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This paper gives two ways of constructing spatio-temporal dielectric composites
(dynamic materials) with negative effective permeability p and/or permittivity e.
In particular, we obtain materials with negative energy density generated by the en-
ergy exchange with the environment. Such materials can be used toward an effective
coupling of wave modes.
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1. Introduction

Spatio-temporal material composites (dynamic materials) have been introduced and
discussed in (Lurie 1997-2001, Blekhman and Lurie 2000) in both mechanical and
electromagnetic contexts. The focus of this paper is on electromagnetic materials,
specifically, isotropic dielectrics, and most of the discussion is related to binary
composites assembled in space-time from two original constituents with material
constants (€1, u1) (material 1), and (ez, p2) (material 2).

Two types of such composites were introduced in (Lurie 1998, 1999, Blekhman
and Lurie 2000), and these were termed activated and kinetic dynamic materials.
The difference between these types is best illustrated by an example.

Consider a transmission line. Its discrete version may be interpreted as an ar-
ray of LC-cells connected in parallel (Fig. 1). Assume that each cell offers two
possibilities: (L1, C1) and (Lgz, C;), turned on/off by a switch S. If the cells are
densely distributed along the line, then, by due switching, the linear inductance
L and capacitance C of the line may become, with any desired accuracy, almost
arbitrary functions of the spatial coordinate z and time ¢. In particular, we may
produce a periodic LC-laminate assembled from segments with properties (L1, C1)
and (Lg, C7), respectively (Fig. 2). In this figure, the pattern of such segments is
shown moving along the z-axis at velocity V, and this motion creates the laminar
structure in space-time. It is essential to note that this construction does not in-
clude any motion of the material itself; what is allowed to move, is the property
pattern alone. This is a pure case of activation, and activated materials appear as a
result of the homogenization procedure applied to this type of construction.
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Figure 1. A discrete version of a transmission line
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Figure 2. A moving (LC)-property pattern - an activated composite

Now consider a dielectric rod assembled from alternating sections of isotropic
dielectrics with material constants (e1,p1) and (ez, p2), respectively (Fig. 3). As
mentioned above, we term these dielectrics materials 1 and 2. Within each section,
the material may be brought into its individual material motion along the z-axis at
velocities v; (material 1) and vz (material 2). A discontinuous velocity pattern may
be implemented either through the use of a special “caterpillar construction” intro-
duced in (Lurie 2000) or, approximately, by a fast periodic longitudinal vibration
of a dielectric continuum in the form of a standing wave. Contrary to the case of
activation, the property pattern, i.e. the set of segments, now remains immovable
in a laboratory frame; what is moving, is the dielectric material itself within the
segments. This is a pure case of kinetization; a kinetic material appears after we
apply homogenization to this type of construction.

In particular, when materials 1 and 2 are identical, the kinetic material turns
out to be a spatio-temporal assemblage of fragments of the same original dielec-
tric, where each fragment is brought into its own individual motion. For reasons
explained below, this type of kinetic material was termed a spatio-temporal poly-
crystal.

In both activated and kinetic scenarios, homogenization introduces an averaged
characterization of the composite material in terms of its effective constants. This
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Figure 3. An immovable material pattern with moving original substances - a kinetic
compsote

characterization is valid for disturbances whose wavelengths are long compared to
the period of the material pattern.

The difference between activated and kinetic materials can be formalized in
terms of the tensor s of their material properties (Lurie 1998). If an isotropic dielec-
tric with properties (€, ¢) remains immovable in a Minkowskian laboratory frame
1=z, T3 =Y, €3 = 2, T4 — ict, then its tensor s is specified by the formula

1
s = _E(alzalz + 13013 + @23a23) — €c(@14014 + @24G24 + A34034), (1.1)

where amn = (1/2)(emen — €nem), m,n = 1,...,4 denote the eigentensors defined
as skew-symmetric combinations of the unit vectors e,, of the Minkowskian z,,-
axes. If the original material is moving with respect to a laboratory frame, then its
material tensor is also given by equation (1.1), with symbols amn replaced by al,,.
formed by the vectors e}, which are linked with e,, by a Lorentz transform. The
material motion generates rotation of the eigenaxes of a/,,,, specifically, of the time
axis z}, relative to the z,,-axes. As a result, this rotation produces the well-known
Minkowski’s material relations for a moving dielectric medium.

