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A temporal laminate is a material whose parameters are homogeneous in space but
vary periodically and discontinuously in time. In this article, we consider wave propagation
through a temporal laminate where the period of the disturbance moving through the
media is large relative to ¢ the period of the lamination. It is worth noting that the
constituent materials and the mixing coefficient can be chosen so that the effective speed
in a temporal laminate is greater than the individual phase speeds.

We show that the analytic problem admits stable long wave modes, but shorter wave
modes grow as they pass through the laminate layers. Computing wave motion through
this composite medium using the standard upwind, finite-difference method under the CFL
condition for numerical wave propagation in the individual media will produce growing
short wave modes. Numerical results are degraded since accuracy is quickly lost due to the
growth of short waves which enter into the computation through truncation and round-off
error. A new CFL constraint is derived for a finite-difference numerical scheme which will
allow us to compute the stable long wave motion. Numerical results are given for the
direct numerical simulation of the homogenization problem (e — 0).

Key Words: stability, composite materials, finite difference, CFL, discontinu-
ous coeflicients, wave propagation, dynamic materials

1. INTRODUCTION

In this paper, we consider wave propagation through a one-dimensional tem-
porally laminated medium. A temporal laminate is a material whose parameters
are homogeneous in space but vary periodically and discontinuously in time. As
an example of such, consider an electric transmission line where the inductance
and capacitance fluctuate between two states. The change in capacitance can be
effected by the use of piezoelectric materials, while the inductance variation may be
accomplished by varying the permeability in the ferromagnetic material into which
the line is embedded.

The governing equation for wave motion through a temporal laminate is

(pzt)t — kzgg = 0.

The parameters p(t) and k(t) may be the density and stiffness of a slender elastic
rod subject to longitudinal disturbances z, or the dielectric permittivity and the
reciprocal of magnetic permeability of a medium through which a plane electro-
magnetic wave with electric field component £ = z; propagates. For a temporal
laminate, we make the following specific assumptions about the composite medium:



a) at each point (z,t), the controls p and k can take either the values (p1, k1) or
P P
(p2, k2); we refer to these as ‘material 1’ and ‘material 27;

(b) the period of the pattern is composed of two successive layers filled, respec-
tively, by materials 1 and 2, the volume fractions of these layers being m,
and my (mq,mz > 0,m; + mp = 1);

(¢) these materials are placed within alternating layers ¢ = const.

On the interfaces t = ne and ¢t = (n 4+ mq)e for n = 0,1,2,---, we require regular
transition of continuous disturbance z(z,t), and enforce kinematic and dynamic
compatibility conditions across the material interfaces.

Temporal laminates are a special subgroup of the class of composites that we
call dynamic materials. Dynamic materials are formations assembled from materi-
als distributed on a microscale in time and in space. Optimal material design for
static or non-smart applications generally results in the formation of composites
where the design variables, such as material density, stiffness, yield force, and other
structural parameters are position dependent, but invariant in time. The struc-
tures that result from these designs are the ordinary composite materials, and their
properties depend on the individual properties of the constituent materials and the
microgeometry of the mixture. The effective property of a dynamic material, how-
ever, also depends on the temporal arrangement, so by varying the spatio-temporal
parameters in the material mixture, we can effect a range of responses some of
which are unachievable through purely spatial material design [1, 2, 3].

A temporal laminate is one of the limiting cases of a spatio-temporal laminate.
Spatio-temporal laminates are defined by (a)—(b) with (c) replaced by the condition
that the materials are placed within alternating layers having the slope dz/dt = V
on the (z,t)-plane. In a temporal laminate, V = co. The other limiting case when
V = 0 gives the ordinary static laminate. Static laminates have been well studied
analytically ([4, 5, 6, 7, 8, 9]), and have been studied computationally in [10] and
[3], for example. The numerical study by this author in [3] is of the class of subsonic
spatio-temporal laminates where |V| < a1, a2 for a; = /ki/pi, the characteristic
speed in material :. The current study of wave motion in temporal laminates is a
step towards successfully computing wave motion in supersonic laminates (|V| >
ai.)

