
import java.awt.Dimension;
import java.awt.Graphics;
import javax.swing.JPanel;
import javax.swing.JFrame;

public class LineArt extends JPanel {

​ // Unique version ID for this class to ensure saved objects can be loaded safely
​ private static final long serialVersionUID = 1L;

​ // Initial width of height of the starting rectangle
​ private static int width = 980;
​ private static int height = 630;

​ // main method to launch the program as a standalone application - no need to
​ // modify
​ public static void main(String[] args) {
​ ​ LineArt panel = new LineArt();
​ ​ panel.setPreferredSize(new Dimension(width + 20, height + 20)); // content size
window dimensions

​ ​ JFrame frame = new JFrame("Line Art"); // Title of frame
​ ​ frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
​ ​ frame.add(panel);
​ ​ frame.pack();
​ ​ frame.setVisible(true);
​ }

​ /**
​ * Draw the four corners of line art. Line art displays straight lines inside a rectangle from
one side to
​ * a perpendicular side. The lines must be drawn in such a way that both the starting
points of the lines on
​ * one side and the ending points on the other side are equi-distant along the sides. The
size of the rectangle
​ * is 980 pixels wide by 630 pixels high.
​ *
​ * @param g the Graphics object used for drawing shapes, text, and images
​ */
​ public void drawLineArt(Graphics g) {

​ ​ // Draw the initial rectangle
​ ​ g.drawRect(10, 10, width, height);

​ ​ // Draw bottom-left corner
​ ​
​ ​ int lines = 50;
​ ​ double xspace = width / (lines - 1.0);
​ ​ double yspace = height / (lines - 1.0);
​ ​
​ ​ for (int i = 0; i < lines; i++) {
​ ​ ​ int x1 = 10;
​ ​ ​ int y1 = 10 + (int) (yspace * i);
​ ​ ​ int x2 = 10 + (int) (xspace * i);
​ ​ ​ int y2 = height + 10;
​ ​ ​ g.drawLine(x1, y1, x2, y2);
​ ​ }
​ ​
​ ​ // Draw bottom-right corner

​ ​ for (int i = 0; i < lines; i++) {
​ ​ ​ int x1 = width + 10;
​ ​ ​ int y1 = 10 + (int) (yspace * i);
​ ​ ​ int x2 = width + 10 - (int) (xspace * i);
​ ​ ​ int y2 = height + 10;
​ ​ ​ g.drawLine(x1, y1, x2, y2);
​ ​ }
​ ​
​ ​ // Draw top-left corner
​ ​ for (int i = 0; i < lines; i++) {
​ ​ ​ int x1 = 10;
​ ​ ​ int y1 = height + 10 - (int)(yspace * i);
​ ​ ​ int x2 = 10 + (int)(xspace * i);
​ ​ ​ int y2 = 10;
​ ​ ​ g.drawLine(x1, y1, x2, y2);
​ ​ }
​ ​
​ ​
​ ​ // Draw top-right corner
​ ​ for (int i = 0; i < lines; i++) {
​ ​ ​ int x1 = width + 10;
​ ​ ​ int y1 = height + 10 - (int)(yspace * i);
​ ​ ​ int x2 = width + 10 - (int)(xspace * i);
​ ​ ​ int y2 = 10;
​ ​ ​ g.drawLine(x1, y1, x2, y2);
​ ​ }
​ ​
​ ​ // drawing little rect

​ ​ int littleX = 10 + width / 4;
​ ​ int littleY = 10 + height / 4;
​ ​ int littleH = (int)(height * 0.5);
​ ​ int littleW = (int)(width * 0.5);
​ ​
​ ​ g.drawRect(littleX, littleY, (int) (width * 0.5), (int) (height * 0.5));
​ ​
​ ​ // drawing little drawing
​ ​ lines = 25;
​ ​ xspace = width * 0.5 / (lines - 1.0);
​ ​ yspace = height * 0.5 / (lines - 1.0);
​ ​ for (int i = 0; i < lines; i++) {
​ ​ ​ int x1 = littleX;
​ ​ ​ int y1 = littleY + (int) (yspace * i);
​ ​ ​ int x2 = littleX + (int) (xspace * i);
​ ​ ​ int y2 = littleY + littleH;
​ ​ ​ g.drawLine(x1, y1, x2, y2);
​ ​ }

​ ​ for (int i = 0; i < lines; i++) {
​ ​ ​ int x1 = littleX + littleW;
​ ​ ​ int y1 = littleY + (int) (yspace * i);
​ ​ ​ int x2 = littleW + littleX - (int) (xspace * i);
​ ​ ​ int y2 = littleH + littleY;
​ ​ ​ g.drawLine(x1, y1, x2, y2);
​ ​ }
​ ​
​ ​ for (int i = 0; i < lines; i++) {
​ ​ ​ int x1 = littleX;
​ ​ ​ int y1 = littleH + littleY - (int)(yspace * i);
​ ​ ​ int x2 = littleX + (int)(xspace * i);
​ ​ ​ int y2 = littleY;
​ ​ ​ g.drawLine(x1, y1, x2, y2);
​ ​ }
​ ​
​ ​
​ ​ for (int i = 0; i < lines; i++) {
​ ​ ​ int x1 = littleW + littleX;
​ ​ ​ int y1 = littleH + littleY - (int)(yspace * i);
​ ​ ​ int x2 = littleW + littleX - (int)(xspace * i);
​ ​ ​ int y2 = littleY;
​ ​ ​ g.drawLine(x1, y1, x2, y2);
​ ​ ​
​ ​ }

​ }

​ /**
​ * Overrides JPanel's paintComponent method to perform custom drawing.
​ *
​ * @param g the Graphics object used for drawing shapes, text, and images
​ */
​ @Override
​ protected void paintComponent(Graphics g) {
​ ​ super.paintComponent(g); // Clears the panel before drawing
​ ​ drawLineArt(g);
​ }

}