The tensor language formalizes the said difference between activated and ki-
netic dynamic composites. For activated composites, the original constituents differ
only in the eigenvalues 1/ uc, ec of their material tensors, whereas their eigentensors
@mn Temain the same in the absence of a relative material motion. There may be,
however, a common background “solid” material motion of the whole assemblage
with respect to a laboratory frame, but this motion will never violate the iden-
tity of eigentensors. For kinetic composites, the original constituents differ also in
their eigentensors; this difference becomes the only difference in the case of spatio-
temporal polycrystals. The term polycrystal is appropriate because it reflects the
difference in orientation of the eigenaxes of @, in the original fragments relative
to the laboratory frame.

The following example gives an additional illustration of the contrast between
activated and kinetic composites. Consider an activated laminate in one spatial
dimension as represented in Figure 4. Once materials 1 and 2 are kept at rest
within the layers, then the s-tensors differ only in their eigenvalues. This particular
feature is characteristic of activation.
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Figure 4. Material laminate in space-time.

Contrary to that, assume that the same material assemblage is brought as a
whole into a material motion at the same velocity V along the z-axis; the property
pattern will then also travel at the velocity V. Clearly, the microstructure in the
(z,t)-plane will be given by Fig. 4 also. The difference is that, in the second case, the
layers are occupied by moving materials, with their eigentensors accordingly mod-
ified: a},,, # @mn- The new tensors a,,,, however, are the same for both materials
because there is no relative material motion. Therefore, the second case appears
to be a combination of activation produced by the pattern moving at the velocity
V, and of kinetization produced by material motion occuring at the same velocity
V identical for both materials. As a result, the effective material parameters £, M
will be the same as they are for a static laminate with the same material mixture;
more precisely, these parameters will not depend on V. In the first case, though,
the effective properties are affected by the pattern’s motion, i.e., they depend on
V. In the second case this dependency is removed by the counter balancing effect
of the material travelling within the layers at the same velocity V.

If we activate a pattern of materials, immovable in a laboratory frame, and
apply homogenization, the effective tensor s of the composite will not be diagonal
in a laboratory frame. To diagonalize it, we need to go to a proper (co-moving)
coordinate frame such that the composite as a whole experiences actual material
motion. The eigentensors a,,, of such a composite will have their eigenaxes rotated
relative to the original laboratory frame. Of course, this is true also with regard
to composites obtained through kinetization; material motion affects eigentensors
of any given material tensor. This observation should be borne in mind specifically
with regard to constructing composites of higher rank.

2. An activated rank-one laminate in space-time
Consider a laminate (Fig. 4) assembled from two isotropic dielectrics characterized

by different pairs of values of € = €(z,t) and p = u(z,t):

(e(2,1), (2, 1)) = { (€1, 1) material 1, (2.1)

(€2, p2) material 2.

We may perceive this construction as the periodic array of segments of the z-axis
carrying materials 1 and 2 and occupying, respectively, portions m; and mgy of
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the period. The array (property pattern) is assumed moving along the z-axis at
the velocity V which specifies the slope of the layers’ interfaces in Fig. 4, whereas
the dielectric materials that fill the segments remain at rest with respect to the
laboratory frame.

The slope V = dz/dt satisfies the inequality

(V? —al)(V? —a3) > 0, (2.2)

where a; = 1/,/€;p; is the phase velocity of light in material 7. This inequality is
necessary to guarantee smoothness of the relevant solution (the non-appearance of
shocks).

For one-dimensional wave propagation, the Maxwell’s system
curl E=—-B;, divB =0, curl H=D,;, divD =0,
is satisfied by the vectors
E =1y, B=u,i, H=wi, D=uy,], (2.3)

representing a plane electromagnetic wave traveling in the z-direction. The material
relations D = ¢E, B = puH generate the system

€Uy = VU, —U; = Vg. 2.4
u (2.4)

After homogenization, it is replaced by the system
acu, + Pus = Vo, + v, (2.5)
Vu, + ur = 8(acv, + Bu), (2.6)
with parameters a, 3,6 defined as

- = s (2.7)

= B=VV——, !
*= e <ﬁ> <ﬁ> <IL(V271ﬂ¢2)>

() = mi(-)1 + ma(-)2,

and c is the speed of light in a vacuum.

