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Electromyogram Amplitude Estimation with
Adaptive Smoothing Window Length

Edward A. Clancy,Senior Member, IEEE

Abstract—Typical electromyogram (EMG) amplitude estima- diminished with a short smoothing window. For fixed-length
tors use a fixed window length for smoothing the amplitude smoothers, an appropriate balance needs to be established.
estimate. When the EMG amplitude is dynamic, previous re- ,man et al. [3] (this work is generally attributed to be the
search suggests that varying the smoothing length as a function _. . . . .
of time may improve amplitude estimation. This paper develops first continuous EMG amplltuQe eSt'mator) approached th'.s
optimal time-varying selection of the smoothing window length Problem by evaluating three different time constants for their
using a stochastic model of the EMG signal. Optimal selection is analog RC low-pass filter. They qualitatively selected the best
a function of the EMG amplitude and its derivatives. Simulation time constant for their app”cation_ Hershler and Milner [14]

studies, in which EMG amplitude was changed randomly, found P . - L
that the “best” adaptive filter performed as well as the “best” developed an optimality criterion for quantitative empirical

fixed-length filter. Experimental studies found the advantages of €valuation of optimal window length for use in human loco-
the adaptive processor to be situation dependent. Subjects usedmotion studies. They found that the optimal window length
real-time EMG amplitude estimates to track a randomly-moving varied with the walking speed. A model-based approach to
target. Ff’_erhda||os d;Jhe to task difficulty, nobdiffer%nce; in ?r:jap:tive tselecting the best time constant was taken by Miyahal.
versus fixed-len rocessors were observed when the targe i : : 4 .
speed was fast. \g/]Vhez the target speed was slow, the experimegta[ﬁ] in developing a procedl,_lre to obtain the optimal time
results were consistent with the simulation predictions. When the constant for a full-wave rectified detector. They showed that
target moved between two constant levels, the adaptive processorthe optimal time constant could be determined by minimizing
responded rapidly to the target level transitions and had low a nonlinear equation related to the autocorrelation coefficient
variance while the target dwelled on a level. function of muscle contraction level. Xiong and Shwedyk [16]
Index Terms—Biomedical signal processing, biological system described a stochastic model of the EMG and found that a
modeling, electromyogram (EMG) amplitude estimation, elec- noncausal (i.e., midpoint moving average) smoothing window

tromyography, modeling, myoelectric signal processing. worked best for nonstationary EMG amplitude estimates.
Selection of the optimum window size depended on the
|. INTRODUCTION characteristics of the EMG amplitude. They studied ramp,

trapezoidal and sinusoidal changes in EMG amplitude. In

T HE amplitude of the surface EMG is frequently used toeneral, numerical methods were required to determine the

control myoelectric prostheses, as a measure of muscutsr . . . .

o . . optimum window length. An analytic solution was available
effort, and as an indicator of muscle force. Early mves'ugatolr the EMG amplitude changed in a ramp fashion
of EMG amplitude estimation methods studied the type of non- Rather than find one fixed-length window size which is

linear detector which should be applied to the signal [1]-[5 intimal for an entire application, a better EMG amplitude

This work led to analog-rectify-and-smooth processing or root? . t b hieved if th thi indow lenath i
mean-square (RMS) processing as the standard techni(;1uese§ﬂma € may be achieved It the smoothing window fength 1S
apted to the local characteristics of the amplitude signal. In

EMG amplitude estimation. Whitening individual EMG signaP ) . . ; !
channels [1], [2], [6]-[10], and combining multiple signa eneral, when the amplitude is changing rgpldly,_the Wlndpw
channels into a single EMG amplitude estimate [1], [2], [9 ,eingtlh sEouId. l:()je shlort, x\/her? tlr:je bamlphtudeJ IS e;hargmg
[11]-[13] have been shown to provide a higher fidelity EM owly, the ‘window _engt shou e ‘long. Jeraed al.

17] implemented a simple adaptive window length estimator,

amplitude estimator. ) , ey
When muscle contraction is dynamic, i.e., when either e a nonlinear analog circuit, into the EMG control of the
gaerty Mutual Boston Elbow. D’Alessio [7], [18] argued

exerted force, or muscle length, or both change during t% h ically. d X . £ 1h ind | h
contraction, selection of an appropriate smoothing windo at, theoretically, dynamic tuning of the window lengt

length has been a topic of study. It is important to study thﬁhc’UId k_)e a function of the_ EMG e_tmpll_tude and its first
condition since most muscle contraction is dynamic. In th%"o, dgrlvatlves. However', .smce e’stlmayon. of the second
case, variance (random) errors in the EMG amplitude estim&g/ivative seemed too difficult, D'Alessio implemented a

are diminished with a long smoothing window: however, biatgchnlque.based on the EMG amp_lltude and its fII’S.t derivative.
(deterministic) errors in tracking the signal of interest ar&N€ technique was evaluated on simulated EMG signals. Meek
and Fetherston [19] and Park and Meek [20] (see also [21] and
Manuscript received April 8, 1998; revised November 3, 1998. [22]) described adaptive techniques also based on the EMG
The author is with the Liberty Mutual Research Center for Safetymplitude and its first derivative. Their work quantitatively
and Health 71 Frankland Road, Hopkinton, MA 01748 USA (e-maily, o) ated processor performance. When contraction level was
ted.clancy@alum.wpi.edu). P p :
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provided an improvement over certain fixed-length smoothiragnplitude each instant in time. To do so, bias and variance will
window processors. Their work has been incorporated into thach be written as a function of the smoothing window length,
EMG control scheme of the Utah arm [23]. As an alternativend then the MSE minimized.

to these methods, Evaret al. [24] proposed an amplitude

estimation scheme using a multiplicative (signal multiplied bx. Variance Component of the Error

noise) mathematical model of EMG. Evaes al. proposed

o . o . For the variance component, define the signal to noise ratio
a logarithmic transformation of the myoelectric signal. ThIE

NR) of EMG amplitude estimates from a constant-angle,
nstant-force, nonfatiguing contraction trial as the mean value
f the amplitude estimaté(¢) divided by its standard devia-
tion. Assume the standard functiohaitochastic model [1],
g?—[S], [11], [18] in which the EMGsignal is considered as
FESero—mean, band-limited, wide sense stationary, correlation-

transformation yields an additive (signal plus noise) represe
tation of the EMG. They then applied the theory of Kalmara
filters to estimate the amplitude of the transformed signal.

