Assignment VI Due: Wednesday 14th December, 2016

1. Section 4.1: 2a,b; 4a,b
2. Section 4.1: 6a,b; 8a,b
3. Section 4.1: 22
4. Section 4.1: 23

5. Consider the Matlab file located at https://www.mathworks.com/matlabcentral/fileexchangze/
29851-runge-kutta-4th-order-ode/content/Runge_Kutta_4.m which implements the This
implements the 4th order Runge Kutta method - seehttps://en.wikipedia.org/wiki/Runge-Kutta_
methods - to solve dy/dt = f(t,y) = 3e~t — 0.4y with y(1) = 5.

(a) Modify this routine to solve dy/dt = f(t,y) = t® with y(0) = 0.2 using a step size of
h = 0.1 up to time t = 3.
Plot the exact solution and the RK4 solution on the same plot. Use a legend to distinguish
the two curves.

(b) Modify this routine (and give it a new name) to solve dy/dt = f(t,y) = t® with y(0) = 0.2
using a step size of h = 0.1 up to time ¢t = 3 but using Euler’s method.
Plot the exact solution and the Euler’s solution on the same plot. Use a legend to distin-
guish the two curves.

(c) Redo the two problems above but with f(¢,y) = t°.
(d) Redo the two problems above but with f(¢,y) = t*.

(e) Discuss all your results.
6. Section 5.2: 5a, 6b,d; 7a, 8b,d

7. Section 5.2: 9


https://www.mathworks.com/matlabcentral/fileexchange/29851-runge-kutta-4th-order-ode/content/Runge_Kutta_4.m
https://www.mathworks.com/matlabcentral/fileexchange/29851-runge-kutta-4th-order-ode/content/Runge_Kutta_4.m
https://en.wikipedia.org/wiki/Runge-Kutta_methods
https://en.wikipedia.org/wiki/Runge-Kutta_methods
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is the first class of unstable methods we have encountered, and these techniques would be
avoided if it were possible. However, in addition to being used for computational purposes,
the formulas are needed for approximating the solutions of ordinary and partial differentiy
equations.

EXERCISE SET 4.1

1

Use the forward-difference and backward-difference formulas to determine each missing entry in the
following tables.

a x| f@ | f@® b x J@
0.5 1 04794 0.0 | 0.00000 “
0.6 | 0.5646 0.2 | 0.74140
0.7 | 0.6442 0.4 | 13718

Use the forward-difference and backward-difference formulas to determine each missing entry in the
following tables. :

a x| f&@ | F@ b x| f&® | £
~0.3 | 1.9507 1.0} 1.0000
~0.1 | 2.0421 | 1.2 | 1.2625
—-0.1 | 2.0601 14 | 16595

The data in Exercise 1 were taken from the following functions. Compute the actual errors in Exer-
cise 1, and find error bounds using the error formulas.

a8  f{x)=sinx b, flx)=e —2x%+3x —1

The data in Exercise 2 were taken from the following functions. Compute the actual errors in Exer-
cise 2, and find error bounds using the error formulas.

a.  f(x)=2cos2x —x b. flx)=x*Inx+1
Use the most accurate three-point formula to determine each missing entry in the following tables.
a x| f® | fw box | f® |

L1 | 9.025013 8.1 | 16.94410

12 | 11.02318 8.3 | 17.56492

13 | 1346374 ' 8.5 | 18.19056

1.4 | 16.44465 8.7 | 18.82091
e x f@ | rw d x| & | fe

2.9 | —4.827866 2.0 | 3.6887983

3.0 | 4240058 2.1 | 3.6905701

3.1 | —3.496909 2.2 | 3.6688192

3.2 | —2.596792 2.3 | 3.6245909
Use the most accurate three-point formula to determine each missing entry in the following tables.
a x| @ | Fw b x| f@ |rs&

-0.3 | —0.27652 7.4 | —68.3193

—02 | —0.25074 . 76 | ~716982

—0.1 { -0.16134 7.8 | —75.1576

0 0 8.0 | ~78.6974
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4.1
e x| f Ff@) & x| f®w | rw
1.1 | 1.32918 2.7 | 0.054797
1.2 | 1.64024 —-2.5 { 0.11342
1.3 | 170470 —2.3 | 0.65536
14§ 171277 —2.1 | 6.98472

The data in Exercise 5 were taken from the following functions. Compute the actual errors in Exer-
cise 5, and find error bounds using the error formulas.

a fx)=e* b. f(x)=xlnx

¢  fx)=xcosx— x%sinx ' d fl)=20nx)*+3sinx

The data in Exercise 6 were taken from the following functions. Compute the actual errors in Exer-
cise 6, and find error bounds using the error formulas.