It has been illustrated analytically and numerically [1, 2, 3] that the perfor-
mance of structures can be improved by using spatio-temporal composites which
match the time dependent environment of dynamic problems. By appropriately
controlling the design factors of a dynamic laminate, it is possible to selectively
screen large domains in space-time from the invasion of long wave disturbances
which may take the form of surges of stress waves and other undesirable impulses
in the structure or mechanism. With an ordinary static composite, this screening
effect is impossible. This screening effect is responsible for the appearance of such
important phenomena as the elimination of the cut-off frequency in appropriately
activated electromagnetic wave guides. In addition, it is responsible for the appear-
ance of “left-handed” composite materials - materials which have been theorized,
and only recently physically realized, to reverse some known physical effects ob-
served in ordinary materials in response to electromagnetic radiation, such as the
Doppler frequency shift, and Cherenkov radiation (see News Release NSF PR00-9).

In [1], a standard analytical homogenization procedure is used to calculate the ef-
fective phase velocities and the governing differential equations in a spatio-temporal



composite when the period of the medium, ¢, is much smaller than the wavelength of
the initial disturbance. Using the notation (£) = m1£;+m2€; and € = miby+maty,
it is found that (z), the value of the disturbance z averaged over the period of the
array, obeys the following differential equation:

aat |7 k()] a2 [ (3) - ()]
-5(3) vz—ﬁ (), = 0.

It is then straightforward to deduce that in temporal laminates (V = oo), the
effective governing equation is

(2 = (1/p) (k) (2) 4 = 0, (1)

and the effective wave velocities are

+V{(1/p) (k). (2)

We note that one can choose parameters p;, k; such that the effective speed in the
temporal laminate is greater than the individual phase speeds in the constituent
materials.

It is helpful to recast the second order scalar problem as a first order system in
z and a dual variable v:

1
2y — vy =0, 3
i (3)

v, —kz, =0. (4)

In this formulation, the interface condition is that z and v remain continuous
through the transition, thus we are looking at a sequence of a pair of initial value
problems. Letting n = 0,1,2,--- index the sequence, the IVP pair consists of the
PDE system above for ¢ € [ne, (n + mq)e] with (k, p) = (k1, p1) and data given at
t = ne, followed by the system with parameters (kz, p2) for t € [(n+mq)e, (n+1)e],
and initial data given at t = (n + my)e.

In the exact solution to the analytic problem, the shorter wave components are
amplified as they go from one material layer to the next, though they do not grow
within a region of pure material. As the laminate period € gets smaller, or as time
gets larger these modes will grow without bound. There is an inherent instability
to the problem. However, we are interested only in studying long wave motion
through the medium. By “long”, we mean disturbances consisting of modes with
wave number w such that ew is small enough that these modes remain bounded in
time. Our goal is to find a scheme that reproduces the stable long wave motion in
the limit ¢ — 0.

This article proceeds as follows. In the next section, we prove that a general
disturbance imparted to a temporal laminate will exhibit inherent instability, with
some wave modes growing and longer wave modes remaining stable. In Section
Three, we show that even under the accepted CFL condition which ensures stabil-
ity for the wave problem in the individual materials, the first order finite difference
approximation to the temporal lamination problem may give unstable results. Long



wave initial disturbances which are stable analytically can be degraded in the com-
putation due to the introduction of shorter wave modes coming from round-off and
truncation errors. We derive stability conditions for a computational scheme which
will damp out the shorter wave modes and thus retain the integrity of the numerical
results. In the final section, we conclude by giving a numerical example to support
our results.

2. INHERENT INSTABILITY OF THE ANALYTIC PROBLEM

Equation (3) can be decoupled into two advection equations in the characteristic
variables z — v/p and z + v/u:

z+v/p —a 0\ (z4+v/p\ _ (0
o)+ (0 2) GEum). - 6) g
We use p to denote the material ‘impedances’ 1/kp. It is easily seen now that infor-
mation z — v/p and z + v/p travel along characteristic lines with respective charac-
teristic velocities +a where a = \/k/p, so that (z — v/p)(z,t) = (z — v/p)(z—at, 0)
and (z +v/p)(z,t) = (z+ v/p)(z + at,0). At any point in space-time z(z,t) =
L{(z + /) + (2 — v/w))(=, 1)) and v(z, 1) = £[(z + v/1) — (= — v/u)].