Taken together, these results suggest a role for adap
window length processing in EMG amplitude estimatio

These techniques could be used to reduce the error in E odic, random process multiplied by the EM@nplitude

amplitude estimates used in applications such as prosthellhe EMG signal is frequently considered to be Gaussian

control, analysis of gait, motion control studies, etc. Howeveélstributed. For these conditions, Hogan and Mann [1], [2]

the techniques for adaptive smoothing window length Proces- st-Amantet al. [26] showed that the SNR is closely
sors are not completely developed, and the relative mer,

of each proposed technique are not known. A method fétﬁprommated as
selecting an appropriate technique for a given application—or \/2 "N -g(B,, L, D)
SNR: 59 )

perhaps identifying a globally “optimal” technique—is not 7
available. Optimal and user independent techniques could also
lead to increased standardization of EMG amplitude estimatigiere V is the window length in sampleg, is the sampling
techniques among different labs. Further, quantitative chardgquency (in Hertz) and is a constant determined by,, L
terization of the improvement due to adaptive smoothing ihdD. B, is thestatistical bandwidtf{related to the equivalent
needed over a wider range of EMG applications as well asnamber of independent samples in a signal [27]) of the
wider range of EMG processing schemes. EMG data (in Hertz).L is the number of EMG channels

This report describes the design and characterization of @Rich are combined to form the amplitude estimate. (Each
adaptive window length processor. First, an adaptive windastiannel is assumed to have the same statistical bandwidth.)
length processor is mathematically derived. This model utilizgignotes the detector type—either mean-absolute-value (MAV)
theoretical and experimental results from previous studigs RMS. (For example, using RMS processing and assuming
of stationary EMG processing, with extensions relevant the standard Gaussian model for the EMG, thea 2B, - L.)
dynamic amplitude estimation. The model considers both ther these conditions, the mean value of the amplitude estimate
causal and noncausal processing situations. Second, the pewqual to the true amplitude valuét), permitting the SNR
technique is studied using a stochastic simulation model ©f be written as SNR 3(t)/o(t). Thus
the EMG signal. The simulation evaluates the expected per- y
formance of the adaptive algorithms. Third, an experimental 2(4) = f-s°(1) )

a .

evaluation of the technique is described. Constant-angle, force- 2-N-g(Bs, L, D)
varying (dynamic), nonfatiguing contractions were studieﬁ;lhiS variance changes, with respect¥g as do(t)/dN —
while subjects performed a real-time tracking task. A prelirrr_f - s2(8)/(2 - N2 ~g(’B L, D))
inary report of this work has appeared in [25]. = '

B. Bias Component of the Error

) ) For the bias component, consider the error that occurs
The mean square error (MSE) in the EMG amplitudg no variance error exists (i.e., the EMGignal consists
estimate can be written as the sum of two componentsiodly of the EMG amplitudg, but the EMG amplitude is
variance component®(t) (due to random fluctuations in thegynamically changing. In particular, let the EMG amplitude

EMG amplitude estimate about the true amplitude) and a bigsSthe neighborhood of samptebe modeled as the quadratic
componend(¢) (due to errors in tracking true changes in thgolynomial

amplitude) [7], [18], [20]

Il. DEVELOPMENT OF THEADAPTIVE ESTIMATOR

s(t) = a, + a1t + ast? 3
MSE(t) = o*(t) 4 b*(t) (1)

whereaq,, a; andas are constants, ands the discrete sample
wheret is the discrete sample index. Writing the MSE in thindex. A polynomial model was selected for its simplicity.
fashion allows each component to be evaluated separat@élg. will be shown subsequently, each polynomial degree
In general, variance error is reduced with a large duratieequires the computation of an additional derivative of EMG
smoothing window and bias error is reduced with a small damplitude. Prior research [7] suggests that derivatives of EMG
ration smoothing window. For improved amplitude estimation 1The term “functional” signifies that the model is based on the observed

(i'e" minimum MSE)' therefore, the smoothing \{vindow I('3"’]gtggnal phenomenon, as opposed to a model which describes the underlying
should be dynamically tuned to the characteristics of the EMgBysiological process.



CLANCY: EMG AMPLITUDE ESTIMATION WITH ADAPTIVE SMOOTHING WINDOW LENGTH 719

amplitude are quite noisy, particularly as the derivative ordan exhaustive numerical search was used instead. To find an
increases. Thus, the polynomial model was limited to secongtimum &N, MSE{) was computed for all possible window
degree (corresponding to first and second derivatives of EM&gths corresponding to a duration ranging from 50-1000
amplitude). With this model, the amplitude value at samphas, and the length corresponding to the minimum error was

t—k, is selected.
ks(t) — k? _ -
ot — K) = s(t) — s(t) L (4) D MSE—Noncausal Processing
J J For a noncausal window centered on samplge., h =

wheres(t) = ay f+2a2 ft is the derivative ok(t) with respect (N —1)/2] the bias becomes
to time (expressed in units of EMG amplitude per second [28])
andi(t) = 2as f? is the second derivative with respect to time.

If an MAV detector is used_ to form the amplitude estimate Squaring this bias and differentiating with respectogives
at samplet from N EMG signal samples, then

S(8) (N? —
b(t) | n=(v-1)/2 = %Fl) (7)

db2(t) 5(t)
No1 IN |y inssy ~ 570p3 2N 12N
A . . B=(N+1)/2
() =5 D Imlt+h =) 5) £ 2 )

© 14454

wherem(t) are the EMG signal samples andis an integer The derivative of MSE [see (1)], with respect 1§, then
offset which controls the causality of the estimator. Setfing hecomes

to zero gives a causal estimator. Setting (N — 1)/2, for N AMSE(t) (1)

odd, gives a noncausal window centered at samptiowever, AN = 124/ (N2 —1)N

since the bias is the error that occurs if the stochastic portion h=(N+1)/2

of the EMG signal is removed, the EMG signalt + h — 1) B fs3(t)

in (5) can be replaced by the true EMG amplitude+ h — 7) 2N2g(B;, L, D)’

(which is always nonnegative), to give Setting this derivative to zero and solving faf provides the
N1 optimum value forN. To do so, the following polynomial in

5(t) = % Z[s(tJrh — 9] 6 & must be solved: .