&  flxy=e¥ —cos2x b.  f(x)=In(x+2) - (x + 1)2

€ f(x)=xsinx +xlcosx 4 f(x) = (cos3x)% — ¥

Use the formmlas given in this section to determine, as accu

rately as possible, approximations for
each missing entry in the following tables.

a  x fx) fx . b & F&x) | fi
2.1 | —1.709847 " 3.0 | 9367879
22 | -1.373823 | ~2.8 | 8233241
23 | ~1.119214 —2.6 | 7.180350
24 | —0.9160143 -2.4 | 6.209329
2.5 | —0.7470223 —2.2 | 5320305
26 | —0.6015966 ~2.0 | 4513417

Use the formulas given in this section to determine, as accurat

ely as possible, approximations for
each missing entry in the following tables,

a.  x flx) Fx) : b x Fx) Fix)
1.05 | —1.709847 ~3.0 | 16.08554
L10 | —1.373823 —2.8 | 12.64465
1.15 | —1.119214 —2.6 | 9.863738
1.20 | —0.9160143 —2.4 | 7623176
125 | —0.7470223 -2.2 1 5.825013
C 130 | —0.6015966 —2.0 | 4.389056

The data in Exercise 9 were taken from the following functions. Compte the actual errors in Exer-
cise 9, and find error bounds using the error formulas and Maple.

a.  f{x) =tanx b, flx) =¥ 4 2

The data in Exercise 10 were taken from the following functions. Compute the actua] errors in Exer-
"cise 10, and find error bounds using the error formulas and Maple.

a. f{x) =tan2x b fX)=me*—1+zx
Use the following dé{a_l and the knowledge that the first five derivatives of J are bounded on [1, 5] by

2,3, 6, 12, and 23, respectively, 1o approximate f'(3) as accurately as possible. Find a bound for the
EITOT.

R | 2 I3 I 4 | s
o) | 24142 | 26734 | 28974 | 3.0976 | 32808

Repeat Exercise 13, assuming instead that the third derivative of f is bounded on [1, 5Tby 4.
Repeat Exercise I using four-digit rounding arithmetic, and compare the srrors to those in Exercise 3.
Repeat Exercise 5 using four-digit chopping arithmetic, and compare the errors to those in Exercise 7.
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Repeat Exercise 9 using four-digit rounding arithmetic, and compare the errors to those in Exer
cise 11,

Consider the following table of data; )

x |o2 | 0.4 | 0.6 | 0.8 | 10
F&) | 09798652 | 09177710 | 0.808038 | 0.6386093 | 03843735

a.  Use all the appropriate formulas given in this section to approximate f(0.4) and f*(0.4).
b.  Use all the appropriate formulas given in this section to approximate f(0.6) and f(0.6).

Let f(x) = cosmwx. Use Eq. (4.9) and the values of flx)atx = 0.25,0.5, and 0.75 1o approximate
F7(0.5). Compare this result to the exact value and to the approximation found in Exercise 15 of
Section 3.4. Explain why this method is particularly accurate for this problem, and find a bound for
the error.

Let f(x)==3xe* —cos x. Use the following data and Eq. (4.9) to approximate f”(1.3) with # = 0.1
and with k = 0.01,

x| 120 | 120 | 130 | 131 ; 140
Gy | 1159006 | 1378176 | 14.04276 | 1430741 | 1686187

Compare your results to £7(1.3),
Consider the following table of data;

x |02 | 04 | 06 | 0.8 | 10
£ | 09798652 | 09177710 | 0.8080348 | 0.6386093 | 03843735

a.  Use Eq. (4.7) to approximate £'(0.2).

b, Use Eq. (4.7) to approximate f7(1.0).

¢ Use Eq, (4.6) to approximate 77(0.6).

