
Second Law of Thermodynamics 
Alternative Statements 

► Clausius Statement 
► Kelvin-Planck Statement 
► Entropy Statement 

There is no simple statement that captures all 
aspects of the second law.  Several 
alternative formulations of the second law are 
found in the technical literature.  Three 
prominent ones are:   



Kelvin Temperature Scale  
Consider systems undergoing a power cycle and a 
refrigeration or heat pump cycle, each while 
exchanging energy by heat transfer with hot and cold 
reservoirs: 

(Eq. 5.7) 
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The Kelvin temperature is defined so that 



Example:  Power Cycle Analysis 

    A system undergoes a power cycle while 
receiving 1000 kJ by heat transfer from a 
thermal reservoir at a temperature of 500 K 
and discharging 600 kJ by heat transfer to a 
thermal reservoir at (a) 200 K, (b) 300 K, (c) 
400 K.  For each case, determine whether 
the cycle operates irreversibly, operates 
reversibly, or is impossible.   

Solution:  To determine the nature of the cycle, compare 
actual cycle performance (η) to maximum theoretical cycle 
performance (ηmax) calculated from Eq. 5.9 
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Example:  Power Cycle Analysis 
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Actual Performance:  Calculate η using the heat 
transfers: 

Maximum Theoretical Performance:  Calculate 
ηmax from Eq. 5.9 and compare to η: 
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Reversibly 0.4 = 0.4 

Impossible 0.4 > 0.2 

Irreversibly 0.4 < 0.6 

η    ηmax 



Clausius Inequality 

► The Clausius inequality considered next 
provides the basis for developing the 
entropy concept in Chapter 6. 

► The Clausius inequality is applicable to any 
cycle without regard for the body, or 
bodies, from which the system undergoing 
a cycle receives energy by heat transfer or 
to which the system rejects energy by heat 
transfer.  Such bodies need not be thermal 
reservoirs.  



Clausius Inequality 
► The Clausius inequality is developed from 

the Kelvin-Planck statement of the second 
law and can be expressed as: 
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where 

∫ indicates integral is to be performed over all parts of the 
boundary and over the entire cycle. 

subscript indicates integrand is evaluated at the boundary 
of the system executing the cycle. 

b 



Example:  Use of Clausius Inequality 

    A system undergoes a cycle while receiving 1000 
kJ by heat transfer at a temperature of 500 K and 
discharging 600 kJ by heat transfer at (a) 200 K, (b) 
300 K, (c) 400 K.  Using Eqs. 5.13 and 5.14, what 
is the nature of the cycle in each of these cases?   

Solution:  To determine the nature of the cycle, 
perform the cyclic integral of Eq. 5.13 to each case 
and apply Eq. 5.14 to draw a conclusion about the 
nature of each cycle. 



Example:  Use of Clausius Inequality 

Applying Eq. 5.13 to each cycle: cycle
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Example:  Use of Clausius Inequality 

Applying Eq. 5.13 to each cycle: cycle
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(b)  kJ/K 0
K 300
kJ 600

K 500
kJ 1000

cycle =−=−σ σcycle = 0 kJ/K = 0 

(a)  kJ/K 1
K 200
kJ 600

K 500
kJ 1000

cycle −=−=−σ σcycle = +1 kJ/K > 0 

Irreversibilities present within system 

No irreversibilities present within system 

(c)  kJ/K 5.0
K 400
kJ 600

K 500
kJ 1000

cycle =−=−σ σcycle = –0.5 kJ/K < 0 

Impossible 





Introducing Entropy Change and the 
Entropy Balance 

► Mass and energy are familiar extensive 
properties of systems.  Entropy is another 
important extensive property. 

► Just as mass and energy are accounted 
for by mass and energy balances, entropy 
is accounted for by an entropy balance. 

► Like mass and energy, entropy can be 
transferred across the system boundary. 



Introducing Entropy Change and the 
Entropy Balance 

► The entropy change and entropy balance 
concepts are developed using the Clausius 
inequality expressed as: 
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where 

σcycle = 0  no irreversibilities present within the system 
σcycle > 0  irreversibilities present within the system 
σcycle < 0  impossible 

Eq. 
5.14 



Defining Entropy Change 
► Recalling (from Sec. 1.3.3) that a quantity is a property if, 

and only if, its change in value between two states is 
independent of the process linking the two states, we 
conclude that the integral represents the change in some 
property of the system. 

