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Assignment V Due: Wednesday 7th December, 2016

. Section 4.3: 1b, 3b, 5b, 7b
. Section 4.3: 2a, 4a

. Section 4.3: 16

. Section 4.3: 18

. Theorem: If f is continuously twice differentiable on [a, b], then on a uniform partition of [a, ]

/b Flz)dz — Ty | = O().

Estimate numerically the order of convergence of the following:

(a) The Trapezoid method on a uniform grid for

1
2
/exd:v,

0

(b) The Trapezoid method on a uniform grid for

1
/ Jzdz,
0

Discuss your results.

. For continuous enough f, Simpson’s rule is fourth order accurate. Thus, the error in approxi-

b
mating/ f(z)dx by
S:%(f(a) +4f(c)+ (b)),

for ¢ = (a +b)/2 and h = (b — a)/2 is roughly 2* = 16 times as large as applying the basic
Simpson’s rule to each of the two halves of the interval [a, ¢|] and [c, b] and adding the result (i.e
Composite Simpson’s rule with A = (b — a)/4).

(a) Use this result to derive the extrapolated Simpson’s rule.
This is an application of Richardson’s Extrapolation in Section 4.2 of the textbook.
Note that in class we made an observation on the size of the errors in the Trapezoid Rule
and the Midpoint Rule to derive Simpson’s rule.

(b) Find the order of this method.
. Section 4.4: 1f, 3f
. Section 4.4: 13a,b,c
. Section 4.4: 22

. Section 4.4: 23
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i ifi I:EK, _ Tﬂ hle 48 n 0 1 2 3 4
Closed formulas 0.27768018 0.29293264 0.29291070 0.29289318
Error 0.01521303 0.00003942 0.00001748 0.00000004
i ER Open formulas 0.30055887 0.29798754 0.29285866 0.29286923
Error 0.00766565 0.00509432 0.00003456 0.00002399
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EXERCISE SET 43
£ L
. 1. Approximate the foflowing integralg using the Trapezoidat rule.
" 1 0.5 15 1
a. f X dx b. f 2 dx c. f ¥ lnxdx d. f x%e ™ dx
0.5 o x4 1 0
1.6 Ix 0,35 2 wid ri4
e. f S dx f. f —dx g f xsinx dx h. f ¥ sin 2y dx
H xt—4 0 x2 -4 [ i) '
ns are

2, Approximate the following integrals using the Trapezoidal rule,

L

-r0.25 )
a, f (cosx)® dx b. f xInfx 4+ 1) dx
-0.25 -0.5
13 et
c. ((sinx)? — 2x sinx + 1) dx d f
015 : e Xlhnx
3. Find 2 bound for the error in Exercise 1 using the error formula, and compare this to the actual Error.
4.  Find a bound for the error in Exercise 2 using the error formula, and compare this to the actual error.
5. Repeat Exercise 1 using Simpson’s rule.
6. Repeat Exercise 2 using Simpson’s rule. :
7.  Repeat Exercise 3 using Simpson’s rule and the results of Bxercise 3.
8. Repeat Exercise 4 using Simpson’s rule and the results of Bxercise 6,
9. Repeat Bxercise 1 using the Midpoint rule.

10,  Repeat Exercise 2 using the Midpoint rule,

11.  Repeat Exercise 3 using the Midpoint rule and the results of Exercise 9.

12.  Repeat Exercise 4 using the Midpoint rule and the results of Exercise 10. i

13.  The Trapezoidal rule applied to f02 S (x) dx gives the value 4, and Simpson’s rule gives the value 2, :
What is £{1)?

14.  The Trapezoidal rule applied to jz)z f (=) dx gives the value 5, and the Midpeint rule gives the value
4. What value does Sirnpson’s rule give? .

15.  Find the degree of precision of the quadratore formnla

forose=r().s(2)
—1 / y

16. leth=(@b-— a3 % =a,x =a+ h, and xp = b. Find the degree of precision of the guoadrature
formula

& 9 3
f FIdx = Zh o)+ Shp ().

17.  The quadrature formula fwl1 F&)dx = o f(-1) + €1 F{0) + €5 F(1) is exact for all polynomials of
degree less than or equal to 2. Determine Co, €3, and ¢,
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Numerical Differentiation and Integration

~The quadratute formula f02 fxX)dx = cuf(0) + ¢y F{1} + €2 f(2) is exact for all polynomials of
degree less than or equal to 2. Determine ¢y, ¢, and €.

Find the constants ¢y, ¢q, and x; so0 that the quadrature formula jg Fxydx = co f(O) + €1 F (%) hag
the highest possible degree of precision.

Find the constants xg, x;, and ¢; so that the quadratare formula fol Ffx)dx = % f(xo) + 1 F(x)) has
the highest possible degree of precision.