The wave equation with p and k constant is stable. An initial impulse con-
sisting of a single wave mode of wave number w, (z,v)(z,t) = (2,7)e'“® at time ¢
evolves according to the growth or amplification matrix G so that (z,v)(z,t+At) =
G(w, At)(z,v)(z,t) = @ 1S(w, At)Q. Here @ is the transformation from the pri-
mary variables z and v to the characteristic variables z + v/p and z — v/u, and S
is the growth matrix of the characteristic variables:

_ 1 l/p, _ eiwaAt 0
Q - (1 _1/,11) ’ S§= < 0 e—iwaAt ’

since (z —v/p)(z,t) = (z —v/p)(z — at,0) and (z+ v/p)(z,t) = (z+v/p)(z +
at,0). Thus,

oo (e o) (ot i)
£ (e —e ) (e +e ) ipsin(waAt)  cos(walt)

We note that G(w,At) = G(waAt). The eigenvalues of G (and S) are clearly
etiweAt thus the norm of the eigenvalues is 1, regardless of a, At or w. There are
no growing modes and the constant coefficient problem is unconditionally stable.

For the laminate problem, we consider mode growth of a wave pulse travelling
through a layer of material 1 for time A¢; = mie and then a layer of material
2 for a time Aty = mge. The interface condition is that z and v remain con-
tinuous through the transition, thus we are looking at a sequence of initial value
problems. The initial data for the problem at the interface of material 1 and 2
is thus G1(wa;At;)(Z,9)e'®, so the growth of a disturbance with wave number
w is governed by the matrix G1 2(w, Aty, Atz) = G12(01,602) = G1(02)G1(61) =
Q;'52(02)Q2Q7 51(61)Q1 =

( cos(6;) iﬂ%sin(ez)) ( cos(61) iﬂ%sin(el)) _

ipg sin(63) cos(f2) ipq sin(61) cos(f;)



( cos 8, cos 87 — Z_; sin 64 sin 6, 1 "1—1 sin 81 cos 65 + 1%2 cos 8 sin 92})

i [1 sin 61 cos B2 + 2 cos 6 sin 6] cos 83 cos 0 — Z—f sin 64 sin 8,

where
61' = waiAti = wa;m;E&.

(Since the angular frequency of the disturbance in material ¢ is a;w, then 6; is a
measure of the disturbance frequency relative to the frequency of the laminate €.)
In terms of the transmission coefficients, T' and T, of a disturbance moving from
one material to the next, as computed in the appendix, the amplification matrix is

T1,2 COS(61 + 92) + Tl’z COS(91 — 92) J—l [Tl,z sin(61 + 92) + Tl’z sin(91 — 92)
’I:,U;l T2,1 sin(61 + 92) + j:'g’l sin(61 — 92)i| Tg’l COS(91 + 92) + T2,1 COS(61 — 92)

We can detect instability and stability by looking at the spectrum of this matrix.
If w is such that the spectrum of G 7 is greater than 1, then this mode is unstable
as the energy in this mode increases, and is stable otherwise. We note that Floquet
analysis can also be used for this problem. The eigenvalues of G ; are essentially
equivalent to e”® where v is the Floquet exponent such that

(o=

Thus, |e¥¢| > 1 implies that the solution grows in time.
The determinant of G5 is 1, and

QW
[S{ER ]

)(%t_@.

T = trace(G1,2) = 2cosfy cos§; — Rsin b sin b,
= (14 R/2)cos(61 + 62) + (1 — R/2) cos(f1 — 63)
= (14 R/2)cos(6:(1 + &)+ (1 — R/2)cos(61(1 — a)) = T(61), (6)

where
a = 92/91 = a,gmg/a,lml, (7)
and i i
R=212 (8)
H2 M1

Note that R > 2 with equality holding only when p; = ps. The physics of the
problem define the fixed parameters R and «a; 6; varies with the wave modes. The
eigenvalues of G 7 are the roots of the characteristic equation o2 —To+ 1:

_ T++/T2_4

o4 2

If w is such that |T| < 2, |o4| = |o—| = 1, so this wave mode is stable. If w is such
that |T| > 2, then |oggn(T)| > T/2 > 1 and the w mode is unstable.

When there is no contrast in impedance between material 1 and material 2
(R = 2), all modes are stable since the magnitude of T is bounded by 2.