► We call this property entropy and represent it by S.  The 
change in entropy is 

where the subscript “int rev” signals that the integral is 
carried out for any internally reversible process linking 
states 1 and 2. 

(Eq. 6.2a) 



Entropy Facts 
► Entropy is an extensive property. 
► Like any other extensive property, the change in 

entropy can be positive, negative, or zero: 

► By inspection of Eq. 6.2a, units for entropy S are 
kJ/K and Btu/oR. 

► Units for specific entropy s are kJ/kg·K and Btu/
lb·oR. 



Entropy Facts 
► For problem solving, specific entropy values are provided in 

Tables A-2 through A-18.  Values for specific entropy are 
obtained from these tables using the same procedures as 
for specific volume, internal energy, and enthalpy, including 
use of 

(Eq. 6.4) 

for two-phase liquid-vapor mixtures, and 

(Eq. 6.5) 

    for liquid water, each of which is similar in form to 
expressions introduced in Chap. 3 for evaluating v, u, and h. 



Entropy and Heat Transfer 

Integrating from state 1 to state 2, 

(Eq. 6.23) 

► On rearrangement, Eq. 6.2b gives 

► In an internally reversible, adiabatic process (no heat 
transfer), entropy remains constant.  Such a constant-
entropy process is called an isentropic process. 



Entropy and Heat Transfer 

    From this it follows that 
an energy transfer by 
heat to a closed system 
during an internally 
reversible process is 
represented by an area 
on a temperature-entropy 
diagram: 



Entropy Balance for Closed Systems 

► The entropy balance for closed systems can be 
developed using the Clausius inequality expressed as 
Eq. 5.13 and the defining equation for entropy change, 
Eq. 6.2a.  The result is 

(Eq. 6.24) 

► In accord with the interpretation of σcycle in the Clausius 
inequality, Eq. 5.14, the value of σ in Eq. 6.24 adheres to the 
following interpretation 

= 0 (no irreversibilities present within the system) 
> 0 (irreversibilities present within the system) 
< 0 (impossible) 

σ: 

where the subscript b 
indicates the integral 
is evaluated at the 
system boundary. 



Entropy Balance for Closed Systems 

► Since the expansion occurs adiabatically, Eq. 6.24 
reduces to give 

Example:  One kg of water vapor contained 
within a piston-cylinder assembly, initially at 
5 bar, 400oC, undergoes an adiabatic 
expansion to a state where pressure is 1 bar 
and the temperature is (a) 200oC, (b) 100oC.  
Using the entropy balance, determine the 
nature of the process in each case. 
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where m = 1 kg and Table A-4 gives s1 = 7.7938 kJ/kg·K. 

Boundary 



Entropy Balance for Closed Systems 

(a)  Table A-4 gives, s2 = 7.8343 kJ/kg·K.  Thus 
Eq. (1) gives 
 σ = (1 kg)(7.8343 – 7.7938) kJ/kg·K = 0.0405 kJ/K 

Since σ is positive, irreversibilities are present within 
the system during expansion (a). 

(b)  Table A-4 gives, s2 = 7.3614 kJ/kg·K.  Thus 
Eq. (1) gives 
 σ = (1 kg)(7.3614 – 7.7938) kJ/kg·K = –0.4324 kJ/K 
Since σ is negative, expansion (b) is impossible:  it 
cannot occur adiabatically. 



Entropy Balance for Closed Systems 

►  Since σ cannot be negative and  
►  For expansion (b) ΔS is negative, then  
►  By inspection the integral must be negative and 

so heat transfer from the system must occur in 
expansion (b).   

More about expansion (b):  Considering Eq. 6.24 

= + < 0 ≥ 0 < 0 



Entropy Rate Balance for Closed Systems 

► On a time rate basis, the closed system entropy 
rate balance is 

(Eq. 6.28) 
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the time rate of change of the entropy of the 
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the time rate of entropy transfer through the 
portion of the boundary whose temperature is Tj 

time rate of entropy production due to 
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Example:  An inventor claims that the device shown 
generates electricity at a rate of 100 kJ/s while receiving a 
heat transfer of energy at a rate of 250 kJ/s at a temperature 
of 500 K, receiving a second heat transfer at a rate of 350 kJ/
s at 700 K, and discharging energy by heat transfer at a rate 
of 500 kJ/s at a temperature of 1000 K.  Each heat transfer is 
positive in the direction of the accompanying arrow.  For 
operation at steady state, evaluate this claim. 