In Egs. (2.5), (2.6), we preserved the original symbols u, v to denote the weak
limits of the relevant quantities, i.e. their values averaged over the cell of periodicity.
An equivalent form of these equations is given by (Lurie 1998)

where

DUz — Uy = U, QU; + TU = Uy, (2.8)
with parameters p, ¢, r defined as

2_922 | 1_92
1% a“c _ V — BacB . Jé] (2.9)

P= 6(BV — ac)’ ? _G(ﬂV —ac)’ _G(ﬂV—ac)'
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Introduce the “primed” coordinate frame z', %' moving with velocity w with respect
to the laboratory frame z,t. Coordinates 2z, are linked with z,%¢ by the Lorentz
formulae

2=yt (z—wt), t'=q"" (t — Ez) , Y=+v1-—w?/c. (2.10)

If w is defined as the root of

iwz—}— (c%—r)w—}—q:O, (2.11)

c?
then the system (2.8) becomes diagonalized, i.e. reduced to equations

p q )
v=ve, (B+ 9w =u,, 2.12
(p+ qw)u vy (c2 + o) u = (2.12)
specifying the effective parameters £, M (c.f. (2.4)) via the formulae for the eigen-

values of the material tensor of a composite:

p g 1 p quw
Ee=+—, — =>4 —. 2.13
¢ c + w' Mc ¢ + c ( )
Applying direct inspection and referring to (2.11), we obtain the following expres-
sion for the second invariant of a material tensor:

£
£ (B ) (B0 Ly,
M c w c c

so by Egs. (2.9),

% =pr+q°=1/6. (2.14)
We will also need the formula for the first invariant £c + 1/Mc of the effective
tensors of material parameters. This formula follows from (2.13) and (2.11):

2
Ec+1/Mc=2 4L 10 _P .. (2.15)
C w C C

Given Egs. (2.9), we rewrite (2.15) in the form

Ec—}-l/Mc:m [(V—;—l) é—(az—ﬂz)]. (2.16)

c

We now summarize restrictions that should be observed when operating with
these formulae. We first assume that parameters €1, ..., us are all positive. Without
a loss of generality, set a2 > a2, that is €11 > €au2. This ordering holds true if we
are either in the regular case where €; > €2, 1 > p2 or in the irregular case where
€1 > €2, 1 < p2 (or €1 < €2, 1 > p2). These possibilities will affect the admissible
values of some characteristic parameters listed below.

Define the symbol € as

€ = mi€2 + Mmae€y,
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and similarly introduce the symbols f, (1/e), (1/p). It is easily checked that, for
positive €, p,

€1/e) > 1,
a(1/u) > 1,
a? < (1/9(1/m) < a}, (2.17)
a? < (1/A)(1/e) < a?
Also,
WYaWm < d
Vei/m) > (2.18)
for both the regular and irregular cases; and, for the regular case,
WaWm > d,
({/ai/m) < o (2.19)
As for the irregular case, there exists (Lurie 1997) a range of m; for which
(1/€)(1/B) < af, (2.20)
and a range of m; for which o
(1/e)(1/R) > a2. (2.21)

For example, if e; = p3 =1, €2 =9, w2 = 0.1, then we have the irregular case,
and (2.20) holds if my < 71/72, and (2.21) holds if m; > 1/72. Both inequalities
are satisfied when 1/72 <m; < T71/72.

Aside from the restrictions in (2.2),

V?<a? or V2> al, (2.22)

specifying the slow and fast ranges for V2, we note a universal inequality V2 < cZ.
The roots, w, of equation (2.11) should be real. Since their product equals c?,
one of those roots has absolute value less than or equal to ¢; this particular root
participates in the Lorentz transform (2.10). We thus demand that the discriminant

of (2.11) be non-negative:
2

p 2 .4
(z-7) —4&=0
or, equivalently,
2
(E + rc) —4(pr+¢*) > 0.
c

Given (2.14) and (2.15), this is
1\* ¢
<Sc+ —C) —4= >0, (2.23)
When the roots of (2.11) are real, so are £c¢,1/Me.
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We now consider the explicit expressions for the first and the second invariants
I =&c+1/Mec, I, = E/M of the effective material tensor s (Lurie 1998). Using
(2.7), (2.14), and (2.15), we find after some calculation,

2

L= et — = e —— (V2 — k), (2.24)
e[ (1)
2 (1 1 2.2
P (;2)+(:%)a;;1“2 (2.25)
e _@Vild)
L=1:= o @ (2.26)

Remark 1 It is easy to see that k < c?. Assuming the contrary, gives the inequality
f(c?) < 0 where f()) is defined as

f) =242 [aftLgEﬂ — (%) (%)] —a%al.

