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The dynamic materials, particularly, the spatio-temporal composites, have
been investigated in a number of recent publications [1-5]. In the present
paper, we examine a dynamic performance of an elastic bar with material
parameters specified as an activated (moving at uniform velocity V) periodic
pattern of segments occupied by ordinary materials 1 and 2, with density p
and stiffness k specified as (p1, k1) and (p2, k2 ), respectively. We particularly
consider the low frequency wave propagation arising when the period d of the
material pattern is much less than the wavelength A of a dynamic disturbance.
The bar is excited at its left end by a signal g(t).

1. STATEMENT OF THE PROBLEM

The longitudinal wave propagation along the elastic bar is governed by
the equation

(pz)e — (kzg)z = 0, (1)

where z denotes the displacement of a material element, and symbols p, k
are used for the material density and stiffness. An equivalent first order
system of equations reads

pzi = 22, k2l =22 (2)

We assume that the material parameters p, k address the following prop-
erties:

(i) they are both space and time dependent;

(ii) at each point (z,t) the pair (p, k) may take either the values (p1, k1)
or the values (pz, k2); we specify these characterizations as “material 1”
and “material 2,” respectively;
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(iii) an elastic bar is activited [1,2], i.e. materials 1 and 2 are applied
within alternating layers in the (z,t)-plane, the slope dz/dt = V of these
layers being so chosen as to ensure observance of both kinematic and dy-
namic compatibility conditions across the interfaces separating the layers.
These conditions demand that both z! and 2% be continuous across any
such interface; they will be satisfied if we postulate the following relation-
ship between V and the phase velocities a; = \/ki/pi, 1 =1,2 (a2 > a1)

in materials 1 and 2 [1]:

(VZ—ai)(V* —a3) > 0. (3)

In this paper, we resort to the Laplace transform to examine solutions
to the original system (2) with coefficients p, k defined as the periodic
functions of the fast variable £/d, &€ = =z — Vit. We shall be particularly
interested in the behavior of such solutions near the left end z = 0 of a
semi-infinite bar: 0 < z < oo; at this end, we apply the excitation condition

21(0,8) = g(t), t> 0. (4)

The dynamics of the wave propagation will be examined under zero initial
conditions:

2Y(z,0)=0, 2%*(z,0)=0, 0<z < oo.

2. AN ACTIVATED ELASTIC BAR: GENERAL FORMULAE

By introducing the new variables
E=z-Vt, T=1t, (5)
we reduce the system (2) to the form

\4 1 1/p 2

1 _

% T yr_ g2ty g2 (6)
k 1%

2 _ 1 2

% T Ty _ g2 ZT+V2_G2 Zrs

where a = 1/k/p is the phase velocity of waves in the material.
Assuming that p, k are both £-dependent, we apply the Laplace transform
inT

zZ(¢,p) = /000 e PT2(€, T)drT. (7)
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Egs. (6) then obtain the form

- 14 = =
% = ya_a (VF - (/nF) =0,

P

z +

with the coefficients periodic in £ with period d. The Floquet analysis
applied to this system reveals the following characterization of its solution.
Assume that £ > 0, and material 1 occupies the intervals

(n—m)d<€é<nd, n=12..., (9)
whereas material 2 is concentrated within the supplementary intervals
nd<f{<(n+my)d, n=0,1,... (10)

Here m; and my denote, respectively, the volume fractions of materials 1
and 2 in the lamination; clearly, m; + my = 1.
A general solution to the system (8) is given by

A" € P (1, &) + Aze"?$ P(ug, £),
2 = Ale’“fQ(,u,l,ﬁ)+A2€“2€Q(M2,f)a (11)

z—l

with Py,..., Q2 being d-periodic functions.