Entropy Rate Balance for Closed Systems 
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► Applying an entropy rate balance 
at steady state 

Entropy Rate Balance for Closed Systems 
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► Applying an energy rate balance 
at steady state 

Solving 

The claim is in accord with the first law of thermodynamics. 

Solving 
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Since σ is negative, the claim is not in accord with the 
second law of thermodynamics and is therefore false. 
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Entropy Rate Balance for Control Volumes 

► Like mass and energy, entropy can be transferred into or 
out of a control volume by streams of matter. 

► Since this is the principal difference between the closed 
system and control volume entropy rate balances, the 
control volume form can be obtained by modifying the 
closed system form to account for such entropy transfer.  
The result is 

(Eq. 6.34) 

where iism eesmand account, respectively, for rates of entropy 
transfer accompanying mass flow at inlets i and exits e. 



Entropy Rate Balance for Control Volumes 

► For control volumes at steady state, Eq. 6.34 reduces to 
give 

(Eq. 6.36) 

► For a one-inlet, one-exit control volume at steady state, 
Eq. 6.36 reduces to give 

(Eq. 6.37) 

where 1 and 2 denote the inlet and exit, respectively, and 
is the common mass flow rate at these locations. 
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Example:  Water vapor enters a valve at 0.7 
bar, 280oC and exits at 0.35 bar. (a) If the 
water vapor undergoes a throttling process, 
determine the rate of entropy production 
within the valve, in kJ/K per kg of water 
vapor flowing. (b) What is the source of 
entropy production in this case? 

Entropy Rate Balance for Control Volumes 

( ) cv210 σ +−= ssm

p1 = 0.7 bar
T1 = 280oC

p2 = 0.35 bar
h2 = h1

p1 = 0.7 bar
T1 = 280oC

p2 = 0.35 bar
h2 = h1

0 

→ 

(a)  For a throttling process, there is no significant 
heat transfer.  Thus, Eq. 6.37 reduces to 



Entropy Rate Balance for Control Volumes 

From Table A-4, h1 = 3035.0 kJ/kg, s1 = 8.3162 kJ/kg·K. 

Solving 

For a throttling process, h2 = h1 (Eq. 4.22).  Interpolating 
in Table A-4 at 0.35 bar and h2 = 3035.0 kJ/kg,  
s2 = 8.6295 kJ/kg·K. 
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Finally (8.6295 – 8.3162) kJ/kg·K = 0.3133 kJ/kg·K 

(b)  Selecting from the list of irreversibilities provided in 
Sec. 5.3.1, the source of the entropy production here is 
the unrestrained expansion to a lower pressure undergone 
by the water vapor. 



Comment:  The value of the entropy production for a single 
component such as the throttling valve considered here often 
does not have much significance by itself.  The significance of 
the entropy production of any component is normally 
determined through comparison with the entropy production 
values of other components combined with that component to 
form an integrated system.  Reducing irreversibilities of 
components with the highest entropy production rates may 
lead to improved thermodynamic performance of the 
integrated system. 

Entropy Rate Balance for Control Volumes 

p1 = 0.7 bar
T1 = 280oC

p2 = 0.35 bar
h2 = h1

p1 = 0.7 bar
T1 = 280oC

p2 = 0.35 bar
h2 = h1



Calculating Entropy Change 

► The property data provided in Tables A-2 
through A-18, similar compilations for other 
substances, and numerous important relations 
among such properties are established using the 
TdS equations.  When expressed on a unit mass 
basis, these equations are 

(Eq. 6.10a) 

(Eq. 6.10b) 



Calculating Entropy Change 

T
dhds =

► As an application, consider a 
change in phase from saturated 
liquid to saturated vapor at 
constant pressure. 

► Since pressure is constant, Eq. 
6.10b reduces to give 

► Then, because temperature is also constant during the 
phase change 

(Eq. 6.12) 

This relationship is applied in property tables for 
tabulating (sg – sf) from known values of (hg – hf). 



Calculating Entropy Change 
► For example, consider water vapor at 100oC 
(373.15 K). From Table A-2, (hg – hf) = 2257.1 kJ/kg.   

► Next, the TdS equations are applied to two 
additional cases:  substances modeled as 
incompressible and gases modeled as ideal 
gases. 

which agrees with the value from Table A-2, as 
expected. 