=0 NO _ N3 — 721757 (t)

~ 9(Bs, L, D)s2(t)’

Substituting the relation in (4) into (6) and simplifying gives . .
g ) ©) pifying g If N is not small,N° — N3 = N® (for N > 10, the error in

L\ N—1 this approximation is less than 1% of the true value), giving
() = 1 Ns(t) + N—hé(t) — ﬂ Z 1 1/5 1/5
N f f o N(t)noncausal, quadratic ., |: 72 :| ’ . |:82(t):|
_ r_ o Bs, L, D 52(t
wiest i ¥, i 3 ! A B DI FOL g
- 1 5 1 .
2f2 f2 — 2f2 — Fig. 1 plots this result.

The remaining three sums can be simplified [29] to give E. Linear Model of EMG Amplitude Variation
Because (3) models the EMG amplitude in the neighborhood

: 2

b(t) = ﬁg(t) — @(N 1)+ h_2§(t) of samplet as a quadratic polynomial, adaptive estimators with
f 2f ) 2f second derivative terms result [see (8)]. In practice, limiting

B %Jé(t)(N 14 s(t)2 (2N% — 3N + 1) the solutipn to first derivat.ive.terms may be req'uired singe

2f 12f computation of second derivatives may be too noisy [7]. This

) _ . restriction can be accomplished by using a linear model of
where the bias error has been defined@s = s(t) — s(t). EMG amplitude in the neighborhood of sampigi.e., by
settings(t) = 0in (4). For causal processing, this linear model

C. MSE—Causal Processing gives adMSE(t)/dN of
For the causal case (i.éh,= 0), the bias becomes AMSE(t) N§2(t)  $2(¢)
T AN T2 T o2
oy (V=D smEN - AN ico,tinear  2f 2f
®)lh=0 = i 6f = 5(t)|- I8t

2. N? 'g(st L7 D)
If MSE(¢) is now written, the optimal window length can theoSetting this derivative to zero and solving faF gives
retically be found by differentiating with respect 10, setting 3 )
the derivative to zero, and then solving f&. Unfortunately, N3 _ N2 f 8 (t).
this approach leads to a complex nonlinear equation. Hence, 9(Bs, L, D) $2(t)
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Fig. 1. Theoretical optimal smoothing window lengths. Dotted graph is for the noncausal quadratic model described by (8). For this plaixishe

is the ratio of EMG amplitude to EMG amplitude second derivative magnitude (in units of seconds squared). Dot-dash graph is for the causal linear
model described by (9). For this plot, th€-axis is the ratio of EMG amplitude to EMG amplitude first derivative magnitude (in units of seconds).

For both graphs, the constapt is set to 500/s.

For N large, N3 — N2 = N3, (for N > 100, the error in this processing stages were used to estimate the EMG amplitude
approximation is less than 1% of the true value), giving  and its derivatives. Derivatives were estimated by numerically
1/3 differentiating the rectified EMG signal, as detailed below.
N(t)causal, linear 1 s3(t) 9 The adaptive window lengttv- was then selected for each
f = g'/3(B,, L, D). $2(¢) G sample index. For causal processing, the optimdmis
rounded to the nearest integer value, for noncausal centered
Fig. 1 plots this result. window processing, the optimut¥ is rounded to the nearest
For noncausal processing (window centered at sartjple odd integer value. In the second pass, the adapivevas
the bias error with this model is zero [substitité) = 0 jmplemented to produce the adaptive amplitude estimate.

into (7)]. In other words, this model fails to capture angimulation was used to investigate the effectiveness of this
bias error component. Hence, no adaptive estimator resu{{®-pass method.

from this formulation. To coerce a solution, the above causal
linear result for the optimum window selection (9) was useg@y sjmulation Methods

combined with noncausal estimation of the EMG amplitude . .
and its derivative. Initially, the expected performance of the adaptive window

length algorithm versus fixed length algorithms was investi-
gated. Each condition was investigated with one simulation,
196 s in duration. (Two additional initial and final seconds of
simulation data were discarded so as to avoid transients at the
end points.) In an actual experimental situation, the window
Implementation of any of these adaptive processors presilgngth would be constrained to a minimum and maximum
poses the true value of the EMG amplitude and its derivativeglue so that it would not fluctuate without bound. Thus, in
In practice, these values are not known and must be estimatieid simulation work, the minimum and maximum window
from the EMG signal. Hence, the adaptive algorithm wadurations were set to 50 and 1000 ms, respectively. Adaptive
implemented in two passes. In the first pass, fixed-lengtistimators were evaluated twice: first, with the derivatives

I1l. SIMULATION STUDY

A. Two-Pass Adaptive Window Technique
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TABLE |
PREFERREDPOLYNOMIAL FILTER SMOOTHING LENGTH (IN SECONDY FOR EMG AMPLITUDE DERIVATIVE ESTIMATION. RESULTS ARE GIVEN FOR
FIRST AND SECOND DERIVATIVES USING CAUSAL AND NONCAUSAL FILTERS. “—" D ENOTES THAT NO PREFERREDLENGTH WAS FOUND
Estimated Tracking Bandwidth
Derivative (0.1 Hz | 0.25 Hz| 0.5 Uz 1 Hz 2 Hz 4 Hz
First Derivative; 1.625 1.125 0.5 0.375 0.25 —
Causal
First Derivative; 3.5 2 1 0.5 0.25 0.125
Non-Causal
Sccond Derivative; 2 1.875 1.25 0.625 —
Causal
Second Derivative; 4 2.5 1.25 0.75 0.5 0.25
Non-Causal