Consider the case R > 2. From (6),

3_:91; =—(14a)(1+R/2)sin(f1(1 +a)) — (1 —a) (1 — R/2)sin(6:(1 — a)),



ZZT’? =—(1+ a)z (1+ R/2)cos(61(1 +a))— (1 — a)2 (1— R/2)cos(61(1 — a)).

When w = 0, % =0 and ‘327?(0) < 0, so T has a local maximum at 6; = 0. Since
T(0) = 2, there exists a § > 0, such that for |w| < é, T < 2 and these modes are
stable.

On the other hand, when 6; = 7/(1 + @), and R > 2, the trace of matrix
Gi2is —(1+ R/2)+ (1 — R/2)cos(n(1l — a)/(1 + a)) which can range between
—(14+R/2)+(1-R/2) = —R < —2 and —(1 + R/2) — (1 — R/2) = —2. The
latter value is attained only if a is such that (1 — @)/(1 + @) = n for n an odd
integer. This would require & = (1 — n)/(1 + n). This is impossible for @ > 0.
Hence, we are guaranteed that for wave modes in a small enough neighbourhood of
w=m/(1+4 a)(a;mi€) (i.e. with wavelengths that are O(a;m€)) we have |T| > 2
and hence amplitude growth.

From the preceding discussion, we may state the following:

There is inherent instability for the initial value problem of wave propagation through
temporal laminates of contrasting impedance (u1 # pz). Long wave disturbances re-
main stable, while disturbances with wave lengths of the order of the material pattern
are unstable. Energy that is pumped into system at frequency O(1/¢e) to create
the laminate is converted into energy of waves of comparable frequency and the
amplitude of these oscillations grow.

Figure 1 below displays the spectrum of the amplification matrix G172 as a
function of the ratio of v, the wavelength of the disturbance (: %"), to £ (~ the
laminate ‘wavelength’); and as a function of 6;, which indicates the ratio of the
wave frequency in material 1 to that of the laminate. The two arguments are related
according to ¥ = 2ma;m; /6;. For the laminate in this computation, the parameters
are (k1,p1) = (1,1), (kz2, p2) = (10,9), m; = 0.5, hence & = 1.054093, R = 9.592242.
It is illustrated in this figure that disturbances with wavelengths greater than O(¢)
remain stable, while other shorter wave disturbances will become unstable.

3. NUMERICAL METHOD FOR LONG WAVE PROPAGATION

In homogenization, one is concerned with the ¢ — 0 limit, so in the tempo-
ral laminate problem the wave impulse travels through more and more layers in
finite time. In our work, we are interested in the behaviour of disturbances whose
wavelengths are long relative to the period of the medium, i.e. (1/w)/e large or
we small, where w is the wave number of the disturbance. From the analysis in
Section 2, it is clear that for initial data made up of such modes, the problem is
well-posed. However, there will be difficulty advancing the problem numerically
even when the initial data is so restricted. This is because round-off, interpolation,
and truncation errors introduce spurious disturbances into the computation. These
perturbations will inevitably contain shorter wave modes which will be amplified
by the due nature of the problem and the computational results will be degraded.

We employ a standard first-order, upwind, finite-difference approximation to
solve the system (3), (4) (or (5)). This numerical method adds numerical viscosity
to the solution. We find that by appropriately controlling the size of the mesh
width relative to the material property pattern, enough diffusion can be produced
to damp modes so that they never grow during the numerical computation.

Consider a spatially uniform finite difference grid with grid cells [z;_1/2, Zj41/2]-
Let Az denote the width of these cells and z; = (z;_1/2 + Z;41/2)/2 denote the
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FIG. 1 Spectrum of the growth matrix for the analytic problem.

cell center. We take alternate time steps of size At; = mie and Aty = mqe. Thus,
material properties are constant within a space-time cell volume, and a single time
step takes us from one material interface to the next. The n-th time level is denoted
by %, and is the upper boundary of the nth individual material layer. The values
of z and v at the grid points z; at time ¢, are denoted by zj, v}, and these values
simultaneously represent the approximations to z and v at those points in space-
time, as well as the values of z and v averaged over cell j at time ¢,. We use
Py kn, tin, - - -, to denote the values of the respective material parameters between
times t,, and t,11, that is, in the (n + 1)st material layer.