(sg – sf) = (2257.1 kJ/kg)/373.15 K = 6.049 kJ/kg·K 

Thus 



Calculating Entropy Change of an 
Incompressible Substance 

► The incompressible substance model assumes the specific 
volume is constant and specific internal energy depends 
solely on temperature:  u = u(T).  Thus, du = c(T)dT, where 
c denotes specific heat. 

► With these relations, Eq. 6.10a reduces to give 

► When the specific heat is constant 

► On integration, the change in specific entropy is 

(Eq. 6.13) 



Calculating Entropy Change of an Ideal Gas 
► The ideal gas model assumes pressure, specific volume 

and temperature are related by pv = RT.  Also, specific 
internal energy and specific enthalpy each depend solely 
on temperature:  u = u(T), h = h(T), giving du = cvdT and 
dh = cpdT, respectively. 

► Using these relations and integrating, the TdS equations 
give, respectively 

(Eq. 6.17) (Eq. 6.18) 



► Since cv and cp are functions of temperature for ideal gases, 
such functional relations are required to perform the 
integration of the first term on the right of Eqs. 6.17 and 6.18.  

Calculating Entropy Change of an Ideal Gas 
► Since these particular equations give entropy change on a 

unit of mass basis, the constant R is determined from  
./MRR =

► For several gases modeled as ideal gases, including air, 
CO2, CO, O2, N2, and water vapor, the evaluation of 
entropy change can be reduced to a convenient tabular 
approach using the variable so defined by  

(Eq. 6.19) 

where T ' is an arbitrary reference temperature. 



► Accordingly, Eq. 6.18 becomes  

Calculating Entropy Change of an Ideal Gas 
► Using so, the integral term of Eq. 6.18 can be expressed as  

(Eq. 6.20a) 

or on a per mole basis as 

(Eq. 6.20b) 

► For air, Tables A-22 and A-22E provide so in units of kJ/
kg·K and Btu/lb·oR, respectively.  For the other gases 
mentioned, Tables A-23 and A-23E provide      in units of 
kJ/kmol·K and Btu/lbmol·oR, respectively.  

os



Calculating Entropy Change of an Ideal Gas 

Ideal Gas Properties of Air 
T(K), h and u(kJ/kg), so (kJ/kg·K) 

    when Δs = 0     when Δs = 0 

T h u so pr vr T h u so pr vr 
250 250.05 178.28 1.51917 0.7329 979. 1400 1515.42 1113.52 3.36200 450.5 8.919 
260 260.09 185.45 1.55848 0.8405 887.8 1420 1539.44 1131.77 3.37901 478.0 8.526 
270 270.11 192.60 1.59634 0.9590 808.0 1440 1563.51 1150.13 3.39586 506.9 8.153 
280 280.13 199.75 1.63279 1.0889 738.0 1460 1587.63 1168.49 3.41247 537.1 7.801 
285 285.14 203.33 1.65055 1.1584 706.1 1480 1611.79 1186.95 3.42892 568.8 7.468 
290 290.16 206.91 1.66802 1.2311 676.1 1500 1635.97 1205.41 3.44516 601.9 7.152 
295 295.17 210.49 1.68515 1.3068 647.9 1520 1660.23 1223.87 3.46120 636.5 6.854 
300 300.19 214.07 1.70203 1.3860 621.2 1540 1684.51 1242.43 3.47712 672.8 6.569 
305 305.22 217.67 1.71865 1.4686 596.0 1560 1708.82 1260.99 3.49276 710.5 6.301 
310 310.24 221.25 1.73498 1.5546 572.3 1580 1733.17 1279.65 3.50829 750.0 6.046 
 

► From Table A-22, we get so
1 = 1.70203 and so

2 = 3.37901, 
each in kJ/kg·K.  Substituting into Eq. 6.20a 

Example:  Determine the change in specific entropy, in kJ/
kg·K, of air as an ideal gas undergoing a process from T1 = 
300 K, p1 = 1 bar to T2 = 1420 K, p2 = 5 bar. 
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Table A-22 



Calculating Entropy Change of an Ideal Gas 

► Tables A-22 and A-22E provide 
additional data for air modeled 
as an ideal gas.  These values, 
denoted by pr and vr, refer only 
to two states having the same 
specific entropy.  This case has 
important applications, and is 
shown in the figure.  