known (to establish “ideal” technique performance) and setwice, to provide reference first- and second-derivative signals.
ond, with the derivatives estimated from the EMG signdDerivative estimates, derived from the simulated EMG signal
(as would be done with actual data). Evaluation consist&édkere compared to these reference signals. All simulations were
of computing the mean absolute error between the simulageerformed using MATLAB (version 5.2, The MathWorks,
EMG amplitudeand that estimated from the simulated EM@Natick, MA) on an IBM-compatible PC, using a simulated
signal The preferred length polynomial differentiator was usesempling frequency of 1024 Hz. The constantwas set
for each target bandwidth. to 500/s (see [26, Table II]), roughly corresponding to the
Next, the rate at which adaptation was allowed to take plaggpropriate value for the four-channel, MAV processor used
was studied to determine its influence on adaptive procesgbithe experimental work.
performance. In all of the previous simulation conditions, During initial investigation with the model, smoothed differ-
no bound was placed on the sample-to-sample change€Rfing filters were used to estimate EMiEnplitude deriva-
the window length (except that the duration remained withf#veS from the EMGsignal Comparison of these estimated
50-1000 ms). In practice, however, it is common to limit the€rivatives to the reference derivatives quickly showed these
rate of adaptation in order to achieve a more stable adaptRHmates to be inadequate. Thus, polynomial derivative filters
process. Limiting the rate of change is also consistent with tfdS0 known as Savitsky-Golay smoothing filters [28]) of
limits by which the physiology allows EMG amplitude (anodegrees 1-5 were |r_1vest|_gated. These filters were designed
its derivatives) to change. To limit the rate of change, ead§ing Software described in [28] and then loaded into MAT-
new optimum window length was successively compared B. S_|mulated EMG amplitude sequences with statistical
the immediate past window length. If the new window lengtR2ndwidths 0f 0.1, 0.25, 0.5, 1, 2 and 4 Hz were evaluated. The

changed more than the limit amount, the new window IengmImber of samples used in the polynomial filter was varied
’ yer a range representing 15.6 ms-2 s for causal filtering

was set to the value corresponding to the maximum chan§ — .
) . . . nd 31.3 ms—4 s for noncausal filtering. Each condition was
This nonlinear scheme was performed on the optimum window

lengths prior to rounding them off to integer values: thu|nvest|gated by averaging the results from 40 simulations, each

the limit value could be less than the duration of one sampg s in duration.

period. Using this scheme, the adaptive window length sim-
ulations were rerun (the first-pass smoothing window length Simulation Results
was fixed as 250 ms) with the change in the window length £ e gerivative filters, lower errors were consistently

limited to various values over the range of 0.01-100 ms pgyfng using noncausal (centered window) filters as compared
iteration. , . , . to causal filters. All errors grew as the tracking bandwidth
For each simulation, the EMGignal was simulated by icreased. For noncausal filters, polynomial degree had little
passing uncorrelated, unit-variance, Laplacian random noseng influence on derivative errors. For causal filters, a degree
through a low-pass filter (256 Hz) and then multiplying thigne polynomial was best for the first derivative and a degree
signal by the simulated EM@mplitude The filtered Laplacian yq polynomial was best for the second derivative. Hence,
process provided an EMG signal whose density was mojg further description of results refers to these polynomial
peaked than a Gaussian process, consistent with experimegégjrees. It was also found that the number of samples over
observations [30], [31]. EMGamplitude was designed to which the polynomial filter should be fit varied with the
change as a band-limited random process with uniform densif¢get bandwidth. Table | lists the duration of the polynomial
ranging from simulated relaxation to simulated 50% maximugmoothing filter which gave the best performance for the
voluntary EMG (MVE). (MVE refers to the EMG ampli- various target bandwidths and derivatives. Note that second
tude level corresponding to MVC, or “maximum voluntaryerivatives require a longer polynomial smoothing filter du-
contraction.” This level is determined from a constant-angleation than first derivatives, consistent with the results of
constant-force, nonfatiguing contraction and therefore shouBlakas and Baltzopoulos [32]. Table Il gives the mean absolute
not be a function of the EMG amplitude processing techniquealue errors using the best filter durations for causal/noncausal
The simulated EMG amplitude was numerically differentiatefirst/second derivative filters. Table Il also lists the “default
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TABLE I
MAV ERRORS INEMG AMPLITUDE DERIVATIVE ESTIMATES. DERIVATIVES WERE ESTIMATED USING PoLYNOMIAL FILTERS. DEFAULT ERROR IS THE ERROR THAT
WouLb OcCUR IF THE DERIVATIVE VALUE AT ALL TIMES IS SET TO THE MEAN VALUE OF THE DERIVATIVE. FIRST DERIVATIVE ERRORS IN
UNITS OF NORMALIZED EMG AMPLITUDE/S, SECOND DERIVATIVE ERRORS IN UNITS OF NORMALIZED EMG AMPLITUDE/S?

First Derivatives Second Derivatives

Target Causal Non-Causal | Default Causal Non-Causal | Default

Bandwidth Filter Filter Error Filter Filter Error

(Hz) Error Error Error Error

0.1 0.022 0.007 0.048 0.045 0.010 0.029

0.25 0.068 0.022 0.123 0.140 0.055 0.169

0.5 0.154 0.051 0.242 0.625 0.258 0.672

1 0.365 0.129 0.473 2.661 1.112 2.705

2 0.852 0.307 0.933 =10 5.100 10.715

4 1.800 0.808 1.877 =32 21.823 42.624

TABLE I
MAV SIMULATION ERRORS(IN PERCENT MVE) FOR CAUSAL PROCESSING RESULTS ARE GIVEN FOR ADAPTIVE (Top) AND FIXep (BoTTom)
LENGTH PROCESSING “—" D ENOTES THAT THE SIMULATION WAS NOT EVALUATED SINCE NO UsSABLE DERIVATIVE ALGORITHM EXISTED

FOR THE CONDITION. BOLDED CELLS DENOTE THE OPTIMUM FIXED-LENGTH PROCESSOR FOREACH RESPECTIVE BANDWIDTH

CAUSAL PROCESSING

Smoothing Tracking Bandwidth
Window .1 Hz | .25 Hz| .5 Hz 1 Hz 2 Hz 4 Hz
Adaptive, Lincar, 1.22 1.74 2.85 3.58 4.60 6.53
Derivative Known