Integrating the conservation law (5) over the jth space-time cell volume from
time ¢, to time 41, gives

(i), = (e
z+ — =lz+ —
B / Hn
an [t

E/tﬂ
(i), =
z— — =|lz— —
B / Hn
an [ > dt. (10
— - — ; t) — - — i t)| dt.
[ 2 2) ] o

Conservative techniques distinguish themselves from each other by their approxima-
tions to the fluxes [ z,v(z,1/2,t). Since our equations (5) are linear, we calculate
the values of z + v/p, z — v/u along the cell interfaces in a straightforward manner

_|_

1
Hn
1

),
(z + :—n) (2j41/2:t) — <z + i) (zj_l/z,t)] it (9)
),



by tracing characteristics. Thus,

fnta Tjt1/2+a;At
/ (z+v/pn)(@j11/2:1) = —/ (z 4 v/pn) (2, tn) de,
t

Tjt1/z

n

tnt1 Jt1/2
[ = im0 = [ (2 = 0/ pn) (2, ) da,

Tjy1/2—ajAL

n

where At,, = tn41 —tn. Since z] , ] are cell-averaged, cell-centered values of z and
v in the jth cell, the ﬁrst order reconstruction of the profiles are piecewise constant

taking on the values -? in cell j. Equations (9) and (10) are approximated by

J

'UT."+1 ’U"-‘ a At A
A [ )—(z,ui)]
Hen Hn

1
n+1_£_ n_v__a’"At n _,U]""—l
2 =2z Zj-1 !
Hn Hn
(4)

and by combining the equations above, (3), (4) is approximated by the solutions to
the finite difference method:

1 At,

a, At,

Gt = *,Tm[m Gl Sa, G -2 +4), (1)
. Aty . . " an Aty , n n
o= 0F + b Az[j+1—zr4] 2Az (Wl =20 +07 ), (12)

and is accurate up to O(At, Az).

For a, k and p constant in time, this scheme is stable under the CFL restriction
alAt,/Az < 1. We note also that the scheme has built in numerical viscosity since
it approximates the PDE system

1 aAz

alAz

U — kzz = (1 — )\)T’Uzz, (14)

up to O(At?, Az?) when A = ‘Z—Azt is less than unity.

THEOREM 3.1. Let a = agma/aimi, and R = pa/pu1+p1/p2. Then the scheme
(11), (12) above is stable for the temporal laminate problem when Az is such that

almlé < min{1, 1 /e, A}. (15)
The relevant quantities are defined as follows:

1 if R=2,
A=<2 if A, <)Xo,R#2,
A Hif A > Ao, R £ 2,

and
2(1+ a)
o= 20
a(R+6)’
1+a |1—a| /R—2 va?+ Ra+1—(a+1)
A = =2 .
R+ 2 a(R— 2)



Proof. To study the stability of the scheme, we perform a von Neumann analysis
and look at the effect of the scheme on individual Fourier modes with wave number

w’
2 )
(s (em
By expressing the scheme as:

(-3 )0 Gl X0
Gt 30 (),

_\ n+1 A\ 7
it is easy to see that (;) = Gn(9) (;) , where

QW

The entries of the matrix are

An = anAt,[/Az, Pn = 1 — An + Ay cos(6),
bp, = Apsin(6)/ pn, Cn = Anfin sin(8),

where § = wAz. The eigenvalues of Gy, are (1 — A,) + Aneti®. The spectrum of
G, is therefore bounded by 1 in absolute value for all # when A, < 1, and det(G,)
=1—2X,(1 = Ap)(1 — cos(8)) lies between 0 and 1. Wave modes do not grow in
amplitude through a pure material.

However, as a disturbance goes from time ¢, to time ¢,;2 under our scheme
through a layer of material 1 followed by a layer of material 2, say, the modes grow

or decay according to
n
( )

where the amplification matrix is

G(8) = G2(6)G(6) = (?’2 ibz) (?’1 Z'bl). (16)

2 P2 €1 P

QN
QW

)n“ = Gu06:0)

J

The eigenvalues o4 of G(8) solve the characteristic equation ¢ — Bo + C =
0 where B = trace(G) and C = det(G) are both real numbers. Now |C| =
|det(G1)||det(G2)| < 1, for 0 < A1, Az < 1, so if B2 —4C < 0, then oy =
0.5(B +iv/4C — B2?), and |04|? = |C|* < 1 for all §. Thus, we can ensure that the
spectrum of G is less than or equal to 1 if A1, Az are such that BZ —4C < 0 for all
6.