Clearly, the equation f(A) = 0 has real roots of opposite signs, the product of
these roots being —a?a%. We check that f(a?) = 2mja?(a? — a2) < 0, and f(a2) =
2maai(aZ — a?) > 0; this means that a2 exceeds the positive root of f()) = 0, and
f(A) > 0 for X > a?. Since ¢? > a2, we conclude that f(c?) > 0, and hence our

assumption is false.
Using (2.24)—(2.26), inequality (2.23) takes on the form:

- c? 2 2 2 ¢ 2 1 /1 g 1 1
(+ ) w2 [ =5 ()] -2 ()] e

Define the parameter o as

E— 2.2
g a,fa%e_ﬂ’ ( 8)
and rewrite (2.25) as
__ (1) (1
o (1) (3) +1 1
k= ~ = (2.29)
c+1 Efl

Inequality (2.27) is now rewritten as

(1+0)2(V?—k)? > 40 [Vz — % (%)] [V2 — % (%)] . (2.30)

We now look for the possibility for parameters £c,1/Mc to become negative.
Egs. (2.24)—(2.30) are valid for arbitrary e, u; however, we first assume that all
€, 4 > 0. The product (2.26) is then non-negative given (2.22) and (2.17). As to the
sum (2.24), it may be negative if either (i) V2 < (1/€)(1/p) and V2 > k, or (ii)
V2> (1/&)(1/p) and V? < k. The second possibility can be made consistent with
(2.30), as shown by the following argument. Referring to (2.22) and to (2.17), we
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conclude that V2 should be taken greater than a%. This may come to agreement
with V2 < k since k may exceed a2 if the value of o is sufficiently large. In fact,
if o — o0, then k monotonically increases approaching the value (1_/6)(1/—,[1,) which
may ezceed al for the irregular case (see (2.21)). Considering this case and choosing
V2 within the interval (a, k), we observe that, for sufficiently large values of o, the
LHS of (2.30) prevails.

This conclusion was based on the assumption that €, u are positive for the orig-
inal materials. When these constants are negative, then the same argument shows
that the effective parameters £, M may become positive. This follows directly from
(2.25).

Directly computing the numerical solution to wave propagation through the
fast range (V? > a2) dynamic materials has proven to be an interesting problem.
A more standard conservative finite difference approach analogous to the one taken
in (Weekes 2001a) for the slow range (V2 < a?) and for static laminates yields
an unstable scheme. Numerical results are degraded since accuracy is quickly lost
due to the growth of short waves which enter into the computation as truncation
and round-off error. In (Weekes 2001b), an approach is taken that successfully
circumvents the appearance of these instabilities in the case of temporal laminates.

For the fast range laminates, we make the following change of coordinates:
T =t — £&,( = z yielding the PDE system (c.f. (2.4))

€Ur + —Vr = V¢,

v
1
M, + Vu,. = ug¢.

In terms of characteristic variables, this is the convection system

(u+v/v), — V“}:a(u /) =0 (2.31)
(u—v/v), + V“Ya(u —v/v) =0, (2.32)

where v = y/€/u is the material impedance, and a is the phase velocity of the
material. In {, 7 coordinates, the fast range dynamic material is as a temporal
material where the property pattern depends on 7 alone and has period e. When
a wave is incident on the pattern interfaces, 7 = ne or 7 = (n + my)e for n an
integer, two new waves arise which both move into the new material. These waves
are of the same wave number as the incident wave when looked upon in the new
coordinate system. However, short wave modes unavoidably introduced into the
computation will grow and destroy the fidelity of the results. We perform a spectral
decomposition of the initial data, and at very regular intervals in the course of the
numerical computation, we filter out those wave modes that lie without the range
initially present. This spectral approach has proved successful and we illustrate
some of the results below.

