

relation, the top middle panel of Figs. 3, and 7 shows a

serious limitation in producing conduction delay distribu-

tion estimates from these data—our impulse function

estimates incorrectly included substantial signal power at

very low and at negative times, leading to high probabili-

ties of overly short conduction delays. Unrealistic distri-

bution estimates resulted. The dominant peak of the

impulse response in Fig. 3 has a width of *4 ms, centered

at *2 ms. The system identification requires an adequate

amount of smoothing, else the peak is difficult to reliably

distinguish—but smoothing spreads the peak. This con-

straint may be a fundamental limitation imposed by using

such a small inter-electrode distance (10 mm). To assess

this hypothesis, recall that our experimental protocol also

collected upstream and downstream EMG with 5 mm

inter-electrode spacing. The bottom plots in Fig. 7 show

the delay and speed PDF estimates from the same trial,

using the corresponding 5-mm inter-electrode data. The

5-mm data demonstrate a larger proportion of conduction

delay probabilities near zero delay. Therefore, the most

appropriate solution may be to use a larger inter-electrode

spacing. At a conduction velocity of 3–5 m/s, each addi-

tional inter-electrode spacing of 5 mm delays the impulse

response peak by 1–1.67 ms. Hence, a minimum inter-

electrode spacing of 15–20 mm may be required to delay

the main peak away from zero time, facilitating delay

distribution estimation.

While this method of impulse response estimation relies

on simple recordings from two conventional bipolar elec-

trodes, the underlying analytic model of Williams [30]

assumes that the EMG due to individual MUs sum to

produce the interference pattern, that the action potential

shape of each MU is identical and that each MU action

potential arrives at the ‘‘downstream’’ electrode site after a

pure delay. In reality, the action potentials of distinct MUs

vary in shape. Hence, our delay distribution is weighted

more heavily by larger amplitude MUs. The physical

alignment of muscle fibers is not perfectly straight, infer-

ring that the action potential shape recorded from the

upstream electrode is not identical to that recorded down-

stream. Bipolar recordings can include substantial com-

mon-mode components which skew the delay distribution

towards a physiologically impossible delay of zero time. In

our application, common-mode components could have

contributed to the substantial impulse response power near

zero time delay. This issue might be minimized by double-

difference electrodes [3, 12, 23, 27]. In addition, although

our signal model (see Fig. 1) includes noise in both

recorded signals, our impulse response estimation methods

do not explicitly describe the influence of these noises. For

example, Eq. 2 shows that the input noise is propagated to

the output via convolution with the impulse response.

Alternative system identification techniques might be more

effective in attenuating the influence of these specific noise

sources based on their statistical characterizations.

Another result of the Williams [30] model and its

assumptions is that the impulse response is expected to

exist only over times that correspond to viable delays and

be non-negative in value at all times. In practice, we have

already noted the problem of impulse response signal

power near zero time and at negative times. In our delay

distribution estimates (Fig. 7), we ignored such out-of-

range times. But doing so clearly violates the model

assumptions. Further, Figs. 3 and 4 show substantive time

durations during which the impulse response values are

negative. Such values present a model conflict. We fol-

lowed the approach of Hunter et al. [17] by taking the

absolute value of the impulse response function when

producing the delay distribution. But, these adjustments

may have significantly distorted the delay distribution

estimates. It seems reasonable to first resolve the issue of

too much impulse response signal power near/before zero

time, which might also impact the prevalence of negative-

valued time regions. Thereafter, an approach to resolve

negative-valued impulse response values might be to

parameterize the impulse response time-series itself via

non-negative functions (e.g., Gaussian functions truncated

in time). A different parameter estimation problem would

result, likely with other strengths and weaknesses.