Derive an O(h*) five-point formula to approximate f'(xp) that uses f{xo — A}, fixo), flxg + h),

F(xg +2h), and F(xy + 3k). [Hint: Consider the expression Af (xg — 1) + Bf (xg + k) + C f (xp +
2h}+Df (xq++3h). Expand in fourth Taylor polynomials, and choose A, B, C, and D appropriately.)

Use the formuta derived in Exercise 22 and the data of Exercise 21 to approximate f/{0.4) and
f'(0.8). ;

a.  Analyze the round-off errors, as in Example 4, for the formula

f()Co-’-h}mf(XQ) h 4
o G
b.  Find an optimal % > 0 for the function given in Exampte 2,

In Exercise 10 of Section 3.3, data were given describing a car traveling on a straight road, That
exercise asked you to predict the position and speed of the car when ¢ = 10 s, Use the following times
and positions to predict the speed at each time listed,

Tome O] 3] 5/ 8] 10/ 13
Distance | 0 | 225 | 383 | 623 | 742 | 993

Fl(xg) =

In a circuit with impressed voltage £(¢) and inductance L, Kirchhoff’s first law gives the relationship -
di
t)=L— + Ri,
E(1) 7 + Ri

where R is the resistance in the circuit and 7 is the current. Suppose we measure the current for -
several values of ¢ and obtain
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t | 1.00 | 1.01 | L2 : 1.03 | 1.0
i | 310 312 | 304 | 308 | 204

where ¢ i{s measured in seconds, i is in amperes, the inductance I, is a constant (.98 henries, and the
tesistance is 0.142 ohms, Approximate the voltage £(¢) when t = 1.00, 1.01, 1.02, 1.03, and 1.04.

All calculus students know that the derivative of 2 function S at x can be defined as

f+m)—fln
.

[l =

lim
R0

Choose your favorite function S . nonzero number x, and computer or calculator. Generate approxi-
mations f; (x) to f/(x) by

o FE 107 = f)
j;;(x) - 10_,7 1
forn=1,2,...,20, and describe what happens.

Dertive a method for approximating #(xo) whose error term is of order 4%, by expanding the function
Jin a fourth Taylor polynomiat about xp and evaluating at xp = h and xp & 2h.
Consider the function

h?.

£
e(h) = z-’--g*M,

where M is a bound for the third derivative of 2 function, Show that ¢(h) has a minimum at NETY B

4.2

Lewis Fry Richardson {1881~
"1953) was the first person
'systemmically apply
mathematics to weather .
prediction while working in
England for the Meteorological
Office. As a conscientious
objector during World War T he
Ote extensively about the
onomic futility of warfare,
Ssing systems of differential
equations to mode] rational
interactions between countries,
The extrapolation technigue

. _:lhai bears his name was the
Ediscovery of o technique with
00ts that are at feast as old as
Christian Huygens ( 1629-1695),
and possibly Archimedes
87212 BCE).

Richardson’s Extrapolation

Richardson’s extrapolation is used to generate high-aceuracy results while using low-order
formulas. Although the name attached to the tnethod refers to a paper written by LE
Richardson and J.A. Gaunt [RG] in 1927, the idea behind the technique is much older. An
interesting article regarding the history and application of extrapolation can be found in
[Joyl.

Extrapolation can be applied whenever it is known that an approximation technique
has an error term with a predictable form, one that depends on a parameter, usuaily the step
size & Suppose that for each number % # 0 we have a formula N (&) that approximates
an unknown value M and that the truncation error involved with the approximation has the
form

M—-NG) =Kh+ Kl + Kl + ...

for some collection of unknown constants K, Ko, K5, ...
Since the truncation error is O(h), we would expect, for example, that

M-NOD~01K,, M- N(0.01) ~ 0.01K,

and, in general, M — N(h) =~ K 1A, unless there was a large variation in magnitude among
the constants K, Ky, K, ... .

The object of extrapolation is to find an easy way to combine the rather inaccu-
rate (}(h) approximations in an appropriate way to produce formulas with a higher-order
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and ug, uy, ... , uy be the approximations obtained using Eq. (5.11). If |§;| < § for each
i=90,1,..., N and the hypotheses of Theorem 5.9 hold for Eq. (5.12), then
L yaM 8N 4. .
) —ug| < | 2 O Y Lti-ay _ Solekli® 13
|y () u;ImL(2 +h)[e 1]+ {ole (5.13)
foreachi = 0,1,..., N. Bl

The error bound (5.13) is no longer linear in A. In fact, since

i (P, 8 _
o\ 2 TR )T

the error would be expected to become large for sufficiently small values of 4. Calculus can
be used to determine a lower bound for the step size k. Letting E(h) = (AM/2) + (5/ h)
implies that E'(h) = (M/2) — (8] #%).