► When s2 = s1, the following equation relates T1, T2, p1, 
and p2  

Calculating Entropy Change of an Ideal Gas 

(Eq. 6.41) 

where pr(T ) is read from Table A-22 or A-22E, as 
appropriate. 
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= (s1 = s2, air only) 

Ideal Gas Properties of Air 
T(K), h and u(kJ/kg), so (kJ/kg·K) 

    when Δs = 0     when Δs = 0 

T h u so pr vr T h u so pr vr 
250 250.05 178.28 1.51917 0.7329 979. 1400 1515.42 1113.52 3.36200 450.5 8.919 
260 260.09 185.45 1.55848 0.8405 887.8 1420 1539.44 1131.77 3.37901 478.0 8.526 
270 270.11 192.60 1.59634 0.9590 808.0 1440 1563.51 1150.13 3.39586 506.9 8.153 
280 280.13 199.75 1.63279 1.0889 738.0 1460 1587.63 1168.49 3.41247 537.1 7.801 
285 285.14 203.33 1.65055 1.1584 706.1 1480 1611.79 1186.95 3.42892 568.8 7.468 
290 290.16 206.91 1.66802 1.2311 676.1 1500 1635.97 1205.41 3.44516 601.9 7.152 
295 295.17 210.49 1.68515 1.3068 647.9 1520 1660.23 1223.87 3.46120 636.5 6.854 
300 300.19 214.07 1.70203 1.3860 621.2 1540 1684.51 1242.43 3.47712 672.8 6.569 
305 305.22 217.67 1.71865 1.4686 596.0 1560 1708.82 1260.99 3.49276 710.5 6.301 
310 310.24 221.25 1.73498 1.5546 572.3 1580 1733.17 1279.65 3.50829 750.0 6.046 
 

Table A-22 



Calculating Entropy Change of an Ideal Gas 
► When s2 = s1, the following equation relates T1, T2, v1, 

and v2  
(Eq. 6.42) 

where vr(T ) is read from Table A-22 or A-22E, as 
appropriate. 
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Ideal Gas Properties of Air 
T(K), h and u(kJ/kg), so (kJ/kg·K) 

    when Δs = 0     when Δs = 0 

T h u so pr vr T h u so pr vr 
250 250.05 178.28 1.51917 0.7329 979. 1400 1515.42 1113.52 3.36200 450.5 8.919 
260 260.09 185.45 1.55848 0.8405 887.8 1420 1539.44 1131.77 3.37901 478.0 8.526 
270 270.11 192.60 1.59634 0.9590 808.0 1440 1563.51 1150.13 3.39586 506.9 8.153 
280 280.13 199.75 1.63279 1.0889 738.0 1460 1587.63 1168.49 3.41247 537.1 7.801 
285 285.14 203.33 1.65055 1.1584 706.1 1480 1611.79 1186.95 3.42892 568.8 7.468 
290 290.16 206.91 1.66802 1.2311 676.1 1500 1635.97 1205.41 3.44516 601.9 7.152 
295 295.17 210.49 1.68515 1.3068 647.9 1520 1660.23 1223.87 3.46120 636.5 6.854 
300 300.19 214.07 1.70203 1.3860 621.2 1540 1684.51 1242.43 3.47712 672.8 6.569 
305 305.22 217.67 1.71865 1.4686 596.0 1560 1708.82 1260.99 3.49276 710.5 6.301 
310 310.24 221.25 1.73498 1.5546 572.3 1580 1733.17 1279.65 3.50829 750.0 6.046 
 

Table A-22 



Entropy Change of an Ideal Gas  
Assuming Constant Specific Heats 

► When the specific heats cv and cp are assumed constant, 
Eqs. 6.17 and 6.18 reduce, respectively, to  

(Eq. 6.17) (Eq. 6.18) 

(Eq. 6.21) (Eq. 6.22) 

► These expressions have many 
applications.  In particular, they can be 
applied to develop relations among T, 
p, and v at two states having the same 
specific entropy as shown in the figure.  