For stability, it thus suffices to
find A1, A2 < 1 such that B — 4C < 0 for all 6.
From equation (16),

trace(G) = B = 2pap1 — (b2c1 + bica),



det(G) = C = (P3 + baca)(P: + b1cy).

Let A = A1 and @) = Ay whence @ = agmgy/a;m;. Then the first stability restriction
is that
A < min{l,1/a}. (17)

The condition BZ — 4C < 0 is equivalent to
(2p2p1 — (b2e1 + bicz))? — 4(p3 + baca)(pF + bic1) < 0
< (bze1 — bicz)? — 4(p1cz + pac1)(prbz + p2b1) < 0
< Xo?(R? — 4)sin®* 6 — 4X?sin? 0 [1 + Ra + o® — A1 — cos0)(a + 1)(R + 2)]
—4X%5in% 6 [a®A?(1 — cos §)*(R+2)] < 0
<> N?a?(R* —4)sin’6 — 4 [1 + Ra + o — Xa(l — cos 8)(a + 1)(R + 2)]
—4[a®>?(1 —cos8)*(R+2)] <0
<> 2Ne?(R+2)[(R—2)sin? 0 — 4(1 — cos0)?] + 4aA(R+ 2)(1 — cos 8)(1 + )
—4[1+ Ra+a?] <0,
where R = p1/p2 + p2/u1 > 2. Define the function f(},0) as follows:

f(X,8) = X2a?(R + 2) [(R —2)sin® @ — 4(1 — cos 6)2] +
4ar(R+2)(1 —cosf)(1+a)—4 [l + Ra+c?]. (18)
We must find A > 0 such that f(X,8) <0 for 6 € [0, 7].

When R = 2, that is, no impedance contrast, we have
F(2,8) = —16 [aA(1 — cos8)]? + 16(1 + a) [aA(1 — cos§)] — 4(1 + a)?
= —4]aX(1—cosf) — 2(1+a)]* < 0.
The only stability restriction in this case is (17), thus it suffices to say A=1lasin
the statement of the theorem.

Henceforth, assume R > 2.
For any given ), f has extrema at 6 solving

g—'g =2aA(R+2)sinf[2(1 + a) + aX ((R+2)cosf — 4)] = 0.
Thus, when 8 = 0, 7 or when
~  dad—2a-—2
0= —  —— 19
€08 (R+ 2)ax (19)

[ attains its local extrema. The right hand side of the expression above is always
less than or equal to 1, so § exists when cos(d) = % > —1. That is, when
A > Mo, for

_2(1+4a)

o= DL,
" a(R+6)

(20)
One may check that ngJ;()\, 0) > 0, so there is a local minimum at § = 0; thus when

X > X, 6 is the local and absolute maximum on [0, 7].

From (18), f(2,0) = —4(1 + Ra + o?) and
f,m) = Ff(A,0) 4+ 8aA(l 4+ a—2ald),
so f(A,m) > f(X,0)iff A< 12+—a°‘ Since Ag < 12+—a°‘, we may conclude that

10



e for A < X, the maximum value of f is f(X, 7);
e for A > Ao, the maximum value of f is f(}, é)
(R—2) |(e))? (R - 2) + 4(e + 1) (a)) — 4a|, (21)

using (19) and (18).

We must check for what A these maximum values are non-positive for all § € [0, 7].

First, f(A,m) <0 for

l+a [1-of [R-2 As lte |i-of [R—2

ASAe=—75 4a VR+2 = 4a 4a VR+2

When R > 2, (1+a)/4a > Ao, so we focus on the first inequality above and conclude
that if Ay < Ao, it is guaranteed that f(X,#) is non-positive for 0 < A < A, but
will be positive for A, < A < Ag. On the other hand, if A, > Ao, it is guaranteed
that f(X, @) is non-positive for 0 < A < Ag, and possibly beyond.

Next, from (21), f(}, 9~) < 0 when X < Ay, for

e —2(1+a);r(;(_vc;)2+Ra+ L (22)

If Ay > Ao, then 0 > f(Xo,7) = f(Xo,6). Thus Ay < A, and we may then say
f(X, 8) is non-positive for 0 < A < Ay
Thus, the second stability restriction for is that

A<

where

;\:{,\* if Ao > Ay

A otherwise.