In Figures 5 and 6, we show contour plots of the results of propagating an initial
Gaussian pulse,

u(z,0) = e_zz, v(z,0) =0,

through a fast range dynamic laminate with material parameters

61:,[1,1:1, 62:9, ,11,2:0.1, m1:05
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The figures show the results in 2,¢ coordinates when V = 4 and V = 1.3. The
horizontal axis gives the z-values, while time is on the vertical axis. Fig. 7 represents
the plot of 1/M versus &, with V variable along the curve. A model value for ¢ is
taken equal to 10ay. The interval (1.1841, 1.5850) of V corresponds to negative
values of both effective parameters.

While V' = 4 lies in the range of pattern velocities that give a homogenized
material with positive effective coefficients, the material resulting from V = 1.3 has
negative effective coefficients. The coordinated wave motion that arises in the latter
case is clearly visible in the contour plot. One may check that the group velocities
predicted by the computations match those predicted by the theory. For V = 1.3,
the theory predicts the velocities to be 1.09324264 and 2.71473084, and for V = 4,
the velocities are 1.40012760 and —2.63617910 for the combination of parameters
used in this example.

We note that these are the results that come from the direct, detailed compu-
tation of the unhomogenized equations, and not from computing solutions to the
effective equations.

Computed Solution -1.5<T1<86.5
11 T T

10

=0.03
®

002 Az

400 layers  epsilon
»

L
-5 o 5 10 15 20
v=4 a,=1a,=1.0541 £=1p=1 £,=9 n,=0.1 m,=0.5

0 i
-15 -10

Figure 5. Wave propagation through a fast range laminate where V = 4 yields a
homogenized material with positive effective coeflicients.

3. A spatio-temporal laminar polycrystal with material
motion maintained along the interfaces

Consider plane electromagnetic waves propagating through a periodic array com-
posed of two types of layers perpendicular to the z-axis which are occupied by an
isotropic dielectric with properties €, p. The dielectric is moving along the z-axis
at the speed vy in layers of the first type, and at the speed vy in layers of the sec-
ond type. Two types of layers are represented in a microstructure with the volume
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Computed Solution —-4.6154 <1 < 3.3846
30 T T T

25

0.036667

20

002 Az

151

epsilon

400 layers

0 L
5 10 15 20 25
V=13 a,=1a,=1.0541 =1 =1 €,=9 u,=0.1 m,=0.5

30 35

Figure 6. Wave propagation through a fast range laminate where V = 1.3 yields a
homogenized material with negative effective coefficients.

m,=0.5 p,=lg=la =1 p,=0.1g,=9a,=1.0541 c=10.5409 sqrt(k)=1.7273

40 T T T T T
—— effective
—— properties
30 + v=1.1841 b
o V=1.585
% V=19755
20t > V= e
10+ : : : -
=
S or 7
—10f B
_o0| B
—30| B
_40 L L L L L
-10 -8 -6 -4 -2 (0] 2

Figure 7. Effective properties in an electromagnetic material.

fractions m; and may, respectively. The waves have the plane (z, z) as their plane of
incidence; the electric vector E is parallel to the y-axis. The electromagnetic field
is characterized as

E = E,j, B=Bji+ B3k, H= Hji+ Hsk, D = D,j, (3.1)
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with the corresponding tensors, F' and f, (Lurie 1998) given by

F = cBsaiz + cBiass — iEsa4,
f = Hzaiz + Hiaz3z — icDsaaq.
Here,
aiz = (1/\/5)(6162 —eze1),
azz = (1/\/5)(6263 — ezez),
aza = (1/V2)(ezeq — eaes), (3.2)
and ej,...,es denote the unit vectors of Minkowskian coordinate frame, z; =

z, T2 — Y, 3 = 2, &4 — ict. Note that

@ ‘a,T _ 1, i:[,k:m,
%m0 otherwise,

l.e. the tensors a;; constitute an orthonormal set.
The material tensor s entering the material relation

f=s:F, (3.3)
is given within the layers by the expression

1 1
_ [ 1t 11
$ = =031 — —Q33033 — €CA3405y, (3.4)
ue ue

where the unit tensors af,, abs, ab, are defined by the formulae (3.2) with the unit
vectors eq,...eq replaced by

e] = ejcoshg + ieysinhg, e} = ez, €3 = e3, €4 = —iessinh¢g + eqcoshg,
and the angle ¢ specified by

tanh ¢; = v1/c for layers of the lst type,

tanh ¢ = { tanh ¢3 = vy/c for layers of the 2nd type.