Adaptive, Quadratic, 1.23 .62 2.46 3.02 3.90 5.43

Derivative Known

Adaptive, Linear, 1.36 1.95 2.76 3.68 4.35 —

Derivative Estimated

Adaptive, Quadratic, 1.66 2.19 3.31 0.07 — —

Derivative Estimated

Fixed, 50 ms 3.45 3.37 4.19 4.00 4.42 5.71
100 ms 2.47 2.47 3.19 3.39 4.61 7.57
150 ms 2.02 2.15 2.92 3.66 5.67 9.65
200 ms 1.77 2.02 2.97 4.21 6.84 10.93
250 ms 1.63 2.01 3.17 4.86 7.94 11.44
300 ms 1.53 2.06 3.44 5.54 8.89 11.52
350 ms 1.46 2.16 3.76 6.23 9.65 11.48
400 ms 1.42 2.29 4.12 6.91 10.22 11.47
450 ms 1.41 2.44 4.48 7.54 10.61 11.51
500 ms 1.40 2.59 4.85 8.14 10.85 11.56
550 ms 1.42 2.76 5.22 8.68 10.98 11.59
600 ms 1.45 2.93 5.59 9.18 11.04 11.63
650 ms 1.48 3.11 5.96 9.64 11.06 11.67
700 ms 1.52 3.30 6.32 10.02 11.08 11.71
750 ms 1.57 3.48 6.608 10.36 11.11 11.72
800 ms 1.62 3.67 7.02 10.64 11.14 11.72
850 ms 1.68 3.80 7.35 10.88 11.17 11.73
900 ms 1.74 4.06 7.68 11.07 11.19 11.75
950 ms 1.80 4.24 7.99 11.21 11.23 11.77
1000 ms 1.86 4.43 8.29 11.33 11.27 11.78

error,” which is the error that would occur if the derivativeahe adaptive algorithm (with estimated derivatives) performs
value is always arbitrarily assigned its mean value over tiladout as well as théestfixed-length algorithm and better
entire sequence. This mean value was indistinguishable frépan all other fixed-length algorithms. For noncausal (centered
zero for each of these simulations. Note that certain caugéndow) processing, the second derivative adaptive algorithm
derivative filtering conditions at high bandwidths produceBerformed better than the first derivative technique (compare
errors near the default error level (Table 1) and had n®Wws three and four in Table 1V). This performance level
identifiable optimum filter length (Table ). was again similar to the bes_t fixed window Ie.ngth processor
Tables Ill and IV give the results for the adaptive windov@"d better than all other fixed-length algorithms. Finally,
length algorithm versus fixed length algorithms simulation¥/nen studying the adgptanon rate, res_ults for "’_‘” bandwidths
Note that the adaptive window length processors were owed that the error in the EMG amplitude estimate was not
sensitive to the method of estimating the first-pass EME luenced by the limit adaptation rate value.
amplitude; hence, results are listed with a 250 ms smoothing
window used on the first pass. The results show that for causal IV. EXPERIMENTAL STUDY
processing, the first derivative adaptive algorithm performs The knowledge developed from these simulations was
better than the second derivative technique (compare romsxt used to guide an experimental evaluation of the causal
three and four in Table Ill). For each target bandwidtrgdaptive estimator. Constant-angle, force-varying (dynamic),
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TABLE IV
MAV SIMULATION ERRORS(IN PERCENT MVE) FOR NONCAUSALPROCESSING RESULTSARE GIVEN FOR ADAPTIVE (TOP) AND FIXED (BoTTOM)
LENGTH PROCESSING BOLDED CELLS DENOTE THE OPTIMUM FIXED-LENGTH PROCESSOR FOREACH RESPECTIVE BANDWIDTH

NON-CAUSAL PROCESSING

Smoothing Tracking Bandwidth
Window .1 Hz | .25 Hz| .5 Hz 1 Hz 2 Hz 4 Hz
Adaptive, Lincar, 1.11 1.40 2.13 2.56 3.41 4.10
Denvative Known
Adaptive, Quadratic, 0.79 0.88 1.26 1.58 2.18 2.96
Derivative Known
Adaptive, Linear, 1.45 1.62 2.10 2.52 3.26 4.12
Derivative Estimated
Adaptive, Quadratic, 0.83 0.96 1.27 1.69 2.37 3.29
Derivative Estimated
Fixed, 50 ms 3.45 3.35 4.14 3.87 3.97 4.13
100 ms 2.45 2.39 2.95 2.74 2.87 3.29
150 ms 2.00 1.97 2.39 2.27 2.50 3.67
200 ms 1.74 1.71 2.07 2.02 2.48 4.67
250 ms 1.56 1.51 1.85 1.89 2.70 5.98
300 ms 1.43 1.38 1.70 1.86 3.07 7.22
350 ms 1.32 1.28 1.60 1.89 3.59 8.32
400 ms 1.23 1.20 1.53 1.99 4.19 9.16
450 ms 1.16 1.14 1.49 2.13 4.81 9.73
500 ms 1.10 1.09 1.47 2.32 5.47 10.11
550 ms 1.05 1.06 1.47 2.55 0.08 10.34
600 ms 1.00 1.03 1.48 2.82 6.68 10.48
650 ms 0.96 1.00 1.52 3.12 7.24 10.57
700 ms 0.93 0.99 1.57 3.42 7.71 10.63
750 ms 0.90 0.97 1.64 3.76 8.14 10.69
800 ms 0.87 0.96 1.71 4.09 8.50 10.75
850 ms 0.85 0.96 1.81 4.43 8.81 10.82
900 ms 0.83 0.96 1.91 4.78 9.06 10.88
950 ms 0.81 0.96 2.03 5.12 9.27 10.94
1000 ms 0.79 0.97 2.15 5.46 9.43 10.99

nonfatiguing contractions were studied in a tracking tas’
Only the first derivative adaptive processor was implement
since it gave results superior to the second derivative adapt
processor in the simulations.

A. Experimental Apparatus

Fig. 2 is a photograph of the experimental apparatus.
subject was seated in the firmly cushioned seat of a Biod
exercise machine (Biodex Medical Systems, Inc., Shirley, N®
and secured to the seat back rest via three quick release b
The subject’s right arm was oriented so that the upper ai
and forearm were in the plane parallel to the floor (should
abducted 99 from the anatomic position), the forearm was
oriented in the parasaggital plane, with the wrist in comple,
supination, and the angle between the upper arm and
forearm was 990. The subject’s right wrist, at the level of the
styloid process was fit into a cuff which was rigidly attached to

. . . . Fig. 2. Experimental apparatus as viewed from the rear. Subject is seated
the dynamometer of the B'Odex- The position and Qnentat'%ﬁ]d secured in the exercise machine. Subject’s right arm is rigidly cuffed to
of the dynamometer was fixed throughout the experiment. Tine dynamometer. Arrays of electrode-amplifiers are applied over the biceps

dynamometer provided a measure of constant-angle torc@ﬁ‘é_ triceps muscles. The Target Tracking PC, situated directly in front of the
ubject, displays the EMG amplitude difference generated by the subject and
generated about the elbow.