Here, A; and A3 denote the coefficients to be determined by the bound-
ary conditions, and p1, p2 represent the Floquet characteristic exponents
defined by the formula

p1,2d =V (01/a1 + 02/az) £ x(61,62) (12)
with the upper (lower) sign related to ui(p2), and

0; = pdey;, ;i = miai/(Vz — af), 1=1,2, (13)
chx(01,62) = chB1chB; + oshfyshbz,
(v +73)/27172, ¥ = ki/ai = piai = Vkipi, i=1,2.

Clearly, 0 > 1. When ¢ = pd/a; << 1, Eq. (13) defines x as

[«

x:\/0$+0§+20619z:q¢, ¢:a1\/<p§+<p%+2mp1<pz- (14)

By (3), 1 and ¢ are of the same sign; because o > 1, the factor ¢ in (14)
is real.
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If p = iw with w real, then
chx = coswdyp; cos wdpy — osinwdp; sinwdp;.

If the absolute value of the right hand side of this equation exceeds 1, then
the roots x become real, and solution (11) contains exponentially increasing
terms. This will happen if the value wd/a; falls into the relevant non-
passing bands; the small values wd/a; << 1 do not belong to such bands,
and the corresponding x will be imaginary. The functions P(u, £), Q(g, &)
in (11) are given by the formulae

e (r-vEm)End) | po-(h-vdm)end) ¢ (g,
P(p, &) = 1o
Ce(r=v2m)(6mnd) | = (n-viz)(€nd) ¢ o (1),

y [-e e pelbmrm) ] e o)

Qp, &) = (16)
" [_Ce—(u—ﬁ)(ﬁ—nd)+De—(u—ﬁ)(£—nd)], £ e (10).

Here, u takes the values p1, g2, and B = B(p), C = C(p), and D = D(u)
are defined as solutions to the system

-B + C+D=1 (17)
B + (C—D)(7v2/m) =1,
—Be® + CePFX 4 D2 FX = ¢,

with upper (lower)sign related to g = p1 and to p = p,.

Both P(u,&), Q(u, &) are d-periodic in &; these functions in fact depend
on £ — nd, this argument belonging to the range [—m;d, 0] for (9), and to
the range [0, mad] for (10).

£ —nd
d

<0 for (9); 0< 5_d"d

—my < < mg for (10).

In both cases, the difference £ — nd will be of order d. We may interpret
(11) as modulated waves, with e#é being the long wave modulation factor,
and P(p,€), Q(u, &) representing the short wave carriers. The homogeniza-
tion (averaging) procedure detects the low frequency envelopes et and
eliminates the high frequency carriers P and Q.
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3. THE LONG WAVE ASYMPTOTICS

In [1,2], there was obtained an asymptotic solution to this problem valid
for an activated infinite elastic bar under the assumption p = iw,wd/a; <<
1, i.e. for a low frequency dynamic disturbance. This solution was shown
to satisfy a homogenized equation (1), i.e.

o)1 (20

5]

z} = + V |z =
V5 —k V5 k
T t
p(H) - (#) v-k(3))
TR % MLV — 2 4 =0. (18)
Yoves g oves_ k a?a?
p p , 4%

Here, the symbol 2! is preserved to denote the weak limit of the same
quantity attained as d — 0, i.e. the value of z! averaged over the period
d of a laminate structure; with the aid of the volume fractions m; and m;
of materials 1 and 2 in the layout we define the symbol g = mjp; + map1,
and so on. The symbols z,¢ in (18) are related to slow variables (versus
fast variables z/¢,t/€).

Eq. (18) governs the propagation of the envelopes of the modulated
waves (11). It was obtained in [1] by a regular technique of homogenization,
and in [2] with the aid of the Floquet Theory. The Floquet exponents were
computed for Egs. (8) in the low frequency limit; they are specified as (cf.

(12))

p
MH1,2 =
(V2 —al)(V2 —a})

D (=) o

The second term in this formula corresponds to x/d in Eq. (12); it is real
once (3) holds.