28
If h<,f 7 then E’(h) < 0and E(h) is decreasing.

/25 '
If 4= 7L then E'(h) > 0 and E(h) is increasing.
The minimal value of E(h) occurs when

28
b=, 5.14
v (3.14)
Decreasing & beyond this value tends to increase the total error in the approximation. Nor-
mally, however, the value of § is sufficiently small that this lower bound for 4 does not
affect the operation of Fuler’s method,

KERCISE SET 5.2

Use Euler’s method to approximate the solutions for each of the following initial-value problems.
a. y=te-2y, 0<t=<l, y0)=0,withh=05
b, ¥=1+{-y72% 2=<t<3, y@=1withh=05
e y=14+y/t, 1=<r=<2 D=2 withh=025
d. Yy =cos2t+sind, O0=<t=<1, yO0)=1,withh=025
Use Euler's method to approximate the solutions for each of the following infifal-value problems,
a Yy =€ 0<t<l, y0)=1,withh=035
b. y’=ﬁ——z—, 1=:=2, y()=2,withh=05
I+y
€ Yey+rtl 2<t<3 y2) =2 withh =025
do ¥ = sin2 - 2y), 1<1<2, y(1)=2 withhk =025

The actual solutions to the initial-value problems in Exercise 1 are given here. Compare the actual
error at each step to the error bound.
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a  y(t)=tee¥ — €™ + ke b yO) =t+(/1—p
¢y =tlnr+2 4 y() = gsin2t — {cos3s 4 ¢

The actual solutions to the initial-value problems in Exercise 2 are given

here, Compare the achyy)
error at each step to the error bound.

a yy=Ih('+e—1) b. yO=viitu16-1
132 2 —cos2r
ey = (:—2+ﬁee‘5) d. y(r):msaﬂ_‘i?’i_

Use Euler's method to approximate the solutions for each of the followi
Y =y/t—/0% 1sr<2, y(1) =1, with = 0.1

b Y =T+y/t4+0/0% 1<t<3, yh=o with b = 0.2
& YV=-=G+Dy+3, 0=<r<2 y{0) = =2, withs = 0.2
A y=-Sy+52+2, 0<r<1, yO0) =4, with £ = 0.1

Use Euler’s method to approximate the solutions for each of the foHowing initial-value problems,
22ty

. A O0<t<1, =1, withkh = 0.1

a y P =t=l yO=1w

ng initial-value problems

2

¥ ot
3 g I=r=<2, D= — withh = 0.1
by T isis y(1) Ty With B
& Y=l 4y), 1<t<3, ¥(I) = -2, withh = 0.2
& Y =ty deyl 0£r=1, yO) =1, withh =01

The actual solutions to the initial-value problems in Exercise 5 are

given here. Compute the actug
error in the approximations of Exercige 5.

t
B = N = t
a ¥ 77 b, y(1) =ttan(inr)
2 1
€ y) =34 1= d yy =2+ ~3~e‘5‘

The actual solutions to the initial-value
error in the approximations of Exercise ;
2t+1 ~1 2t ' s b

a. 1) == ——m b. f)= — 1= —— d. 1) = 3/d 3 o
¥(®) T y(®) WG+ D y(® =3 ¥ e g
Given the initial-value problem

problems in Exercise 6 are given here, Con':lpute the actual

2
y’=;y+r2e’, T=r<2, y)=0,

with exact solutior y (1) = 12(¢' — ey

a.  Use Enler's method with / — (0.1 to approximate the solution, and compare it with the actuale-.
values of y, i

b.  Use the answers gcnerated in part (a) and linear interpolation to approximate the following.
values of y, and compare them to the actual values,

i y(l.og it. ¥(1.55) i,  y(1.97
¢.  Compute the value of 4 necessary for |y(;) — w,{ < 0. 1, using Eq. (5.10).
Given the initial-value problem

. 1_1 Y 2
Y=g-T=7

l=r=2, yI)=-1,

with exact soletion y(r) = -1/t
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