g . ) . the target.
Prior to electrode placement, the skin above the investigated

muscles was cleaned with an alcohol wipe and a small o

amount of electrode paste was applied. For each of tigged about the muscle midline. The two contacts of each
biceps (flexor) and triceps (extensor) muscles, an array @Jgctrode-amplifier were oriented along the long axis of the
four EMG electrode-amplifiers (Liberty Technology mode®rm (presumed direction of action potential conduction). The
MYO115, Hopkinton, MA) was placed in-line, side-by-sidegdistance between adjacent electrode-amplifiers was approxi-
transversely across the muscle, located approximately midwastely 1.75 cm. A single ground electrode was placed in the
between the elbow and the midpoint of the upper arm, clugicinity of the electrode-amplifiers. Each electrode-amplifier
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had a pair of 4 mm diameter, stainless steel, hemisphericaFor each experimental tracking trial, one triceps—biceps
contacts separated by a distance of 15 mm (center to centBIIG amplitude differencewas sent out the serial port (at
Each electrode-amplifier had a gain of 725, a common moderate of 30 Hz) to a second “Target Tracking PC” which
rejection ratio of approximately 90 dB at 60 Hz and displayed the signal and a dynamic target to pursue. This PC
second-order 10-2000 Hz bandpass filter. Each EMG sitad a 17 inch monitor situated at eye height, 2—3 feet in front
nal was electrically isolated, amplified and low-pass filteredf the subject. In Mode 1, the target moved horizontally on the
Amplification was achieved using the standard inverting gagtreen as a band-limited (0.25 Hz) uniform random process.
operational amplifier configuration, with gain selectable frorihe range of the random process was scaled from 50% MVE
—1 to —25 for each EMG channel. The low-pass filter stagiexion to 50% MVE extension. The horizontal center of the
was unity gain, fourth-order with a cutoff frequency of 200@creen corresponded to no effort (0% MVE). The full width of
Hz, achieved using a switched capacitor Butterworth lovthe screen was scaled from 62.5% MVE flexion to 62.5% MVE
pass filter (National Semiconductor model MF4-50, Sangxtension in order to accommodate overshoot. Mode 2 used a
Clara, CA). As a measure of total EMG system noise, dasimilar target, except that the statistical bandwidth of the target
were recorded while subjects were asked to rest their amas 1 Hz. In Mode 3, the target moved horizontally along
completely. The resultant RMS signal level (representirtge display in a random binary fashion, alternating between
equipment noise as well as ambient physiological activi®5% MVE flexion and 25% MVE extension. The duration of
recorded by the electrode-amplifiers) was on averaged7.2time that the target remained at a particular level was random,
5.7% of the RMS EMG at 50% MVC. selected as an independent uniform random variable over the
The EMG signals and the dynamometer signal were corange of 2-5 s. Although this target style was not studied in
nected to a 16 channel 16-bit A/D converter (Computéhe simulation work, it tested the adaptive algorithm at its
Boards model CIO-DAS1600/16, Mansfield, MA) on an IBMiwo extremes—rapid (step) changes combined with constant
compatible PC. This “EMG Workstation PC” was outfittegperiods. The Target Tracking PC captured and stored sections
with custom processing/display/data-logging software [33)f the input difference signal and the tracking target value to
The EMG Workstation PC acquired the input data at a sarisk.
pling rate of 4096 Hz per signal, formed a four-point moving
average (all moving average coefficients set to 1.0) and )
decimated the data to 1024 Hz. The EMG Workstation P& Experimental Methods
then computed EMG amplitude estimates in real-time, formedinformed consent was received from each subject. Nineteen
the difference between the triceps and biceps amplitude, abjects, 9 male and 10 female, ranging in age from 18 to 65
sent the resulting differences out its serial port. The processing each completed one experiment. Subjects had no known
paradigm introduced a time delay of less than 8 ms in the EMé&uromuscular deficits of the right shoulder, arm or hand. The
amplitude estimates. As a preprocessing step, individual chattectrodes were applied and the subject was secured into the
nel offsets (representing offsets due to the A/D converter asdercise machine. During an experimental trial, the subject
front-end electronics) were subtracted from each signal. Fouas instructed to relax all muscles not directly involved in
different EMG processors per muscle group (biceps/triceple task, and to maintain a consistent posture and contraction
were then simultaneously produced from the offset-adjustegthnique during and throughout all trials. Two two-second
input EMG signals as follows. MVC trials (with a three minute rest after each trial) were
1) Conventional single-channel MAV processing with @onducted both for flexion and extension contraction. The
fixed smoothing window length of 250 ms, normalized to average maximum dynamometer signal voltage provided a
50% MVC. Note that an electrode-amplifier most central amugh estimate of the dynamometer voltage corresponding to
the muscle was used. MVC. Using these contractions as a guide, the gain settings
2) and 3) Four-channel processors with fixed smoothirgf each EMG channel were adjusted so that they would utilize
window lengths of 100 and 250 ms, respectively, were formed much of the resolution of the A/D board on the EMG
by equalizing the variance of each channel (based on calib¥derkstation PC as possible without saturating.
tion from a 50% MVC trial), followed by spatial-temporal The subjects next performed five-second, constant-angle,
MAV detection [26]. Note that spatial uncorrelation was notonstant-force contractions. The output voltage of the dy-
performed, since prior work [11] showed that it provided littlemamometer and a static target signal level were simultaneously
performance improvement with this electrode arrangement.presented to the subject on the Target Tracking PC. The subject
4) A four-channel adaptive (first derivative), causal smoothvas instructed to begin at rest, then gradually (typically over
ing window length processor was formed by equalizing thee period of 0.5-1 s) increase flexion/extension torque until
variance of each channel (same calibration as processors 1#8),target torque level was achieved. By observing the Target
averaging the absolute values of the four channels, follow&dacking PC, the subject maintained the target torque level
by adaptive window length MAV detection. The constgnt until a five-second segment of data was recorded. A rest period
was set to 547/s (see [26, Table 1l]). The duration of dat# two minutes was provided between trials. Two contractions
contributing to the polynomial (Savitsky—Golay) differentiatoeach at 50% MVC flexion, 50% MVC extension and 0% MVC
was 375 msthe best duration for a 1 Hz targetAdaptation were recorded. A flexion contraction was used to calibrate
of the smoothing window length was limited to a change &MG processors from flexion electrode channels, and an ex-
0.5 samples (or0.5 ms) per iteration. tension contraction was used to calibrate EMG processors from
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Fig. 3. Example data from tracking trials. Dash lines are the target, solid lines are the subject EMG amplitude pursuitiprafievalues give the EMG
amplitude difference (scaled to percent MVE), with positive values denoting extension (i.e., triceps EMG amplitude greater than biceps EME) amglitu
negative values denoting flexion. EMG processing was with the multiple-channel adaptive processor in each trial.

extension channels. These contractions were used to setdbetractions the subject was released from the wrist cuff to
offset and equalize the variance of each EMG signal channgievent impaired blood flow to/from the hand.