Approximate the following integrals using formulas (4.23) through (4.30). Are the accuracies of
the approximations consistent with the error formulas? Which of parts (d) and (e) give the better
approximation?

.1 w2 15
a. 1+ xdx b. f (sinx)? dx ¢, f e dx
0 1

010 1 5.5 1 10 1 i
d f Zdx e, f —dx+] ~dx f. f xMdx
1 x 1 X 55 X 0
Given the function f at the following values,
x | 1.8 | 2.0 | 22 | 24 | 2.6
£y | 312014 | 442560 | 6.04241 | 803014 | 1046675 -

approximate ff'sﬁ f{x) dx vsing all the appropriate quadrature formulas of this section.
Suppose that the data of Exercise 22 have round-off errors given by the following table.

x | 18 | 20 | 22 | 24 | 26
Brrorin f(x) | 2x 1076 | ~2x 105 | 0.9 107 | —0.9x 10 | 2x 10°°

Calculate the errors due to round-off in Exercise 22.
Derive Simpson’s rule with error term by using

f F)dx =asf(x0) + a1 f(x1) + & f(xa) +EFPE).

Find ay, a1, and a, from the fact that Simpson’s rule is exact for f(x) = x" whenn = 1,2, and 3,
Then find & by applying the integration formula with f(x) = xt

Prove the statement following Definition 4.1; that is, show that a quadrature formula has degree of
precision n if and only if the error E(P(x)) = 0 for all polynomials P(x) of degreek = 0,1, ... ,n,
but E{P(x)) # 0 for some polynomial P(x) of degree n -+ 1.

Derive Simpson’s three-eighths rule, Eq. (4.25), with error term by using Theorem 4.2,

Derive Eg. (4.28) with error term by using Theorem 4.3,

4.4

Piecewise approximation is often
effective, Recall that this was
used for spline and Bézier

interpolation.

Composite Numerical Integration

The Newton—Cotes formulas are generally unsuitable for use over large integration inter-
vals. High-degree formulas would be required, and the values of the coefficients in these
formulas are difficult to obtain. Also, the Newton-Cotes formulas are based on interpola-
tory polynomials that use equalily spaced nodes, a procedure that is inaccurate over large
intervals because of the oscillatory nature of high-degree polynomials. In this section, we'
discuss a piecewise approach to numerical integration that uses the low-order Newton-
Cotes formulas. These are the techniques most often applied.
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This produces a series of results culminating in the final summation
nf2 9
Tot =Y flx) =  flx) = 6392453222,
j=0 i=0
‘We then multiply by 2% to finish the Composite Midpoint method:

>Tot :=evalf (2xh*Tot) ;

Tot = 2008248408

An important property shared by all the composite integration techniques is a stabil-
ity with respect to round-off error. To demonstrate this, suppose we apply the Composite
Stmpson’s rile with n subintervals to a function f on [a, #] and determine the maximum
bound for the round-off error. Assume that f (x;) is approximated by F(x;) and that

ed with the : ) FGxn = f(x)+e, foreachi=0,1,...,n,

where ¢; denotes the round-off error associated with using £ (x;) to approximéte Fx:)
Then the accumulated error, e{(h), in the Composite Simpson’s rule is

’ B (n/2~1 nj2
b, n, and b eh) =7 |e0+2 Y ey+4) apte
i=1 j=1
A (n/2)--1 n/2
< lleol T2 D leajl +43 lerjil +leal |
i=1 j=1

f the round-off errors are uniformly bounded by &, then

h 7} n - h
e = 3 [s+2(2 1)s+4(2)s+e] = 33ns = nhe.
But nh = b — a, so e(h) < (b — a)&, a bound independent of % (and »). This means
that, even though we may need to divide an interval into more parts to ensure accuracy,
the increased computation that is required does not increase the round-off error, This result
implies that the procedure is stable as & approaches zero. Recall that this was not true of
the numerical differentiation procedures considered at the beginning of this chapter.
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ide the loop 1 . _
re for, fT0M 1. Use the Composite Trapezoidal rule with the indicated values of n to approximate the following
integrals.
2 2 CRA
a. f xhnxdx, n=4 b. f x2efdx, n=4 c. f ——dx, n=6
1 -9 g X 2 + 4

T 2 3
d. / xteosxdx, n=6 e [ eZsindxdx, n=8 £ f i dx, n=2=8
0 o 1

x*+4
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5 1 7. /B } 3
g f dx, n=28 h. f tanxdx, n=2%8
3 x4 0

Use the Composite Trapezoidal rule with the indicated values of n to approximate the fo]jowing

integrals.