A direct inspection shows that the ratios p/u;, i = 1,2, are of opposite
signs if either (i) V2 < a? < @, or (ii) V2 > a2 > @? and simultaneously

Vic<k (%) If, however, V2 > a2 > a? but V% > k (%), then p/ui, 1 =

V(V?—-&*)+aiaz | (E) <V2 -

1,2, appear to be of the same sign.

If Re p = 0, then the quantities —p/pi, 7 = 1,2, denote the phase veloc-
ities of the envelopes eP”t#i¢ that emerge after we average the functions
(11) over the period d of lamination. These velocities are measured in the
coordinate frame £ = z — V¢, 7 = ¢, moving at the speed V with respect
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to the laboratory frame (z,t). This motion occurs from left to right if
V > 0, and in the opposite direction otherwise. In a laboratory frame,
however, the envelopes are specified as e(P~#:V)t+#i%  with the phase ve-
locities —p/p; + V. In the low frequency limit, these velocities appear to
be

V() - (@) ras ()-8 (- )
e 47+ ()]
(20)
with their product equal to
G
_a2a2p (E) —— ((%)) .
The product is negative once
ks > ki, p2 < p1 (regular mode), (21)

and it may be made positive by a suitable choice of V and m; if either
ka > k1, p2 > p1, or k2 < k1, p2 < p1 (irregular mode). (22)

We assume, however, that ay = 1/ka2/p2 > a1 = y/k1/p1 in all cases. We

conclude that, for the irregular mode, a coordinated wave propagation may
occur with respect to the (z,t)-frame, i.e. the envelopes may propagate in
the same z direction. Since always

E(%) > ﬁ,

the coordinated wave propagation will take place if the velocity V may be
so chosen that

- (1 1
(()sves i
g 5 (1)
and at the same time this velocity remains consistent with (3). This latter
requirement can be satisifed only for the irregular mode (22). For example,
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if kg =10,p2 =9,k1 = p1 =1 and 1/72 < my < 71/72, then

ﬁ<a€<a§</€(%), (23)

Pz

and the coordinated waves become possible if either

1
PERY <Vi af, (24)
5(1)
or
2 2 1 1

We shall be particularly interested in the behaviour of solution in the
irregular case (24) that holds when k2 > ki, p2 > p1 (see (22)). For this
case, the phase velocities —p/p1,2+V (see (20)) are both positive if V > 0,
and both negative if V < 0. In the latter case, the envelopes e(P—#:V)t+uiz
both propagate towards the left end z = 0; on the other hand, at each
instant ¢, there is an interval (9) or (10) adjacent to this end, and the

_ z—apt

original waves e’ (t+"+“1 = ep‘z’——z’: and e = e’ V=42 propagate
with the phase velocities a; or a; through these intervals from left to right,
away from the point z = 0. These waves carry disturbances initiated by
the boundary signal (4); these disturbances are partly reflected, partly
transmitted at each encounter with the oncoming interfaces. Ultimately,
the energy of these waves plus the energy pumped into (out of) the system
by the external agent activating the material pattern, is transformed into
the energy of low frequency (envelope) waves, and these waves leave the
system through its left end z = 0. In the following section, we examine the
asymptotics of solution valid in the vicinity of the point z = 0 as well as
at the large distances from it. We shall see that the high frequency waves
form up a wavefront propagating away from z = 0; the intensity of this
wavefront decays exponentially with z.