► Since s2 = s1, Eqs. 6.21 and 
6.22 become  

Entropy Change of an Ideal Gas 
Assuming Constant Specific Heats 

where k is the specific ratio 
► With the ideal gas relations  

(Eq. 6.43) ► These equations can 
be solved, 
respectively, to give  (Eq. 6.44) 

► Eliminating the 
temperature ratio gives 

(Eq. 6.45) 



Ideal Gas Properties of Air 
T(K), h and u(kJ/kg), so (kJ/kg·K) 

    when Δs = 0     when Δs = 0 

T h u so pr vr T h u so pr vr 
315 315.27 224.85 1.75106 1.6442 549.8 600 607.02 434.78 2.40902 16.28 105.8 
320 320.29 228.42 1.76690 1.7375 528.6 610 617.53 442.42 2.42644 17.30 101.2 
325 325.31 232.02 1.78249 1.8345 508.4 620 628.07 450.09 2.44356 18.36 96.92 
330 330.34 235.61 1.79783 1.9352 489.4 630 638.63 457.78 2.46048 19.84 92.84 
340 340.42 242.82 1.82790 2.149 454.1 640 649.22 465.50 2.47716 20.64 88.99 
350 350.49 250.02 1.85708 2.379 422.2 650 659.84 473.25 2.49364 21.86 85.34 
 

Calculating Entropy Change of an Ideal Gas 
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Example:  Air undergoes a process from T1 = 620 K, p1 = 12 bar 
to a final state where s2 = s1, p2 = 1.4 bar.  Employing the ideal 
gas model, determine the final temperature T2, in K.  Solve using 
(a) pr data from Table A-22 and (b) a constant specific heat ratio 
k evaluated at 620 K from Table A-20:  k = 1.374.  Comment. 
(a)  With Eq. 6.41 and pr(T1) = 18.36 from Table A-22  

Table A-22 

Interpolating in Table A-22, T2 = 339.7 K 



Calculating Entropy Change of an Ideal Gas 

( ) ( )374.1/374.0/1

1

2
12 bar 12

bar 4.1K 620 ⎟
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(b)  With Eq. 6.43 

Comment:  The approach of (a) accounts for 
variation of specific heat with temperature but 
the approach of (b) does not.  With a k value 
more representative of the temperature interval, 
the value obtained in (b) using Eq. 6.43 would be 
in better agreement with that obtained in (a) with 
Eq. 6.41. 

T2 = 345.5 K 



Isentropic Turbine Efficiency 

► For a turbine, the energy rate 
balance reduces to  1 2 
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►  If the change in kinetic energy of flowing matter is negligible, 
½(V1

2 – V2
2) drops out. 

►  If the change in potential energy of flowing matter is 
negligible, g(z1 – z2) drops out. 

►  If the heat transfer with surroundings is negligible,       drops 
out. 
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the left side is work developed per unit of mass flowing. 
where 



Isentropic Turbine Efficiency 

► For a turbine, the entropy rate 
balance reduces to  

1 2 

► If the heat transfer with surroundings is negligible, drops 
out. 

012
cv ≥−= ss
m
σ

jQ



Isentropic Turbine Efficiency 

► Since the rate of entropy production cannot 
be negative, the only turbine exit states 
that can be attained in an adiabatic 
expansion are those with s2 ≥ s1.  This is 
shown on the Mollier diagram to the right. 

► The state labeled 2s on the figure would be attained only in an 
isentropic expansion from the inlet state to the specified exit 
pressure – that is, 2s would be attained only in the absence of 
internal irreversibilities.  By inspection of the figure, the 
maximum theoretical value for the turbine work per unit of mass 
flowing is developed in such an internally reversible, adiabatic 
expansion: 
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Isentropic Turbine Efficiency 

► The isentropic turbine 
efficiency is the ratio of the 
actual turbine work to the 
maximum theoretical work, 
each per unit of mass flowing: 

(Eq. 6.46) 



Isentropic Turbine Efficiency 

► From Table A-4, h1 = 3105.6 kJ/kg, s1 = 7.5308 kJ/kg.  
With s2s = s1, interpolation in Table A-4 at a pressure of 
1 bar gives h2s = 2743.0 kJ/kg.  Substituting values into 
Eq. 6.46 

Example:  Water vapor enters a turbine 
at p1 = 5 bar, T1 = 320oC and exits at p2 
= 1 bar.  The work developed is 
measured as 271 kJ per kg of water 
vapor flowing.  Applying Eq. 6.46, 
determine the isentropic turbine 
efficiency. 
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Isentropic Compressor and Pump Efficiencies 

► For a compressor the energy rate 
balance reduces to  

1 
2 
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►  If the change in kinetic energy of flowing matter is negligible, 
½(V1

2 – V2
2) drops out. 