This, together with the definition A = 1 when R = 2 and (17) proves the theorem

Besides the addition of numerical viscosity to the system of equations, one can
consider another mechanism acting to give stability of the new scheme. As we
sald in Section 2, disturbances with wavelengths greater than O(e) will remain
stable, while shorter wave disturbances may become unstable. Since the shortest
wavelength that can be resolved on the grid is 2Az, by choosing Az large enough
to obey the CFL restriction in (15), we are bounding from below the ratio of the
computationally realizable wavelengths to the laminate frequency ¢, thus pushing
us further into the stable zone.

Figures 2 and 3 below display the spectrum of the numerical amplification ma-
trix G as a function of the ratio of v, the wavelength of the disturbance, to ¢; and
as a function of §. The two arguments are related according to ¥ = 2maimy [ A10.
For this laminate, the parameters are (k1, p1) = (1,1), (k2, p2) = (10,9), m; = 0.5,
hence o = 1.054093, R = 9.592242. Figure 2 shows that under the traditional CFL
conditions where we take max (A1, Az) = 1, shorter wavelengths are amplified. Fig-
ure 3 shows that under the new CFL constraints in (15), where X = 0.360352 for
this example, the scheme remains stable for all wavelengths.
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FIG. 2 Spectrum of the growth matrix for under the traditional constraint

max(Ag,Az) = 1.

4. NUMERICAL RESULTS AND DISCUSSION

We conclude this article by presenting the results of some numerical compu-
tations which illustrate the stability /instability effects of computing the temporal
laminate problem.

Consider the temporal laminate problem (pz:); — k25, with parameters

(klapl) = (1, 1), (kz,pz) = (10,9), m; = 05, (23)

and initial data

2(z,0)=e®, z(z,0)=0. (24)

The period of the laminate is 0.01. This smooth initial data has a support of width
greater than 4. Figures 4 and 5 below show the numerically averaged solution
(z). This computation is performed with the scheme given in the previous section
using the upper limit of the stability constraint in (15). In this case lambda =
0.360352, determining the grid size for the computation. We use a trapezoidal rule
to approximate {2z}, which is z(z;, -) averaged over a period of the laminate. Thus,
for the gth period which goes from ¢ = t3, to t2442,

2 2g+1 2g+2
(z); =5 (mlz]-q +z]-q+ —|—mzz]-q+ ) .

Recall that t3941 — t2g = mi€ and t3g42 — t2g41 = mae with m; + my = 1. The
averaged solution is shown after travelling through 500 laminate layers. The 500th
laminate spans the time interval [4.99,5], so the solution is represented as time

12
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FIG. 3 Spectrum of the growth matrix under the newly derived stability restriction
in (15).

4.995. We see very stable behaviour. In the lower plot of Figure 4, we have
zoomed in on the left going D’Alembert wave. For the data used, the theoretical
homogenization speed (2) is 1.748015 so at time 4.995 the average disturbance
should travel a distance 8.7313 from the origin. The numerical results and the
theory agree quite well.

Figure 6 shows the same problem computed up to time 0.075 with the constraint
max (A1, A2) = 1. The instability due to the growth of the smaller wave modes is
apparent even through just seven laminate layers. Computing beyond this time is
pointless, as the unstable modes destroy the solution.

Note that in the example used, the effective wave speed 1.748015 is greater than
the speeds in the individual materials which are 1 and 1.0541. The homogenization
speed predicted by the theory is /(1/p){k). Thus, it is easy to show that the

effective speed is greater than the individual phase speeds if and only if
—2ApAk < p1 Ak — k2 Ap <0, (25)

where Ap = pz — p1 and Ak = ky — k1. Thus, in an electromagnetic application, by
varying the permeability and permittivity temporally, we can make electromagnetic
signals travel faster than they would in either pure medium. The parameters that
we used in the computational examples in Figures 4 and 5 satisfy the conditions in
(25) since Ap =8,Ak =9 and p; = 1, k; = 10.