V4 H'V_Laz

4. THE WAVEFRONT: CASE V < 0,V? < A2 < A2
The solution z!(¢, 7) of (6) is taken to be

AEr)= 5 /K P dp (26)

me

where KC is a path Re p = v > 0 to the right of all the singularities of the
integrand (11) in the complex p-plane. The terms in (11) introduce the
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integrals

1
I = Ai(p)e?P™THE Py, €)dp, i=1,2. (27)
9

o2mi

Suppose that A;(p) are regular for Re p > v, and take the large values
of v. Taking V < 0,V? < a? < a, we obtain asymptotically (see (13))

eX ~ H‘_O'e—(01+92)

2 )
the exponentials e”¢ i = 1,2 are calculated as
l+o d( )
pid v 28
et 110 (28)
2 ™y ™o

p2d pd(v—a1+v—a2) 29
e T - . (29)

y (15), the product e?™t#é P(p, ) = ePTHimdtnlé—nd) p(, ¢) appears to
be

e ) 4 pevda €D otund, ¢ ¢ (9),
(30)

{C_’e vap (¢-nd) + De#az(g_"d)} epTtemd ¢ o (10).

For large v > 0 and p = p2, the system (17) specifies B(pz), C(p2), and
D(pz) as

Y1 — Y2 2v1
B(uz) ~ . Cluz) ~ . D(uz) ~ 0,
(w2) - (2) P (p2)

and the expressions (30) become

eV—ax

(I+o)" Y1+ 72
x elrHeTED] e rle-ndl(+ia) ¢ (9),

2]

2" v (end) | ML= V2 ok (é-nd)

2711 2R (6-nd) plrre( i
Y1+72 (L+o)"

x e PEnd(v=2) ¢ e (10). (31)
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If p — oo0,d — 0 but pd/a; — 0, these formulas introduce a substantial

factor eP[T+é( Vl—ﬂ)] if r —|—£< —) < 0, the contour K in (27) can be closed
by a large semicircle to the rlght and the integral (27) for p = p2 will be
Z€ero:

1
I, =0 if T+E<m><0,

or, in the z,t variables,

L=0 ifz— |V- t> 0. (32)

<V];a,>
This integral defines the wave with the wavefront moving with velocity

1 V{e)—aa;
<ﬁ> = v & (33)

w=V —

Since V' < 0, this velocity is positive, and the front propagates to the right.

The difference w — *4*2 is positive if V' < 0; the motion of the pattern

to the left accelerates the wavefront moving to the right. As to I;, this

integral should be neglected by taking A;(p) = 0 since otherwise the factor

eP"t#1¢ becomes unbounded at large v because V < 0 and V? < a? < a2.
We conclude that the problem with the boundary condition

240,7) = f(1), 7>0 (34)

applied at £ = 0, allows for the solution (27), with ¢ = 2 and A3(p) defined
as

As( —PTd
1+B/ f(r)e T.

The behaviour of solution near the wavefront is determined by Egs. (31).
Due to (9), (10), the factors £ — nd may be replaced by zero in the first
approximation, and we obtain near the wavefront

21(5,7—)~(1_|2_0_) f(T—wEV), T>wfv. (35)

Since ¢ > 1, the amplitude of the wave approaches zero as the number n
of layers increases.

5. THE MAIN (STATIONARY) DISTURBANCE

In this section, we examine the asymptotic behaviour of the integral I,
in the limit n = 7a1/d — oo, assuming that £/7a; = const.
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As in a similar problem treated in [6], introduce nondimensional quanti-
ties
g = pd/a1, &=¢&/Ta,
and the time scale
0 =2m/w
related to the disturbance f(¢) (see (34)). The integral I; becomes

_la 1Y L(g+rpad)y
=g /’CAz (qd)e P(p2, kdn)dg (36)

The factor uz depends on g, this dependence is given by (12) where we
choose the lower sign (u = p2)

pad = an1(901/111 + 902/‘12) - X(qal‘Pla qal‘Pz)- (37)

When g << 1, the x-term is defined by (14).

Given the structure (15) of P(u,£), it is relevant to apply the method of
steepest descent to calculate (36) for large n. Because the factors £ — nd
in the exponents (15) are of order d, we shall treat these exponents as
constants in the first approximation. We shall also assume that the function
B(p2) is regular on the path £ of the steepest descent.