A number of the above issues might be examined in the

future with simulation models, based on the interference

signal model shown in Fig. 1 and/or the underlying phys-

iology of motor units (e.g., [30]). With simulation models,

the ‘‘true’’ system is known, permitting direct measures of

performance. Another advantage of such models is that

individual issues that might confound delay distribution

estimation—e.g., common-mode signals, recording noise,

electrode spacing/alignment, system identification meth-

ods—can be individually and precisely controlled. Addi-

tionally, the role of certain assumptions of the models

could be studied.

Westwick and Kearney [29] applied a singular-value-

decomposition-based pseudo-inverse approach to solve for

the impulse response based on the model and ‘‘indirect’’

solution of Hunter et al. [17]. Their approach evaluated a

single pseudo-inverse tolerance cutoff, but adapted that

cutoff to the noise characteristics of each individual trial

(greater than 95 % probability that retained singular values

represented signal rather than noise). This approach

explicitly trades off random/variance error (found when

retaining too many singular values) versus bias error

(generated as singular values are discarded from the

inverse). The technique also produces trial-by-trial confi-

dence bounds on the impulse response estimates. They

tested their method in simulation (model shown in Fig. 1
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with the input noise omitted) and in an example application

estimating joint dynamics about the ankle. They also

evaluated post hoc smoothing of the unregularized impulse

response, testing a single cutoff frequency. Their simula-

tion results clearly demonstrate the phenomenon of high-

frequency noise in the unregularized impulse response

estimate, as we have found using our EMG data. Similarly,

they also found a high degree of agreement between the

actual and model-estimated output signal, regardless of the

impulse response estimation method. Their approach pro-

vided far better estimates of the known ‘‘true’’ impulse

response function as compared to the method of Hunter

et al. and somewhat better performance (2–3 %) than their

post hoc smoother. Their method of estimating the impulse

response is attractive, since it directly accounts for noise by

adjusting the pseudo-inverse tolerance to the noise char-

acteristics of each trial, which can vary. A disadvantage is

that the noise characteristics of a signal are not always well

estimated from a single recording. In the future, it might be

useful to apply their method to the EMG delay problem and

study the influence of the pseudo-inverse tolerance selec-

tion. Is performance improved by varying the tolerance

cutoff based on the noise statistics of each trial, or is a more

stable cutoff selection (averaged across the subject popu-

lation, as in our investigation) more advantageous? Note

that trial-by-trial methods for selection of an appropriate

post hoc low-pass filter selection might similarly be con-

sidered. The coherence function between the upstream and

downstream EMG could be used as a guide [17].

In summary, we analyzed the surface EMG from pairs

of bipolar electrodes placed on the tibialis anterior of 36

subjects, using an inter-electrode distance of 10 mm. We

modeled the impulse response between the electrodes with

a FIR structure using direct and indirect model-fitting

methods and two techniques to regularize the least squares

fit (pseudo-inverse and post hoc low-pass filtering). Both

regularization methods smoothed the impulse response in a

similar manner. Inadequate smoothing led to high-fre-

quency interference while excessive smoothing impeded

shape discrimination. Optimal smoothing occurred with a

pseudo-inverse tolerance of *0.2 or a post hoc low-pass

filter cutoff frequency of *250 Hz. The resulting impulse

response was evaluated by correlating the actual down-

stream EMG with that found by filtering the upstream

EMG through the impulse response model, giving an

average correlation coefficient of 0.70. Additionally, mean

conduction delay, taken as the time of the peak impulse

response, was compared to the traditional approach of

cross-correlating the upstream and downstream EMG sig-

nals. The average error was 0.02 ms. These results show

excellent model performance. Nonetheless, the resulting

impulse responses incorrectly included substantive power

at very low and negative time delays, causing delay

distribution estimates to exhibit high probabilities at very

short conduction delays. Unrealistic distribution estimates

resulted. Thus, none of the impulse response estimation

methods studied can be considered successful for use in

forming delay distribution estimates with these data. Larger

inter-electrode spacing (15–20 mm) may be required to

alleviate this fundamental limitation.
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