Additionally, these contractions provided a reference (i.e.,

initial) calibration of the 50% MVE flexion/extension values.

These MVE values were then adjusted to insure that subje€ts Experimental Results

could reach the full extent of the target range. Adjustment Fig. 3 shows sample tracking data for each of the three
was required for subjects displaying significant cocontractigfhcking tasks. Analysis of the tracking tasks consisted of
on the 50% MVC trials, since reference calibration was basegaluating the RMS error between the target and the subject’s
on either flexion or extension electrode channels while thgrsuit path. Statistical comparisons were made using the SAS
target displayed their difference. software package, version 6 (SAS Institute Inc., Cary, NC).
The subjects then performed a series of constant-andiiring the experiment it appeared that subjects were learning
force-varying tracking task contractions. One triceps—bicegse tracking task during the first set of targets. This observation
EMG difference and a dynamic target were simultaneouslyas confirmed statistically in that the tracking errors from
presented to the subject on the Target Tracking PC. Thee first tracking set were statistically different (larger) than
subject was blinded as to which EMG processor was selectéfbse from the remaining two setp € 0.02 using a one-
The subject was instructed to flex/extend about the elbamay ANOVA). For these reasons, data from the first tracking
as necessary in order to produce an EMG difference sigrsalt were removed from further analysis. In addition, the data
which tracked the target as best as possible. This contf@m one subject were excluded because the tracking errors
strategy mimics the use of an EMG-controlled upper-limyere more than three standard deviations greater than the mean
prosthesis. After a transient warm-up period of a few secondsror. The remaining error results are presented in Table V.
30 s of data were recorded. A series of three sets of trackingrable V compares the single- versus multiple-channel, fixed-
contractions was conducted. Each set randomly presentedwalidow, 250 ms detectors. Table V shows that the multiple-
12 combinations of EMG processors (4) and tracking modekannel detector performed better than the single-channel
(3). A rest period of two minutes was provided between trialdetector for all target typegp (< 0.005 for each target type
After each set, 0% MVC data were also collected. Betweeassing at-test). The average error decreased 14.3% for the
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TABLE V Transitions to 25% MVE Extension
MEAN =& STANDARD DEVIATION TRACKING ERROR IN PERCENT MVE. 301
RESULTS IN EACH CELL ARE AVERAGED ACR0SS18 SUBJECTS Target

Target Type

EMG Processor 0.25 Hz 1.00 Iz Random
Random Random Binary
Single:  Fixed, 250ms 8.6712.34 | 21.51£3.07 | 17.91x1.51
Multiple: Fixed, 250ms 7.43+1.51 | 19.5922.85 | 17.1641.41
Multiple: Fixed, 100ms 9.4342.14 | 19.69%2.85 | 16.94£1.5] of
Multiple: Adaptive 8.68+2.32 | 19.57+2.77 | 17.04%1.25

Extend (% MVE) -->

—- — Single-Channel Processing (250ms)

KT | S LS Multiple-Channel Fixed-Length Processing {250ms)

% MVE)

= — -~ Multiple-Channel Fixed-Length Processing {100ms)
0.25 Hz random target, 8.9% for the 1 Hz random targét_zo, ~ Multiple-Channel Adaptive-Length Processing
and 4.2% for the random binary target. This result continués

to reinforce the improvement found using multiple-channel : . . . . s . , s .

EMG amplitude estimation [1], [2], [9], [11]-[13]. In practical S
applications, the advantages of this improvement must be @)
weighed against the cost of the additional EMG channels.

For the 1 Hz random target, performance of the three Transitions to 25% MVE Flexion

multiple-channel algorithms was not statistically differemt{
0.95 using a one-way ANOVA). The simulation results sugz ,,l
gested that the 100 ms fixed-window and adaptive processérs
should have performed equally well, but with 74% of the erro? 10
of the 250 ms fixed-window processor. Perhaps the lack &f
differences was due to the task difficulty. Subjects noted that e
the 1 Hz bandwidth tracking task was a challenge. Thus, the
errors may have been dominated by the difficulty subjects hade
tracking the target at this high bandwidth, with smaller errofs
related to processor performance not easily detected. u*?'”
For the 0.25 Hz random target, the 250 ms fixed-window
processor performed better than the 100 ms fixed-window™ s oz o4 os 08 _ 1 12 14 16 18 2
processor f < 0.001 using at-test), as predicted by the Time ()
simulations. No precise prediction was available for adaptive )
processing since the duration of data contributing to thég. 4. Average target tracking responses for each EMG processor after a
ansition in random binary target tracking. Each graph line is the average of

polynomlal derivative filter was not matched to this bandWIdttJﬁetween 136 and 140 transitions. Top graphs show the first two seconds after

(as it was in the case of the simulations). However, thge random binary target has transitioned from 25% MVE flexion to 25%

experimental result fell between the two fixed-length detectofdyE extension. Bottom graphs show the first two seconds after the random
: o A . - :
as would be expected. binary target has transitioned from 25% MVE extension to 25% MVE flexion.