The main part of I comes from the neighborhood of the stationary point
g = ¢* at which

d
%(q + kpad) = 0. (38)

We then obtain

b ~ copln(a” + ndia(a N5z % [ A(a%P(a(a), i)

1 * *
-exp 577’“1,“’2’(‘1 g —q )2] dg, (39)

where we applied expansion of g + kuad up to the guadratic term in g —g*.
We now return to the variables p, £, 7:

o ~ coplry’ + Epa(o V5 [ Aap) P,

ezp %Eu'z'(p*)(p — p*)z] dp, (40)
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with p* being the function of £, 7 determined by

T+ €pa(p”) = 0. (41)

Eq. (40) shows the asymptotic behaviour of I at 7a/d — oo with k =
&/7ay fixed. The exponential factor esp[rp* + ua(p*)] appears to be a
predominant part of (40); it is stationary in £ if

* *

0 0
612 + p2(p") + Epn(p™) 6p£ =

T

0,

or, given (41), if

p2(p”) = 0.

It is seen from Egs. (12), (13) that p* = 0 is the root of u2(p); the derivative
wh(px) = ph(0) is given by the factor of p at the rhs of (19) where we should
take the lower sign. But for V < 0, V? < a? < a2, the said factor is positive,
and p5(0) is also positive. This means that (41) may hold only for £ < 0, i.e.
outside the admissible domain £ < 0. We conclude that the envelope waves
with phase velocities (20) cannot propagate in this case. The solution is
reduced to the expression (35); the disturbance damps out to zero behind
the wavefront as it propagates away from £ = 0.

6. THE ASYMPTOTICS IN (X,T)-VARIABLES

Eq. (35) represents the asymptotic solution expressed through the vari-
ables (£, 7). Returning to the original variables z,t (see (5)), we find the
value g(t) of z! at z = 0 to be equal to z'(—Vt,t) calculated from (35):

g(t):zl(—Vt,t)rv(lio_)nf( hd t). (42)

w— Vi

If z = 0 then £ = —Vt; for £ belonging to the nth interval (9) or (10), we
may apply the approximation £ ~ nd, and, consequently,

Eq. (42) now takes the form

9(t) ~ (1—12—0)_
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The function f(#) now becomes

0=(2)" 7 ()

Applying this towards (35) an defining n as n ~ £/d, we arrive at the
asymptotic expression for z!(z,t):

w—V
2 dw ® z
1
- (i-2).
2 (2,%) <1—|—0’) I w

By (33), both w and w — V are positive if V' < 0; we observe that accomo-
dation to the boundary condition z1(0,%) = g occurs through the boundary
layer of thickness wd/[(w — V) In(1 + 0)/2].

als

w=V g

g

ACKNOWLEDGMENTS

The author acknowledges the support of this work through the NSF Grant DMS
9803476.

REFERENCES

1. K. A. Lurie, Effective properties of smart elastic laminates and the screening phe-
nomenon, Int. J. Solids Structures, 34 (13), (1997), 1633-1643.

2. K. A. Lurie, Control in the coefficients of linear hyperbolic equations via spatio-
temporal composites, in “Homogenization”, V. Berdichevsky, V. Jikov, G. Papani-
colaou, eds., World Scientific, Singapore, 1999.

3. K. A. Lurie, G-closures of material sets in space-time and perspectives of dynamic
control in the coefficients of linear hyperbolic equations, J. Control Cybern. (1998),
283-294.

4. K. A. Lurie, The problem of effective parameters of a mixture of two isotropic di-
electrics distributed in space-time and the conservation law for wave impedance in
one-dimensional wave propagation, Proc. Roy. Soc. Lond., ser A, v. 454 (1998), 1767-
1779.

5. I. I. Blekhman, and K.A. Lurie, On dynamic materials, Proceedings of the Russian
Academy of Sciences (Doklady), v. 371, No. 2 (2000).

6. G. B. Whitham, Linear and Nonlinear Waves, Wiley, 1999.