An equivalent expression for s takes on the form
s = —Aaiza12 + 1G(a12024 + @24012) + Cazeazs — Eazsazs,

where

1
A = —cosh?$ — ecsinh?¢,
ue

G = (i — ec) sinh¢ coshg,
uc

1
C = —sinh?¢ — ec cosh?4,
uc
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and ¢ = ¢; or ¢2 in the relevant layers.
The material relation (3.3) is reduced within each layer to the system

ACB;; - GEz = H3,
CEZ — GCB;; = —CD2, (35)
1
—-By = H,.
1

The Maxwell’s equations take the form:
E;y, = By, Eoy = —B3t, Big + B3, =0, Hi, — H3y, = Dys. (3.6)

The first three equations will be satisfied by introducing potential » through the
formulae

Ez = Ug, Bl = Uz, Bg = —Ug. (37)

These expressions should be applied after we eliminate Hy, H3, D3 from the fourth
equation in (3.6) with the aid of (3.5).

We now subject the system (3.5) and the fourth equation in (3.6) to homoge-
nization; to this end, observe that the components E3, Bs, and H; are continuous
across the layers’ interfaces, and therefore remain unaffected by homogenization.
The homogenized equations take the form:

(A)eBs —(G)E: = (Hs),
(C)Ey — (G)cB; = —c(Dy), (3.8)
(B1) = (wH,
Hy, — (H3); = (D3):.

Applying the same procedure to (3.7), we get
E; = <u’>ta <Bl> = <u>za B3 = _<u>z- (39)

Equations (3.8) and (3.9) are reduced to a second order equation for (u); pre-
serving the symbol u for this quantity, we reproduce the result in the form:

(%’U’z) +c((A)uz)z + [((Gut)s + ((Gug)e] + %(<C>U’t)t —0.

Assuming that the averaged values (u),. .., (C) do not depend upon the slow vari-
ables z, z,t, we rewrite this equation as

1 1
7\ “zz A TT 2 T - = V.
<'u>u, + c{AYugy + 2{G)usy + c(C)u“ 0

By a standard argument, we associate with this equation an effective material

tensor (cf. (3.4))

1 1
0 0 .0 0 .0
§ = ———Q19Q719 — 7 Q23023 — Eca,,a
Me 12%12 < >C 2424
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with some orthonormal set al,, a23, a3, of eigentensors, and eigenvalues 1/Mc, 1/{u)c,
Ec; here, £ and M are defined by the relations

1 1
EC+E—<A—C>—€C+E, (310)

E/M = (G)> — (A)(C). (3.11)
Equation (3.10) shows that the sum ec+ 1/uc is preserved through homogeniza-
tion; as to the product £/M, this one may be made negative even with both € and
p assumed positive. For example, take m; = my = 1/2,¢1 = —¢3; then (G) = 0,
and
(Ay = A, = (1/,u,c)cosh2¢1 — ecsinh?¢,
(C) = Cy = (1/pc)sinh®¢; — eccosh?¢h;.
Because euc? > 1, we have C; < 0, and A; also becomes negative when ¢; is
sufficiently large; in view of equation (3.11), this is a desired result. The effective

parameters £, M are of opposite signs even though € and p are both assumed
positive.

4. The energy considerations

While the effective parameters of the spatio-temporal composite may become neg-
ative, the averaged value of the electromagnetic energy density measured in a lab-
oratory frame remains positive. For the case of one-dimensional wave propagation
through a rank one laminate as considered in section 2, the average electric and
magnetic energy densities are respectively defined by the formulae

1 1
(we) = 5{BD) = (eud), (4.1)
1 1/1
m) = —=(BH) = = ( =42 ). 4.2
(wn) = 5(BH) = 3 (Su2) (42
Because of the continuity of © and v across the layers’ interface, the derivatives
Ur = U+ Vu,,

1
v, = v+Vv, =eVu + —u, (4.3)

n

are also continuous. We use (4.3) to express u;, u, as functions of €, u, V, and the
continuous derivatives, u,, v,:

a’u, n Vo,
Ut = —
V2 —a?2  €V2-a?)’
Vu, vy
u, = -

V2—a? ¢€(V?—-a?)

