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Choose an ODE Solver - MATLAR & Simulink https://www.mnathworks.com/help/matiab/math/choose-an-ode-solver...

Ordinary Differential Equations

An ordinary differential equation (ODE) contains one or more derivatives of a dependent variable, y, with
respect to a single independent variable, f, usually referred to as time. The notation used here for
representing derivatives of y with respect to fis y ’ for a first derivative, y '’ for a second derivative, and so
on. The order of the ODE is equal to the highest-order derivative of y that appears in the equation.

For example, this is a second order ODE:
y'=9y
In an initial value problem, the ODE is solved by starting from an initial state. Using the initial condition, Yo, @s

well as a period of time over which the answer is to be obtained, (to, tf) ; the solution is obtained iteratively.

At each step the solver applies a particular aigorithm to the results of previous steps. At the first such step,
the initial condition provides the necessary information that allows the integration to proceed. The final result is
that the ODE solver returns a vector of time steps ¢t = [tﬂ, [P 7Y, tf] as well as the corresponding solution

at each step y = [y(,, Y1, Vo vons yf] .

Types of ODEs
The ODE solvers in MATLAB® solve these types of first-order ODEs:

* Explicit ODEs of theform y ' = f (t, y).

* Linearly implicit ODEs of the form M (t, y) y'=f (t, y) , where M (t, y) is @ nonsingular mass matrix.
The mass matrix can be time- or state-dependent, or it can be a constant matrix. Linearly implicit ODEs
involve linear combinations of the first derivative of y, which are encoded in the mass matrix.

Linearly implicit ODEs can always be transformed to an explicit form, y ' = M '1(t, y) f(t, ). However,
specifying the mass matrix directly to the ODE solver avoids this transformation, which is inconvenient and
can be computationally expensive.

*  If some components of y * are missing, then the equations are called differential algebraic equations, or
DAEs, and the system of DAESs contains some algebraic variables. Algebraic variables are dependent
variables whose derivatives do not appear in the equations. A system of DAEs can be rewritten as an
equivalent system of first-order ODESs by taking derivatives of the equations to eliminate the algebraic
variables. The number of derivatives needed to rewrite a DAE as an ODE is called the differential index.
The odel5s and ode23t solvers can solve index-1 DAEs.

*  Fully implicit ODEs of the form f (t, »y ') = {. Fully implicit ODEs cannot be rewritten in an explicit
form, and might also contain some algebraic variables. The ode151 solver is designed for fully implicit
problems, including index-1 DAEs,

You can supply additional information to the solver for some types of problems by using the odeset function
to create an options structure. '

Systems of ODEs
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20f8

You can specify any number of coupled ODE equations to solve, and in principle the number of equations is
only limited by available computer memory. If the system of equations has n equations,

y '1 fi(tryilyb '"».Vn)
y'; FACR NN

’

y '" ﬁl(tryllyzr "".yﬂ)

then the function that encodes the equations returns a vector with n elements, corresponding to the values for
V'uy'a .,y Forexample, consider the system of two equations

{J’H =¥,
Ya=yny-2.

A function that encodes these equations is

function dy = myODE(t,y)
dy(1) = y(2);
- dy(2) = y(1)*y(2)-2;

Higher-Order ODEs

The MATLAB ODE solvers only solve first-order equations. You must rewrite higher-order ODEs as an
equivalent system of first-order equations using the generic substitutions

Yi=y
=y’
=y
Yo =y,

The result of these substitutions is a system of n first-order equations
Y=y
V2=

y 'n = f(t:yl;YZ: "-:.yn)'

For example, consider the third-order ODE

yill_y!l‘y+1=0-

Using the substitutions

n=Jy
Y=y
y=y"'

results in the equivalent first-order system
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Y=Y
V2=
Vii=yy- 1L

The code for this system of equations is then

% function dydt = f(t,y)

dydt(1) = y(2);

- dydt(2) = y(3);
Cdydt(3) = y(1)*y(3)-1;
Complex ODEs

Consider the complex ODE equation
y'=flt.y),

where y = y; + ;. To solve it, separate the real and imaginary parts into different solution components,
then recombine the results at the end. Conceptually, this looks like

yv = [Real(y) Imag(y)]
fv = [Real(f(t,y)) Imag(f(t,y))].

For example, if the ODE is y ' = yt + 2i, then you can represent the equation using a function file.

function f = complexf(t,y)
% Define function that takes and returns complex values
f = y. %t + 2%i;

Then, the code to separate the real and imaginary parts is

function fv = imaginaryODE(t,yv)
% Construct y from the real and imaginary components
y = yv(1) + i*yv(2);

% Evaluate the function
yp = complexf(t,y);

% Return real and imaginary in separate components
fv = [real(yp); imag(yp)l;

When you run a solver to obtain the solution, the initial condition y@ is also separated into real and imaginary
parts to provide an initial condition for each solution component.

yo = I+i;

yve = [real(ye); imag(ye)];

tspan = [@ 2];

[t,yv] = ode45(@imaginaryQDE, tspan, yve);

Once you obtain the solution, combine the real and imaginary components together to obtain the final result.

y = yv(:,1) + i¥yv(:,2);
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Basic Solver Selection

oded5 performs well with most ODE problems and should generally be your first choice of solver. However,
ode23 and cdell3 can be more efficient than ode45 for problems with looser or tighter accuracy
requirements.

Some ODE problems exhibit stiffness, or difficulty in evaluation. Stiffness is a term that defies a precise
definition, but in general, stiffness occurs when there is a difference in scaling somewhere in the problem. For
example, if an ODE has two solution components that vary on drastically different time scales, then the
equation might be stiff. You can identify a problem as stiff if nonstiff solvers (such as ode45) are unable to
solve the problem or are extremely slow. If you observe that a nonstiff solver is very slow, try using a stiff
solver such as odel5s instead. When using a stiff solver, you can improve reliability and efficiency by
supplying the Jacobian matrix or its sparsity pattern.

This table provides general guidelines on when to use each of the different solvers.

Solver Problem Type Accuracy When to Use

odeds Nonstiff Medium Most of the time. ode45
: should be the first solver you
fry.
ode23 Low ode23 can be more efficient

than ode45 at problems with
crude tolerances, or in the
presence of moderate
stiffness.

odedl3 Low to High ode113 can be more efficient
than oded5 at problems with
stringent error tolerances, or
when the ODE function is
expensive to evaluate.

odel5s Siiff Low to Medium Try odelss when odeds5 fails
or is inefficient and you
suspect that the problem is
stiff. Also use ode15s when
solving differential algebraic
. equations (DAESs).
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