. Y -axis values give the EMG amplitude difference, scaled to percent MVE.
For the random binary target, performance of the three

multiple-channel algorithms was not statistically differemt{

0.67 using a one-way ANOVA). Of interest with this tracking V. Discussion

mode was to plot subject tracking performance as a function

of the time from a binary level transition. Fig. 4 show®. Comparison of Theoretical Models to Prior Research

the average subject target tracking profiles, shown separatelfrhe theoretical modeling provided four optimum window
for transitions to 25% MVE extension and transitions t{ength solutions, depending on the causality of the processing
25% MVE flexion. Since all transitions were followed by gcausal versus noncausal) and the manner in which EMG
minimum of 2 s before the next transition, only 2 s afteamplitude was allowed to change in the local neighborhood
a transition is shown. This figure shows that the error &f the sample index (quadratic versus linear). For two of
dominated by subject delay in recognizing and reacting to thieese cases, causal linear and noncausal quadratic, an analytic
level change. Once a level change is initiated, the 100 mslution to the optimum window length was available. A third
multiple-channel fixed-window processor changes the fastesise, the noncausal linear model, actually has no solution, so
closely followed by the adaptive processor. The adaptiem approximate solution was coerced. The simulations demon-
processor might have changed even faster if the adaptation sttated that the linear model was generally best for causal
limit value had been set to a higher value. After the new levplocessing and the quadratic model was best for noncausal
has been achieved, the 250 ms multiple-channel fixed-wind@rocessing—the cases which have analytic solutions.
processor and the adaptive processor seem to display thEor the causal quadratic model, an analytic optimum win-
lowest average errors. Hence, the adaptive processor displdge length was not available; thus, a numerical solution
some of the better properties of each of the two fixed-lengttas used. D’Alessio [7], [18] developed a similar window
processors for this tracking mode. These observations #&mgth optimization model. He provided an approximate ana-
consistent with those found by Meek and Fetherston [19]. Iytic solution to this problem by combining the results from
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two limiting cases. The first limiting case is when the firgimb prosthesis, this characteristic may be quite attractive. In
derivative term is the dominant contributor to the error. In thiaddition, Park and Meek [20] have demonstrated situations
case, D’Alessio set the second derivative to zero, essentiallywhich adaptive processing, using a derivative filter which
forming the causal linear model described in this paper. His not tuned to the signal bandwidth, exhibits performance
analytic solution for that case matches that presented heseperior to certain fixed-length processors. Finally, it may
The second limiting case is when the second derivative teprove more accurate to directly estimate the ratio of the EMG
is the dominant contributor to the error, formed by settingmplitude divided by its applicable derivative, rather than
the first derivative to zero. The complete solution was takeseparately estimating the numerator and denominator terms
as the minimum window length specified by the two limitindgn the optimal window length formulae.
cases. In addition, D’Alessio studied the noncausal processindn contrast to the work of D’Alessio [7], these simulations
problem. His quadratic solution does not match that of thsggest that second derivatives of EMG amplitude can be
current paper since it contains a first derivative term andused effectively for noncausal amplitude estimates. This result
different power law relation (see [7, Eq. (11)]). has yet to be evaluated with experimental data. The simula-
The causal linear solution for optimum window length (8)jon studies also found that the performance of the adaptive
derived for discrete-time systems, is also nearly identical to thégorithm was not sensitive to the rate at which adaptation
causal linear solution found by Park and Meek [20, Eqg. (16)as allowed to take place. Extremely slow adaptation gave
which they derived for continuous-time systems. Their scalimgerformance results identical to rapid adaptation. This result
factor was not derived analytically; rather numerical solutioseems to be due to the fact that the best adaptive algorithm
to the window length optimization problem was computederformed about as well as the best fixed-length processor.
off-line for various values of the ratio and then the factowhen the adaptation was set to its slowest rate, the adaptive
determined by least squares fit to the power law. The techindow length seemed to migrate to a relatively static value.
nigue presented here determines the scaling factor analyticalijs value was equal to the best fixed-length window which
allowing direct extension of adaptive window length selectiogave performance similar to when adaptation was rapid. It
to noncausal processing, multiple EMG channels and white not clear if this result can be directly extrapolated to
versus nonwhite processing. situations other than the band-limited uniform random target
tracking studied here. In the experimental study, the adaptive

window length was allowed to change by 0.5 samples per
B. Discussion of Simulation and Experimental Studies iteration.

Both this simulation study and that of D'Alessio [7] found All of the experimental errors listed in Table V are con-
a strong dependence in adaptive processor performancesmramy Iarger than the simulation errors listed in Tables
the quality of the EMG amplitude derivatives. Note that thBl and IV. This result is expected for at least two reasons.
simulation work of D’Alessio evaluated the EMG amplitudd-irst, the simulation errors do not account for the imprecise
while it varied as a sine wave. When the derivative est@bility of subjects to track the target. This error grows with
mates degraded, adaptive processor performance degratfegi.difficulty (bandwidth) of the target being tracked [34].
Both studies also found that the length of data contribuBecond, the simulations evaluated estimation errors from a
ing to the derivative estimate should decrease as the EM®gle EMG amplitude estimate, but the experiment evaluated
amplitude bandwidth (for the random tracking trials stucerrors which were formed from the difference of two EMG
ied here) or frequency (for the sinusoidal trials studied Bmplitude signals. The random error of this difference signal
D'Alessio) increased. If the best derivative technique waghould be greater. (If the errors in the individual signals were
tuned to the target bandwidth/frequency, then the adaptivecorrelated, their variances would sum.)
algorithm performed approximately as well as the best fixed- Note that, as with much of the prior work done in this field,
length processor. Unfortunately, this result means that tA# of these results are influenced by the choice of minimum
burden of selecting the optimum window length in the fixedSE as the optimization criterion. For certain applications
|ength case is rep|aced by the burden of Se|ecting the b@g'g, multistate function selection in prosthetic COﬂtrO'), future
derivative filter in the adaptive-length case. Future researi@search may wish to develop an adaptive window length EMG
should be directed toward improved derivative filters thdrocessor which provides the lowest maximum displacement
do not require operator tuning to the signal bandwidth. fetween the output of the estimator and the true EMG am-
automated high quality differentiation can be accomplisheBlitude. For this application, minimizing the maximum error
then the simulation results suggest that adaptive window lengtay be more effective in reducing selection errors than would
processing can select the best possible window length Rfcur using minimum MSE.
all bandwidths of these random changes in EMG amplitude,
and perhaps in general. Note that even if better derivative
algorithms are not found, the random binary mode studied
in this experiment demonstrated how the step response oA technique for adaptive window length estimation of
the adaptive processor could simultaneously mimic the raglte amplitude of the dynamic EMG signal was derived.
response of a short-duration window during the level transitidrhis method includes consideration of the first and second
and the low variance of a long duration window during thderivative of the EMG amplitude. Simulation and experimental
plateau. For certain applications, e.g., control of an uppestudies investigated the ideal and practical performance of

VI. SUMMARY AND CONCLUSIONS



728 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 46, NO. 6, JUNE 1999
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