The value of {w.) is thus calculated as

(we) = leud)=; < (ﬁ)> w2 - <ﬁ> Vurv,
* % <e(vz — a?)2 > Viuri (44
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the derivatives u,, v, remain unaffected by averaging, and are identical with their
averaged values. The latter are linked with the averaged values uy, u,, v¢, v, through

the formulae (see (2.8) and (2.9))

U = u+ Vu,,
vy = w4V, =(@+eV)u, — (g —rV)u = acu, + Bu:. (4.5)
Note that these formulae relate the averaged values of u,, ..., v, and are therefore

different from those in (4.3) which relate pointwise values and hold along the layers’
interfaces.

By eliminating u,, v, from (4.4) with the aid of (4.5), we arrive at the following
expression for {w,):

_8)? _B) (y?_ca
<'u)m> = E<ELEZ))2>'M§+<£(V E) (V E)>’U,t’ulz
a b

(VZ _ (1,2)2

It is easily checked that

1 1
(We) — (W) = (We — W) = Eruf + quu, — Epuf, (4.8)
the latter expression being the averaged action density. The action density is known
to be quasiaffine (Lurie 1998), and in this capacity it ultimately specifies the effec-

tive material tensor. The averaged action density (4.8) serves as the integrand for

[ [~ wmdzat,

generating (2.8) as the Euler equations.
The energy-momentum tensor associated with this density has the tf-component
given by

the functional

O we — W) s 1
————— —(We — Wy) = =T} + —pu’.

Bu, (we = wm) = grue + 3pus
This is interpreted as the overall averaged energy density, measured in a laboratory
frame, of the system defined as the union of the wave, the medium, and the ezternal
agent affecting the property pattern. For V' # 0 or V' # oo, this averaged energy
density is not equal to the sum (w, + wy,), which represents, also in a laboratory

Ttt = uy

frame, the energy of the wave and medium combined, with no contribution of the
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external agent. The reason for this phenomenon is, of course, due to the homog-
enization procedure that preserves the averaged value of original action density
(1/2)(u,ve — uyv,) as the same expression calculated this time for the averaged val-
ues U, U, vz, v (the quasiaffinity property). For the energy density, however, this
property does not hold true.

The analysis of section 2 has shown how to create dynamic materials with
negative effective properties £, M. The energy density

11 ]_ 1
Tt v EE’LL?: =+ W’Uj:
of such a material, measured in its proper coordinate frame (2',t'), is negative if
&€, M < 0. The energy flux density

1 1
Tt 2 = (E X H) -k = —Hut:uz:

also changes its sign to opposite, and the group velocity Tt’Z’/Tt’tl remains identical
with the phase velocity 1/+/EM. The negative wave energy may appear when a
uniform dielectric with positive material constants €, 4 is moving with velocity V
relative to an immovable observer. In the absence of motion (V = 0), the observer
registers two waves of positive energy travelling with phase velocities +a in opposite
directions. In the presence of motion (V' > 0), these waves are viewed by the
observer, in his own coordinate frame, as a “fast” wave travelling with the velocity

V+a
1+ Va/c?’

and a “slow” wave with velocity

V—-a
1—-Va/c?

Of these waves, only the slow wave possesses the negative energy density when
V > a (Chu 1951, Sturrock 1960, Pierce 1974); the energy of the fast wave remains
positive. The group velocity of either wave coincides with its phase velocity.

In our situation, an observer that is immovable in a proper coordinate frame
(2',t'), registers waves moving with the phase velocities +1/+/EM in opposite di-
rections. Both waves now carry negative energy, and either of them can be coupled
with the matching wave propagating along the adjacent transmission line (Louisell
1960, Pierce 1974), as it occurs in a travelling wave tube (TWT). A novel feature is
that we now have two waves that may pump energy into transmission lines, whereas,
in a standard TWT situation, we have only one such wave.

KAL acknowledges the support to this work through NSF Grant DMS No. 9803476.
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