The numerical approach developed here is useful for problems where homoge-
nization techniques are difficult to apply, e.g., for problems on finite domains, and
for the checkerboard spatio-temporal configuration in the (z,t) plane. Moreover,
by the change of variables 7 = ¢ — 2/V and { = &, the fast-range (supersonic)

13
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FIG. 4 Averaged solution to the temporal laminate problem with initial data (24),
parameters (23), and stability constraint (15)

Contour plot of averaged solution

T T T

0.9

45f 1
0.8

al |
L Ho7

35) |
3t 1 F  Hos
E25f 1 F  Jos
2r 1 F 10.4
15} 1 03

1L |
0.2

0.5f 1
0.1

10 -5 0 5 10
kl—l p=1 k2—10 p,=9 m =05 £=0.01 }\1 =0.36035

FIG. 5 Contour plot up to time 4.995 of the evolution of the averaged solution to
the temporal laminate problem with initial data (24), parameters (23), and stability
constraint (15).
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FIG. 6 Instability at time 0.075 in the solution of the temporal laminate problem
with initial data (24), parameters (23) and Az such that min(Aq, A2) = 1.

laminate problem with |V| > a; becomes a temporal laminate problem in the (¢, 7)
plane,

1
Pz‘r'i‘v'v‘r:'uCa
S
G U Ty =

The methods used to study the temporal laminate problem can then be applied
to the investigation of the instability properties of the supersonic problem. The
development of an appropriate numerical method will be the subject of another
article.

In this work, it has been made clear that energy plays and important and
interesting role in wave propagation through temporal and supersonic laminates.
Prompted by this finding, we consider further novel energy issues in [11].

APPENDIX A: REFLECTION AND TRANSMISSION COEFFICIENTS

Consider wave motion, governed by (pz;): — kzzz = 0, through a material,
homogeneous in space, with material values given by

k f t
(k,P) — ( 1ap1) or < Oa
(k2,p2) for ¢>0.

We investigate the waves that result when an incident wave travelling through
material 1, experiences the switch in material values at time ¢ = 0, and now is
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moving in material 2. Without loss of generality, the analysis is carried out for the
case of a disturbance s(z + a1t) moving at velocity —a;.

At the interface t = 0, we require continuity of the disturbance and its momen-
tum:

li t)y= L t 26

g Aot = g 2 0), (26)
0z 0z

li —(z,t) = li —(z,1). 2

Jm pr—(z,t) = Hm pa (2, 1) (27)

In general, a disturbance will take the form

z(z,t) = fi(z — a1t) + g1(z + a1t), ¢ <0, (28)
z(z,t) = fa(z — aat) + g2(z + azt), ¢>0, (29)
where a; = \/k;/pi is the speed of sound through material 7. From our assumption

on the nature of the disturbance in material 1, it is clear that f; = 0 and g1(z) =
s(z). The interface compatibility conditions, (26), (27), are then

s(z) = fa(z) + g2(), (30)
pra1s'(z) = praz (g3(z) — f3(2))-

Integrating this latter equation with respect to z gives

p1s(z) = p2 (92(z) — fa(2)), (31)

where p; = p;a; is called the material impedance. By solving (30) and (31) together,
we get that B
fa(z) = Ti2s(z),  g2(z) = Ti2s(2),
where
P2t S M2 —
_HmTh 2T
2,[1,2 ’

24z
So, by (28) and (29), the solution is

)

z(z,t) = T1,2 s(z + ast) + T]_’z s(z —axt) t>0,

z(z,t) = s(z + a1t), t<0.

That is, on experiencing the material switch, the incident wave s breaks into waves
with amplitudes magnified by the amounts Tl,z and T} » (transmission coeflicients).
Similarly, for an initial disturbance s(z — a1t), moving through the material with
parameters (p1, k1), and experiencing a switch to parameters (p3, k2) at time ¢ = 0,
the solution is

z(z,t) = T2 s(z — azt) + Tl,z s(z + azt), t>0, (32)

z(z,t) = s(z — azt), t<0. (33)

For a disturbance in the dual variable v, replace T(T)Lz by T(T)zvl. For example,
v(z,t) = T s(z — ast) + T;’l s(z + ast) for t > 0 when v(z,t) = s(z — azt) for
t < 0.

Note that by looking at the coeflicient of z, it is clear that a wave of a given
wave number gives birth to new waves of the same wavenumber. That is to say, no
new wavenumbers should be observed.
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