05 0.5
a. [ costxdx, n=4 b. f xinlx + Ddx, n=6
05 —05
175 : ez g
c. j (sin® x — 2x sinx + 1) dx, n=_8 d. f dx, n=8
75 ., xlnx

Use the Composite Simpson’s rule to approximate the integrals in Exercise 1.
Use the Composite Simpson’s rule to approximate the integrals in Exercise 2.
Use the Composite Midpoint rule with n + 2 subintervals to approximate the integrals in Exercige ],
Use the Composite Midpoint rule with 2 +2 subintervals to approximate the integrals in Bxercige 3,
Approximate foz 22 In{x? + 1) dx using b = 0.25. Use
a. Composite Trapezoidal rule. b. Composite Simpson’s Tule.
c. Composite Midpoint rule.
Approximate I x2e~* dx using h == 0.25. Use ..
a, Composite Trapezoidat rule. b. Composite Simpson’s rule. -
¢. Composite Midpoint rule.
Suppose that F(0) = 1, f(0.5) = 2.5, f(1) = 2, and f(0.25) = £(0.75) = w. Find o if the
Composite Trapezoidal rule with # = 4 gives the value 1.75 for fol fiydx.
The Midpoint rule for approximating f_l1 F(x)dx gives the value 12, the Composite Midpoint mle
with 7 = 2 gives 5, and Composite Simpson’s rule gives 6. Use the fact that f(—1) = f(1) an¢
F(--0.5) = f(0.5) ~ 1 to determine f(=1), F(=0.5), F(0), f(0.5), and F. .
Determine the values of n and A required to approximate foz ¢ sin3x dx to within 1074, Use
a, Composite Trapezoidal rule. b. Composite Simpson's rule.
¢. Composite Midpoint rule.
Repeat Exercise 11 for the integral fo x*cosxdx.
Determine the values of # and h Tequired to approximate

2
i
d
j; x+4 *
to within 10~ and compute the approximation. Use
a. Composite Trapezoidal rule. b. Composite Simpson’s rule,

e. Composite Midpoint rule.

Repeat Bxercise 13 for the integral [, 2 xinx dx.
Let f be defined by

41, 0=<x <01,
Fly=11.001+003x - 0.1) + 036 — 0.1 +2(x —0.1)°, 01=<x=<02
1.009 +0.15(x — 0.2) +0.9(x — 0.2)* 4 2(x — 02, 02=x=<03.

a. Investigate the continuity of the derivatives of f.
b.  Use the Composite Trapezoidal rule withn = 6 to approximate f(? * f(x) dx, and estimate
error using the error bound.
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¢ Use the Composite Simpson’s rle with n = 6 to approximate fD°'3 F(x)dx. Are the results
more aceurate than in part (b)?

Show that the error E(f) for Composite Simpson’s rufe can be approximated by
. - »

180

[Hint: Y07 £ (£,)(2h) is a Riemann sum for J2 FO ) dx]

a.  Derive an estimate for E(f) in the Composite Trapezoidal rule using the method in FExercise
16.

b.  Repeat part (a) for the Composite Midpoint rule.

Use the error estimates of Fxercises 16 and 17 to estimate the errors in Exercise 12,
Use the error estimates of Exercises 16 and 17 to estimate the errors in Exercise 14.
In multivariable calcalus and in statistics courses it is shown that

[ L ameer 4 1
e X =1,
T ~oo G2 '

for any positive . The function

L8 = £ (@)

P

e~ (1D/e)?

fx)=

o2
is the normal density function with mean . = 0 and standard deviation o. The probability that a ran-
domly chosen value described by this distribution Les in [«, b] is given by fa b F(x)dx, Approximate
to within 1075 the probability that a randomly chosen vatue described by this distribution will lie in
a. [-0o,0] b [-20,20] ¢ [-3o, 301
Determine to within 10~ the length of the graph of the ellipse with equation 4x? + 9y? == 36,

A car laps a race track in 84 seconds. The speed of the car at each 6-second interval is determined

using a radar gun and is given from the beginning of the lap, in feet/second, by the entries in the
foltowing table.

Time |0 |6 [12 |18 |24 '30 |36 |42 |4s|54f60§66|72 {78 !84
3peed1124l134|14s]156!147|133|121|109]99]85|73|89|104|116|123
How long is the track?

A particle of mass m moving through a fluid is subjected to a viscous resistance R, which is a function

of the velocity v. The relationship between the resistance R, velocity v, and time ¢ is given by the
equation

u(t)
m
t= du.
v(fg) R(IJ)

Suppose that R(v) = —v./v for a particular fluid, where R is in newtons and v is in meters/second.
Em = 10 kg and »(0) = 10 mw/s, approximate the time required for the particle to slow to v == 5
ms. .

To simulate the thermal characteristics of disk brakes (see the following figure), D.A. Secrist and

R.W. Hornbeck [SH] needed to approximate numerically the “area averaged lining temperature,” T,
of the brake pad from the equation

- ST (6, dr
- f:u ré,dr

Ly
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