►  If the change in potential energy of flowing matter is 
negligible, g(z1 – z2) drops out. 

►  If the heat transfer with surroundings is negligible,       drops 
out. 
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the left side is work input per unit of mass flowing. 
where 



Isentropic Compressor and Pump Efficiencies 

► For a compressor the entropy 
rate balance reduces to  

1 
2 

► If the heat transfer with surroundings is negligible, drops 
out. 
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Isentropic Compressor and Pump Efficiencies 

► Since the rate of entropy production 
cannot be negative, the only compressor 
exit states that can be attained in an 
adiabatic compression are those with s2 
≥ s1.  This is shown on the Mollier 
diagram to the right. 
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► The state labeled 2s on the figure would be attained only in an 
isentropic compression from the inlet state to the specified exit 
pressure – that is, state 2s would be attained only in the 
absence of internal irreversibilities.  By inspection of the figure, 
the minimum theoretical value for the compressor work input 
per unit of mass flowing is for such an internally reversible, 
adiabatic compression: 



Isentropic Compressor and Pump Efficiencies 

► The isentropic compressor 
efficiency is the ratio of the 
minimum theoretical work 
input to the actual work input, 
each per unit of mass flowing: 

(Eq. 6.48) 

► An isentropic pump efficiency is defined similarly. 



Heat Transfer and Work in Internally Reversible 
Steady-State Flow Processes 

► Consider a one-inlet, one-
exit control volume at 
steady state: 

► Compressors, pumps, and 
other devices commonly 
encountered in engineering 
practice are included in this 
class of control volumes. 

► The objective is to introduce expressions for the heat 
transfer rate           and work rate            in the absence of 
internal irreversibilities.  The resulting expressions have 
important applications. 
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Heat Transfer and Work in Internally Reversible 
Steady-State Flow Processes 

► In agreement with the discussion of energy transfer by 
heat to a closed system during an internally reversible 
process (Sec. 6.6.1), in the present application we have 

► As shown by the figure, when the states 
visited by a unit mass passing from inlet to 
exit without internal irreversibilities are 
described by a curve on a T-s diagram, the 
heat transfer per unit of mass flowing is 
represented by the area under the curve. 

where the subscript “int rev” signals that the expression 
applies only in the absence of internal irreversibilities. 

(Eq. 6.49) 



Heat Transfer and Work in Internally Reversible 
Steady-State Flow Processes 

► Neglecting kinetic and potential energy effects, an energy 
rate balance for the control volume reduces to 

► Since internal irreversibilities are assumed absent, each unit 
of mass visits a sequence of equilibrium states as it passes 
from inlet to exit.  Entropy, enthalpy, and pressure changes 
are therefore related by the TdS equation, Eq. 6.10b: 

( ) ( )21

2
2

2
1

21

rev
int

cv

rev
int

cv
2
VV zzghh

m
Q

m
W

−+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
+−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛









► With Eq. 6.49, this becomes (1) 



Heat Transfer and Work in Internally Reversible 
Steady-State Flow Processes 

► Integrating from inlet to exit: 

► With this relation Eq. (1) becomes 

(Eq. 6.51b) 

► If the specific volume remains approximately constant, 
as in many applications with liquids, Eq. 6.51b becomes 

(Eq. 6.51c) 

This is applied in the discussion of vapor power cycles 
in Chapter 8. 



Heat Transfer and Work in Internally Reversible 
Steady-State Flow Processes 

► As shown by the figure, when the states visited 
by a unit mass passing from inlet to exit without 
internal irreversibilities are described by a curve 
on a p-v diagram, the magnitude of ∫vdp is 
shown by the area behind the curve. 



Heat Transfer and Work in Internally Reversible 
Steady-State Flow Processes 

Example:  A compressor operates at 
steady state with natural gas entering at 
at p1, v1.  The gas undergoes a polytropic 
process described by pv = constant and 
exits at a higher pressure, p2.   

1 
2 

(a) Ignoring kinetic and potential energy effects, evaluate 
the work per unit of mass flowing. 

(b) If internal irreversibilities were present, would the 
magnitude of the work per unit of mass flowing be less 
than, the same as, or greater than determined in part (a)? 



Heat Transfer and Work in Internally Reversible 
Steady-State Flow Processes 

(a) With pv = constant, Eq. 6.51b gives 

(b) Left for class discussion. 

The minus sign indicates that the compressor 
requires a work input. 


